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Abstract

In machine learning, monotone classification is con-
cerned with a classification function to learn in or-
der to guarantee a kind of monotonicity of the class
with respect to attribute values. In this paper, we
focus on rank discrimination measures to be used in
decision tree induction, i.e., functions able to mea-
sure the discrimination power of an attribute with
respect to the class taking into account the mono-
tonicity of the class with respect to the attribute.
Three new measures are studied in detail and an ex-
perimental analysis is also provided, comparing the
proposed approach with other well-known mono-
tone and non-monotone classifiers in terms of clas-
sification accuracy.

Keywords: Decision tree induction. Monotone
classification. Rank discrimination measures.

1. Introduction

In machine learning, decision tree induction enables
the construction of a summarized view of a set of
data from a given training set.

Usually, basic approaches to construct a decision
tree from a training set are based on a Top Down
Induction of Decision Tree (TDIDT) method. A
tree is built from its root to its leaves, by succes-
sive partitioning of the training set into subsets.
An attribute is selected thanks to a discrimination
measure H (in classical decision trees, the Shan-
non entropy is generally used [5, 26]) that ranks the
attributes according to their discriminating power
with regard to the class. The attribute with the
highest discriminating power is selected to split the
training set. Methods to construct decision trees
differ mainly in their choice of H [20, 21].

In detail, at each step of the construction of a de-
cision tree, the measure of discrimination H is used
to value the discrimination power of each attribute
with regard to the class. Thus, it will produce a
ranking of all the attributes according to this value,
and the winner attribute will be the one that is
ranked first (i.e., the one that has the lowest value).
As a consequence the whole ranking is not interest-
ing in this process (only the first one is selected).

In the fuzzy setting, fuzzy decision trees (FDTs)
have been extensively used in the past years as a
powerful knowledge extraction tool, and nowadays
they are still an active domain of researches and
applications [1, 8, 9, 19, 24, 29]. Very recent works
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have also shown that FDTs can be used also in rank-
ing applications where it is more useful to associate
test examples with a degree of classification rather
than a crisp class [17].

Indeed, there exist a lot of real-world application
problems where the values of the class are sym-
bolic and ordered. In that kind of problems, it
appears that finding attributes that are gradually
linked with the class could be more valuable in or-
der to explain the decision process done by means
of that tree. For instance, the older the patient, the
most vulnerable to disease.

Commonly, fuzzy TDIDT algorithms are ob-
tained via a fuzzification of a discrimination mea-
sure. However, classical (fuzzy) discrimination mea-
sures [5, 26, 32] take into account only the informa-
tive properties of attributes with regard to the class
and forget to handle the graduality that could link
their values.

Here, as a preparatory step to fuzzification, we
focus on the crisp case. Thus we consider a training
set of objects w;’s described by attributes a;’s, each
ranging in a totally ordered set X;, and labelled
with a class coming also from a totally ordered set
C. More formally, the monotone classification prob-
lem (see, e.g., [25]) consists in finding an order pre-
serving extension \’ defined on the description space
X generated by the X,’s, of a monotone consistent
labelling function A specified on a set of object de-
scriptions E C X.

Anyway, real data are generally neither monotone
consistent nor consistent, i.e., A could not be mono-
tone on F or worse A could be only a relation on
ExC.

In the literature, some monotone classifiers have
been proposed [2, 3, 7, 6, 18, 11, 27] but, as shown
in [4], they deeply suffer from non-monotone noise
present in the data and in many cases do not have
classification accuracy as primary goal. Moreover,
in order to ensure the monotonicity of the final
classifier \’, a monotonization phase of the initial
dataset or of the final classifier could be necessary
[10, 25], causing a possible loss of information.

In particular, the global monotonicity constraint
acts on the final classifier X and so it requires an
a priori knowledge of the entire tree. Hence, global
monotonicity is difficult to enforce in an inductive
construction procedure since at each step only one
attribute can be taken into account.

Our aim is to inductively build a decision tree ex-
ploiting somehow the eventual monotonicity present
in the dataset, anyway, since no assumption of



monotonicity is made on the data, we need to relax
requirements on the final dataset.

This is why, in our approach, we adopt a greedy
strategy: at each step of the building process we
choose the attribute a; “enforcing the most” the
local monotonicity constraint, i.e., for all w;, wy, € Q,

aj(wi) < aj(wn) = AMwi) < Mwn)-

As a consequence it is not possible to expect a glob-
ally monotone classifier in the end. Nevertheless, we
seek at least a weak form of monotonicity in the case
the given dataset is monotone consistent.

In order to build a monotone decision tree, new
kinds of discrimination measures should be used.
More precisely, measures able to quantify the mono-
tonicity of A w.r.t. a; and being robust to non-
monotone noise are required in such a process.

In [15] the authors propose a rank generalization
of Shannon mutual information, namely rank mu-
tual information, which is a combination of Shannon
entropy with dominance rough set relation [12, 13],
based on the object-wise writing of Shannon en-
tropy. In the same paper they underline that this
measure is both sensitive to monotonicity and ro-
bust to noisy data. In [14] this measure is used to
build binary tree classifiers guaranteed to possess
a weak form of monotonicity (rule monotonicity) in
the case the starting dataset is monotone consistent.
They call this TDIDT algorithm REMT and show it
behaves well compared to both monotone and non-
monotone classifiers. Moreover, in [16] they use the
rank mutual information for feature selection.

In [23], we applied the same rank generalization
procedure given in [15] to other two deeply studied
discrimination measures such as Gini measure and
Yuan and Shaw measure, moreover we introduced
directly a third measure not having a non-monotone
counterpart. A detailed study of aforementioned
measures has been carried on in [22].

In order to show the effectiveness of the pro-
posed measures we wrote a binary tree classifier
parametrized by a rank discrimination measure
H*. This TDIDT algorithm, called RDMT(H*),
is based on REMT [14] and is written in Java using
the WEKA package. RDMT(H*) has been tested
on artificial and real datasets and compared with
other well-known monotone and non-monotone clas-
sifiers in terms of classification accuracy. Our anal-
ysis shows our classifier can exploit the eventual
monotonicity of the dataset: it can compete with
non-monotone classifiers in accuracy and, moreover,
it is much more robust to non-monotone noise than
purely monotone classifiers.

The paper is organized as follows. In Section 2,
we present some new discrimination measures for
attribute ranking that enable to take into account a
monotone link between a descriptive attribute and
the class. In Section 3, a new binary decision tree
classifier is proposed that exploits the proposed rank
discrimination measures. In Section 4, a set of ex-
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periments is presented in order to compare our pro-
posed algorithm to existing ones and to highlight
better its properties. Finally, we conclude focus-
ing on fuzzification of the proposed measures as a
natural expansion of present work.

2. Rank discrimination measures

Let us consider a set Q@ = {wi,...,w,} of ob-
jects or alternatives described by a family A =
{a1,...,an} of attributes with finite totally ordered
range (also called true criteria in [6, 7]), i.e., for
each j =1,...,m, a; is a function on {2 ranging in
X; =A{xj,,... ) Tj, }witht; > 1 and (X, <) totally
ordered. We assume a labelling function X : Q — C
is given, where C = {c1,...,c} is a set of classes
with & > 1 and (C, <) also totally ordered.

We stress that, for ¢ = 1,... n, each object w;
can be mapped to a corresponding (m + 1)-tuple
(a1(wi), ... am(w;), AM(w;)), obtaining a dataset of
eramples, moreover the product space X = X; x

- x X, forms a lattice (X,<) where for each
r,y € X,

r<y & z; <y forj=1...,m

(1)

We say that the dataset of examples is consis-
tent if and only if for each w;,w, € Q it holds
(a1(wi),y .. yam(w;)) = (a1(wn),...,am(wy)) im-
plies A(w;) = A(wp), moreover, it is said to be mono-
tone consistent if and only if for each w;,wy € Q it
holds (aq(wi), .-, am(w;)) < (ar1(wpn), .-, am(wsr))
implies A(w;) < Awp).

Recall that each attribute a; € A as well as the
labelling function A\ determines a partition of €2,
whose elements are denoted, respectively, as {a; =
zj,} ={wn €Q : aj(wp) =z}, s=1,...,t;, and
A=cg} ={wn € : Mwn) =¢},qg=1,...,k,
moreover, the same partitions can be object-wise
written, denoting for each w; € Q2

{wn € @ aj(wi) = aj(wn)},
fwn €Q 0 AMwi) = Awn)},  (3)
where for each wy, € [wila, we have [wp]e;, = [Wila;
and, analogously, for each wp € [w;]n we have
[wa]x = [wilx.

(2)

[Wi]aj

wilx =

2.1. Rank version of conditional Shannon
entropy [15]

In [15] the following object-wise writing of condi-
tional Shannon entropy is shown (reported here in
our notation).

_ Haj=2;.}

Proposition 2.1 Put ps T

H{A=cq}n{aj==;, } .
Q] :
t; k
DPq,s
DPs | — —
)3 ( > (1)

()

and pgs =

Hgs(Aaj) =



In the same paper the authors underline the in-
capability of conditional Shannon entropy to detect
monotonicity of A\ w.r.t. a;. To overcome this ob-
stacle, they go back to the dominance rough set
approach (see [12, 13]) introducing the notion of
dominant set generated, respectively, by a; and .
For each w; € ), they define

D\/\

[wila, (4)
[Wi]§ (5)

Then they propose a rank version of Shannon
conditional entropy, obtained simply substituting
in the object-wise writing the equivalence classes
[wi]xN[wi]a; and [w;]a,; With the corresponding dom-
inant sets, deriving the following definition of the
Shannon rank discrimination measure (we keep con-
ditional notation for uniformity):

= {wheﬂz
{whEQ:

aj(w;) < aj(wn)},

AMw;) < AMwn)}

Definition 2.1

el
HE(Nay) Z &l (

|[wilFNlwils, |

———— is a mea-
[fwilz; |

sure of satisfaction of the local monotonicity con-

straint for a fixed w; € €, quantifying the validity

of

In Definition 2.1, the ratio

aj(wi) < aj(wn) = AMw;) < Awn),
for all wy, € Q.
It is easy to see that, for a fixed w; € €2,
Nwilsl
e |
if and only if a;(w;) < aj(wn) = Aw;i) < AMwh),

151

<
w3 N[wil3,

i
[w

for all wy, € €, since = 1 if and only if

[lwil; |
{wn € AMwi) < Mwn) A aj(w) < aj(wp)} =
{wp € Q@ ¢ aj(w;) < a;(wy)} and this is true if and

only if the local monotonicity constraint is satisfied
for w;.

In the rest of the paper, to simplify notation, for
a fixed a; € A and A denote:

|[wil§ N [wils

dsr(w;)) = —————, (6)
|[wila; |
L lwn]5 N fwnls]
mindsr(w;) = —— 2 = , (1)
[wila; |
(hax _)|[wh}§ﬁ[wh]§j|
maxdsr(w;) = T , (8)
|[wi]a; |
[Wh],\ ["-’h]g‘
aj(wp)=a;(w;) [Uh]a]‘
avgdsr(w;) AR 9)

[wil,|
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2.2. New rank discrimination measures

Here, we present the extension of the approach
proposed by Hu et al in [15] to other well-known
discrimination measures such as Gini measure and
Yuan and Shaw measure and we investigate if the
obtained functions are proper rank discrimination
measures. For more details and proofs, see [23].

In analogy with Definition 2.1, we define the Gini
rank discrimination measure from the Gini measure
by replacing the equivalence classes [w;|xN[w;q; and
[wila; in its object-wise writing with the correspond-
ing dominant sets. Thus we obtain:

Definition 2.2
|2

Z o !

H{(May) — dsr(w;)) .

Notice that the rank generalization of Gini mea-
sure given in Definition 2.2 differs from the one pro-
posed in [31].

The same procedure is applied to the Yuan and
Shaw measure of ambiguity [32]. In order to achieve
the object-wise writing, we have to notice that in the
standard definition of this measure a total order on
the cardinalities

{A=ctN{a; ==}

is assumed for each fixed s =1,...,¢;, therefore, we
need to “transport” this ordinal structure to objects
in Q by defining a proper binary relation 2 4, [23].

To introduce the rank version of Yuan and Shaw
measure, a definition of relation 3y 4, taking into
account dominant sets is needed.

) q:17'-‘>k7

Definition 2.3 For each w;,wy €

Wi Sha, W iff [wil§ N wils, =

[wil§ N wi]%v [whlx

wil$ N [l ] < eons

It is easy to show that relation = isa partial

N)\ a;
preorder on €2, moreover the symmetric part ~
is an equlvalence relation on €2 while the asymmet—

. / 3 i 1
ric part <y - is a partial strict order on Q/N/A,a]‘-

In particular, to each decreasing >) aj—chain in
;
Q /~, We can associate an increasing index start-
,a g
ing from 1 and so for each w; we can define p’(w;) =
“index of the ~) a) -equivalence class containing w;”,
,a;
and the rank version of Yuan and Shaw measure is

defined as:
Definition 2.4

)

)

€2 1 log, (ﬁn (p (ww)i)

Hy (Nay) = a

P maxdsr(w;)

. oz o ifr<oo
with fin(z) = { 1 otherwise *



Observing Definition 2.4 one can see that the rank
version of Yuan and Shaw measure considers for
each object w; only the set [wp]5 N [wh]S a, with the
maximum cardinality having a;(wy) = a;(w;). This
optimistic approach may produce a sort of blind-
ness w.r.t. monotonicity since maxdsr(w;) could be
1 even if dsr(w;) is less than 1. Furthermore, the
measure takes into account an ordering on the car-
dinalities of dominant sets (expressed by p’) which
may conflict with the order on the values determin-
ing the dominant sets themselves, which is the one
we wish to preserve. In detail, in [23] we have shown
that Hy is not a good rank discrimination measure,
thus we will not take it into account in the rest of
the paper.

In the next definition we introduce directly a
third measure which is inspired to the functional
structure of Definition 2.4 but has a cautious na-
ture and it is called pessimistic. The Pessimistic
rank discrimination measure is defined as:

Definition 2.5

2 1C

Hb(\a)) log, mmdsr(wl))>.

mindsr(w;)

We stress that the ratio mindsr(w;) can be equal
to 1 only in the case dsr(w;) is 1 but it could be less
than 1 even in the case the last equality holds.

2.3. Rank discrimination capabilities

It can be proven that the proposed rank discrimina-
tion measures satisfy a set of good properties to be
used as discrimination measures [22, 23], moreover
in [23] the following theorem has been proven.

Theorem 2.1 Hf (\a,) = HE(May) =
Hi(MNa;) = if and only if X\ is monotone
w.r.t. aj, that is for each w;,wy € €1,

aj(wi) < aj(wp) = Awi) < AMwn).

3. RDMT(H*) classifier

In order to make a comparison of the introduced
measures with other proposal present in the liter-
ature we wrote a binary decision tree classifier in
Java relying on the WEKA package [30]. Our pro-
posal is essentially based on REMT classifier [14],
differing from it for the use of a rank discrimina-
tion measure H* for splitting instead of the rank
mutual information. We call it RDMT(H*) clas-
sifier, where the acronym RDMT stands for Rank
Discrimination Measure Tree. RDMT(H*) is a sim-
ple classifier parametrized by the choice of a rank
discrimination measure H* between Hp, Hg and
H} and by other three pre-pruning parameters. No
post-pruning is executed on the resulting tree, and
missing values are not allowed. As common prac-
tice in tree induction [5], the RDMT(H*) algorithm
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is completely specified once are known the follow-
ing parts: splitting rule, stopping rule and labelling
rule. The algorithm proceeds recursively applying
this three rules, working at each step on a local set
of objects €, where Qg = (.

For the splitting rule, since we restrict to binary
trees, each attribute a; must be binarized as it is
done in [26] for numeric attributes. In detail, if
X; = {z,,..  Tji, }, we denote with a; %3¢ the bi-
nary attrlbute defined as

i) = {

Now the splitting rule consists simply in finding the
binary attribute a* minimizing H *()\|a;cjs ), where
a, is the attribute for splitting and x, is the splitting
value.

Then the local object set €, is partitioned into
two subsets, according to a.(w;) < z, or a.(w;) >
T4, and the procedure is repeated on these two sub-
sets.

We stop growing the tree in the case A is con-
stant on (., moreover, to avoid overfitting, three
pre-pruning parameters determine further stopping
conditions. The parameter measureT hreshold sets
a lower bound for the rank discrimination mea-
sure, the parameter mazxDepth sets the maximum
length of a path from the root to a leaf node
and the parameter percMinSize sets the minimum
size of the current object set €2,, which is com-
puted as percMinSize - |Q2|. Notice that, since
HY, HG and Hp have different range, the parame-
ter measurel hreshold is deeply tied to the chosen
measure and so it must be properly estimated.

Once a stopping condition is reached a leaf node is
created and is properly labelled [14]. If A is constant
on {2, then the constant value is chosen as label,
otherwise if A is not constant, then the median value
is taken. In the particular case A assumes only two
values ¢, < ¢;,, both on the same number of objects
of Q4, then ¢, is chosen in the case of a left leaf
node, while ¢;, is chosen in the case of a right leaf
node.

It is important to notice that generally, even if the
training dataset is monotone consistent, the greedy
tree induction with H§, H, and H} does not guar-
antee a globally monotone classifier.

Hence, it is important to investigate if
RDMT(H*) can assure at least a weaker form
of monotonicity.  Algorithm REMT is shown
to guarantee a weak kind of monotonicity that
we call rule monotonicity [14]. Let T = (N, A)
be the decision tree generated by the induction
procedure, where N = {r} UT U L is the set of
nodes (partitioned in the singleton formed by the
root r, the set of internal nodes I and the set of
leaves L) and A is the set of directed arcs. It is
known (see, e.g., [26]) that each path r ~» [ with
l € L induces a decision rule R;, thus we denote
with Ry the set of decision rules generated by 7.

0 aj(w) <,
1 otherwise



Given l1,ls € L, R;, and Ry, are comparable (see
[14]) only in the case they are generated by the same
attributes, in this case we say that R;, < R;, if and
only if attribute values of R;, are less than R;,. We
simply denote with A\(R;) the label attached to leaf
node . Then we say that T is rule monotone if and
only if for each Ry, Ri, € R

Rll < R12 = )\(Rll) < )\(Rb). (10)

In [14] it is proven that in the case the dataset is
monotone consistent, then algorithm REMT guar-
antees rule monotonicity. The following proposition
states that the same also holds for RDMT(H*) [23].

Proposition 3.1 Let D be a dataset of examples
{(ar(wi)y .- yam(wi), A(w;)) i = 1,...,n} and T
a binary decision tree built with RDMT(H*) on D,
where H* € {H§, Hf, Hp}. If D is monotone con-
sistent then T is rule monotone.

4. Experimental analysis

The RDMT(H*) algorithm for monotone decision
tree construction has been compared with other
well-known monotone and non-monotone classifiers
having a WEKA implementation, on classification
tasks involving artificial and real datasets. Each
test has been executed performing a stratified 10-
folds cross-validation with the same seed (equal to
1) for the pseudo-casual number generator: the
WEKA environment guarantees all the folds are
equal for each tested classifier.

We used WEKA 3-6-0 since it is the last ver-
sion providing implementations of the used mono-
tone classifiers. Two non-monotone classifiers have
been considered: J48 which is a Java implementa-
tion of C4.5 classifier [26] and SimpleCart which
is a Java implementation of CART classifier [5].
For what concerns the monotone classifiers, we used
OLM, 0SDL and OCC which are, respectively, Java im-
plementations of the Ordinal Learning Model [5],
the Ordinal Stochastic Dominance Learner [5] and
the Ordinal Class Classifier [11] (this last classifier
is a monotone meta-classifier for which we used J48
as basic classifier). Table 1 lists the used classifiers
and the related characteristics.

Classifier Monotone | Globally

monotone
RDMT(H*) yes no
C4.5 no no
CART no no
OLM yes yes
OSDL yes yes
ocCcC yes no

Table 1: Used classifiers

For each test we considered the percentage of Cor-
rectly Classified Instances, or C'CI for short, the
Kappa statistic, or K for short, and the Mean Ab-
solute Error, or M AFE for short.
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Remark 4.1 Recall that K ranges in [—1,1] and
is a measure of accuracy corrected for random suc-
cesses [4]. In detail, a classifier is as much more
accurate as K is close to 1.

In all the following tests we used the default pa-
rameter settings for the WEKA implementations
of all the considered classifiers, as reported in the
WEKA explorer.

Firstly we compared the classifiers on artificial
data, producing datasets with an increasing num-
ber of monotone attributes. For k£ = 1,...,10,
we generated a dataset of 1000 examples on 10 at-
tributes, where a; is a uniform random variable on
{1,...,10}, 7 =1,...,10, and the labelling function

is defined as A = max aj. Clearly, for & = 10 the
J=1,
corresponding dataset is monotone consistent due

to monotonicity of maximum operator.

In order to execute a fair comparison between
the three measures H5, HG and Hp we set
maxDepth = 100, measureThreshold = 0 and
percMinSize = 0.01 for all the tests on artificial
data. Indeed, setting measurel hreshold > 0 could
favour some measure and penalize the others. Fig-
ure 1 displays graphics of CCI, K and MEA for
each classifier.

Observing Figure 1 one can see that RDMT(H)
achieves the best results presenting the highest CCT
and K together with the lowest M EA for all k ex-
cept for £k = 9 in which CART has slightly better
results.

Each one of RDMT(H{), RDMT(HY) and
RDMT(H}) behaves systematically better than
monotone classifiers OLM, OSDL and OCC also for
high values of k in which the degree of monotonic-
ity in the dataset tends to be perfect. In particular,
one would expect much better accuracy results in
case of monotone consistency of the dataset, i.e.,
for £k = 10. These three monotone algorithms seem
to appreciate the increment of monotonicity in the
dataset but their improvement in accuracy is very
small.

For what concerns non-monotone classifiers,
RDMT(H}) and RDMT(HY) behave always bet-
ter than C4.5, while RDMT(H}) presents slightly
less values of CCI compared to C4.5 for k£ = 10,
having anyway a greater value of K and a lesser
value of M EA. Taking into account CART we have
that it always performs better than RDMT(H})
while it has slightly better results with respect to
RDMT(HY) only for k = 9,10, and RDMT(H()
only for k =9, but it has a greater M EA.

Comparing the different rank discrimination mea-
sures, it is immediate to verify that for this test
RDMT(H¢) behaves better than both RDMT (HY)
and RDMT(H}), while worse results are achieved
by RDMT(H}). It is important to notice that for
each measure H* the performances of RDMT(H*)
tend to degrade for increasing & (as it happens for
non-monotone classifiers C4.5 and CART), where



Kappa statistic Correctly Classified Instances

Mean Absolute Error

Dataset

#Instances | #Attributes | #Classes

Employee Rejection Acceptance (ERA)
Employee Selection (ESL)

Lectures Evaluation (LEV)

Social Workers Decisions (SWD)
CPU

Breast Cancer

Dermatology

Lymphography

1000 4 4
488 4 9
1000 4 5
1000 10 4
209 6 10
277 9 2
358 34 4
148 18 4

Table 2: Tested datasets
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Figure 1: CCI, K and M EA on artificial data
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the degrade in performance is much more consider-
able for Hy,. We relate the behaviour of measure
HY to its pessimistic nature which does not allow
to exploit a high number of monotone attributes.

The given results show that RDMT(H*) outper-
forms all the other classifiers for k comprised be-
tween 3 and 7, that is in presence of remarkable
non-monotone noise.

We conclude this section reporting results of tests
executed on real datasets taken from UCI [28] and
WEKA [30] repositories. Since OLM and 0SDL do
not support numeric attributes or examples with
missing values, we preprocessed all the datasets,
removing all the examples with missing values
and discretizing real attributes applying WEKA
filter Discretize, moreover, integer attributes
have been converted to nominal ones by using
WEKA filter NumericToNominal, both contained in
weka.filters.unsupervised.attribute.

We collected eight datasets whose description
(taking into account the pre-processing phase) is
given in Table 2.

After a preliminary estimation study, we set
the pre-pruning parameters to maxDepth = 100,
percMinSize = 0.01, while measureT hreshold =
0.01 for Hf, measureTlhreshold = 0.05 for H§ and
measurel hreshold = 0.1 for Hp in a way to obtain
a good compromise between accuracy and tree size.

Table 3 shows results of tests executed on datasets
listed in Table 2. Those results essentially high-
light a good behaviour of RDMT(H*) also on real
data. In detail, the first four datasets (ERA,
ESL, LEV and SWD) are monotone datasets taken
from WEKA repository while the other four (CPU,
Breast Cancer, Dermatology and Lymphography) are
general purpose datasets.

In the first four datasets, RDMT(H*) occupies
always one of the first three positions in the rank of
accuracy results between the six analysed classifiers:
it is in first position for LEV, in second position for
ERA and ESL, and in third position for SWD. No-
tice that in the three cases in which RDMT(H*) is
not in first position the difference in CCI with the
first position in the accuracy rank is always strictly
less than 1%. The obtained results are clearly a
consequence of the chosen parameter setting and a
different choice could further increase the perfor-
mance.



Dataset RDMT(H;,) | RDMT(H3) [ RDMT(H}) | C45 | CART | OLM | OSDL | OCC
CCT 26.30% 26.30% 26.30% 26.70% | 24.60% | 24.40% | 23.60% | 23.50%

ERA K 0.1304 0.1304 0.1304 0.1405 | 0.1140 | 0.1005 | 0.0975 | 0.0875
MEA 0.1638 0.1638 0.1638 0.1769 | 0.1783 | 0.1680 | 0.1698 | 0.1854
CCT 67.62% 63.72% 65.77% 65.98% | 63.93% | 54.09% | 68.23% | 60.86%

ESL K 0.5942 0.5452 0.5702 0.5705 | 0.5445 | 0.4269 | 0.6016 | 0.5018
MEA 0.0719 0.0806 0.0760 0.1021 | 0.1030 | 0.1020 | 0.0706 | 0.1160
CCT 63.70% 63.70% 63.70% 60.40% | 63.30% | 46.30% | 63.10% | 60.20%

LEV K 0.4772 0.4772 0.4772 0.4320 | 0.4741 | 0.2424 | 0.4665 | 0.4190
MEA 0.1452 0.1452 0.1452 0.2025 | 0.1985 | 0.2148 | 0.1476 | 0.2055
CCT 58.50% 58.50% 58.30% 56.50% | 57.80% | 47.10% | 58.70% | 58.90%

SWD K 0.3622 0.3622 0.3590 0.3332 | 0.3582 | 0.1985 | 0.3636 | 0.3661
MEA 0.2075 0.2075 0.2085 0.2668 | 0.2738 | 0.2645 | 0.2065 | 0.2575
CCT 84.21% 83.25% 83.73% 84.68% | 85.64% | 85.64% | 80.38% | 82.29%

CcPU K 0.5849 0.5490 0.5866 0.5865 | 0.6092 | 0.6075 | 0.5401 | 0.5359
MEA 0.0316 0.0335 0.0325 0.0348 | 0.0379 | 0.0285 | 0.0392 | 0.0443
CCT 63.59% 68.59% 67.50% 74.36% | 71.84% | 65.34% | 53.06% | 74.36%

Breast Cancer | K 0.1721 0.1785 0.1666 0.2535 | 0.1541 | 0.1375 | 0.1157 | 0.2535
MEA 0.3141 0.3141 0.3249 0.3682 | 0.3737 | 0.3466 | 0.4693 | 0.3682
CCT 89.66% 86.31% 91.89% 93.57% | 94.97% | 89.38% | 12.01% | 86.59%

Dermatology K 0.8710 0.8281 0.8990 0.9192 | 0.9370 | 0.8676 | —0.0292 | 0.8314
MEA 0.0345 0.0456 0.0270 0.0292 | 0.0244 | 0.0354 | 0.2933 | 0.0600
CCT 71.62% 75.00% 79.72% 79.72% | 76.35% | 40.54% | 56.75% | 82.43%

Lymphography | K 0.4567 0.5206 0.6178 0.6169 | 0.5378 | 0.1680 | 0.2536 | 0.6626
MEA 0.1419 0.1250 0.1014 0.1258 | 0.1448 | 0.2973 | 0.2162 | 0.1168

Table 3: Results concerning CCI, K and M EA of tests on real datasets

Also in the last four datasets, RDMT(H*) re-
mains always in the first three positions being sec-
ond (ex aequo with C4.5) on Lymphography and
third in all the other three datasets. Notice that
in each case the difference in CCI with the first
position in the accuracy rank is always strictly less
than 6%.

>From previous discussion we can conclude that
our classifier, essentially based on a rank discrimina-
tion measure, can compete with more sophisticated
ones having also a pruning phase, such as C4.5 and
CART.

We want to underline that in all the tested real
datasets the best performances of RDMT(H*) are
always obtained by H¢, or H} (in four of the eight
cases there is an ex aequo with HY) thus these
new two measures appear to behave generally better
than Hg.

5. Conclusion

In this paper, we presented a rank generalization
of Gini discrimination measure and Yuan and Shaw
discrimination measure, moreover we introduced di-
rectly a third function inspired to the functional
structure of the second generalized measure.

We also presented a binary tree classifier
RDMT(H*) parametrized by a rank discrimination
measure H* and other three pre-pruning parame-
ters. RDMT(H*) has been implemented in Java
using the WEKA package and it has been tested on
artificial and real datasets, comparing it with other
well-known monotone and non-monotone classifiers
also implemented in WEKA. This classifier assures
a weak form of monotonicity on the resulting tree,
namely rule monotonicity, in the case the dataset is
monotone consistent. Our analysis shows our clas-
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sifier can exploit the eventual monotonicity of the
dataset: it can compete with non-monotone clas-
sifiers in accuracy and, moreover, it is much more
robust to non-monotone noise than purely mono-
tone classifiers. Thus an empirical proof of effective-
ness of the proposed rank discrimination measures
is given.

In future work, we plan the fuzzification of the
proposed rank discrimination measures in a way to
deal with fuzzy decision tree classifiers [17, 32].
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