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Abstract

Gradual itemsets of the form “the more/less A,
the more/less B” summarise data through the de-
scription of their internal tendencies, identified as
correlation between attribute values. This paper
proposes to characterise gradual itemsets, enriching
them with an additional clause introduced by the
linguistic expression “especially if”: they are of the
form “the more/less A, the more/less B, especially
if J ∈ R”, where J is a set of attributes occurring in
A∪B and R is a set of intervals defined for each at-
tribute in J . The method proposed to automatically
extract characterised gradual itemsets is based on
appropriate mathematical morphology tools. The
paper illustrates the relevance of the proposed ap-
proach on a real data set.

1. Introduction

Gradual itemsets provide information summarising
data sets in the linguistic form “the more/less A, the
more/less B”, e.g. illustrated by a sentence such as
“the closer the wall, the harder the brakes are ap-
plied”. Initially introduced in the fuzzy implication
formalism [1, 2, 3], they have then been interpreted
as expressing constraints on the attribute covari-
ations. Several interpretations of the constraints
have been proposed, as regression [4], correlation of
induced order [5, 6] or identification of compatible
object subsets [7, 8]. Each interpretation leads to
the definition of a support and to methods for the
identification of the itemsets that are frequent ac-
cording to the considered support definition.

In the case of categorical or fuzzy data, it
has been proposed to enrich gradual itemsets by
so-called strengthening clauses, linguistically in-
troduced by the expression “all the more” [9]:
strengthened gradual itemsets are of the form “the
more/less A, the more/less B, all the more C”,
where C is a set of categorical or fuzzy modalities
associated to data attributes. It can be illustrated
by the example “the closer the wall, the harder
the brakes are applied, all the more the higher the
speed” where high is a fuzzy modality associated to
the speed attribute. The additional clause defines a
restriction of the data such that the gradual item-

set is better satisfied on the data subset than on the
whole data set.

This paper proposes another enrichment, in the
case of numerical data. The proposed characteri-
sation clause, linguistically introduced by the ex-
pression “especially if”, takes the form of attributes
occurring in the considered itemset, associated with
intervals. It can be illustrated by a sentence as “the
closer the wall, the harder the brakes are applied,
especially if the distance to the wall ∈ [0, 50]m”, or
more generally “the more/less A, the more/less B,
especially if J ∈ R”, where J is a set of attributes
occurring in A ∪B and R a set of intervals defined
for each attribute in J .

The main difference between strengthening and
characterising clauses is the fact that the former
consider predefined restrictions, defined by the, pos-
sibly fuzzy, presence of specific attribute values.
The characterisation proposed in this paper applies
to numerical data and extracts both attributes and
appropriate intervals to define the data restriction.
It can be considered that such a set of pairs made
of attributes and associated intervals define a new
categorical feature, with value 1 for data whose at-
tribute values belong to the considered intervals and
0 otherwise. However, the computational cost of ap-
plying the strengthening approach [9] to such aug-
mented data would be too high; therefore an inte-
grated method that directly looks for appropriate
intervals is proposed. It relies on the use of mathe-
matical morphological tools.

The paper is organised as follows: Section 2 re-
calls the formalism of gradual itemsets and presents
related works. Section 3 describes the interpretation
of gradual itemset characterisation and its formal-
isation. Section 4 presents the proposed method-
ology based on mathematical morphological tools
in the base case and Section 5 the post-processing
steps required for the general case. Section 6 illus-
trates the results obtained on real data.

2. Context and related works

2.1. Gradual itemsets

This section recalls the definitions of gradual items
and itemsets [9, 8] as well as the support definition
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based on compatible data subsets [8].

Gradual itemsets Throughout the paperD denotes
the data set. A gradual item A∗ is made of an at-
tribute A and a variation ∗ ∈ {≥,≤}, which rep-
resents a comparison operator. A gradual item-
set is then defined as a set of gradual items I =
{(Aj , ∗j), j = 1..k}, interpreted as their conjunc-
tion. It is associated to its length, k, defined as
the number of attributes it involves, and the pre-
order �I it induces, defined as

o �I o′ iff ∀ j ∈ [1, k] Aj(o) ∗j Aj(o′)

where Aj(o) represents the value of attribute Aj for
object o.

Extraction by identification of compatible subsets
In this paper, we consider the interpretation of the
co-variation constraint by identification of compati-
ble subsets [7, 8]: it consists in identifying subsetsD
of D, called paths, that can be ordered so that all
data pairs of D satisfy the pre-order induced by
the considered itemset. More formally, for an item-
set I = {(Aj , ∗j), j = 1..k}, D = {o1, ..., om} ⊆ D
is a path if and only if there exists a permutation π
such that

∀l ∈ [1,m− 1], oπl
�I oπl+1

Such a path is called complete if no object can be
added to it without violating the order constraint
imposed by I. L(I) denotes the set of complete
paths associated to I. The set of maximal com-
plete paths, i.e. complete paths of maximal length,
is denoted

L∗(I) = {D ∈ L(I)/∀D′ ∈ L(I) |D| ≥ |D′|}

The gradual support of I, GSD(I), is then defined
as the length of its maximal paths divided by the
total number of objects.

GSD(I) = 1
|D|

max
D∈L(I)

|D| (1)

I is a valid itemset if GS(I) ≥ s, where s is a user-
set threshold. The GRITE algorithm [8] constitutes
an efficient method to extract such valid gradual
itemsets.

2.2. Strengthened gradual itemsets

Strengthened gradual itemsets are enriched item-
sets, to which a clause linguistically introduced by
the expression “all the more” is added [9]. They can
be illustrated by the example “the closer the wall,
the harder the brakes are applied, all the more the
higher the speed”. The strengthening clause consists
of values of categorical attributes or fuzzy modali-
ties of fuzzy attributes. The interpretation in terms
of reinforced presence, proposed in [9], considers

such enriched itemsets as itemsets that are better
satisfied when the data set is restricted to the ob-
jects possessing, possibly in a fuzzy weighted sense,
the values required by the strengthening clause.

Similarly, the characterisation proposed in this
paper compares the validity of the itemset evalu-
ated over the whole data set with the one mea-
sured on a restriction of the data. Yet the con-
sidered restriction requires that attribute values re-
main within given interval bounds, and is not lim-
ited to the presence of predefined modalities given
as the data descriptors: the method automatically
extracts the relevant intervals.

This objective and its assumptions induce a dif-
ference in the nature of the considered data: charac-
terised gradual itemsets do not apply to categorical
or fuzzy data, but to numerical data. It can be
noted that fuzzy data can be processed by the pro-
posed method, but that the difficulty comes from
the interpretation of the obtained results: imposing
that membership degrees belong to an identified in-
terval does not seem to have a natural satisfying
semantics.

2.3. Identification of interval of interest

The proposed characterisation by interval restric-
tion also relates to works that aim at identifying
intervals of interest, as occurs for mining of quanti-
tative association rules and for fuzzy partition elic-
itation.

Quantitative association rules Quantitative asso-
ciation rules are an extension of classical association
rules to numerical attributes [10, 11]: in this case
indeed, an item cannot be defined as an attribute
value, because the notion of occurrence frequency
for a numerical value is not relevant. An item is
defined as a couple made of an attribute with an
interval, e.g. (age, [27, 38]). It is then possible to
compute the proportion of data possessing an item
to evaluate its support, and thus to apply classical
itemset mining algorithms.

In order to identify such intervals of interest, some
methods rely on an a priori discretisation of quanti-
tative attributes, e.g. defined as equi-width or equi-
depth intervals [10, 12, 11]. Intervals of interest are
then identified with the Apriori algorithm, applied
to extended data where binary features for each in-
terval are added to indicate whether the numerical
value of an attribute belongs to the corresponding
interval.

Other methods extract single intervals at a time,
within the rule generation phase. The evaluation
of candidate intervals of interest depends on the
quality of the rules they induce, e.g. measured by
support, confidence or gain, often leading to com-
putationally extensive algorithms. In order to limit
the computational cost, some approaches rely on
restricted rule schemes [13, 14], e.g. limiting the
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number of numerical attributes in the premisse and
the conclusion. Other methods exploit genetic algo-
rithms [15, 16] to increase the efficiency of the can-
didate interval exploration while relaxing the rule
form.

Fuzzy partition identification The identification of
intervals of interest is also involved in the induction
of fuzzy decision trees, where the decision taken at
a given node depends on the interval to which the
attribute value describing a data belongs, with a
fuzzy weighting scheme [17]. It relies on a fuzzy
discretisation of the attribute ranges and a selection
based on criteria such as fuzzy entropies. The main
difference with the methods proposed for quanti-
tative association rules comes from the supervised
learning framework decision trees belong to, and the
exploitation of class information to determine can-
didate intervals.
The approach proposed by [17] uses mathemati-

cal morphology tools [18] to identify class homoge-
neous intervals, tolerating some noise in the inter-
vals through the application of appropriate alter-
nated filters.

The method we propose to identify intervals to
characterise gradual itemsets falls within a super-
vised framework and is based on a transcription of
the data that associates each observed value to a
class, depending whether the corresponding object
belongs to the itemset path. It is thus more similar
to the issue of fuzzy partition identification than to
that of quantitative association rules. We propose
to also exploit mathematical morphology tools, as
detailed in the following sections.

3. Formalization of characterized gradual
itemsets

This section discusses the interpretation and princi-
ple of gradual itemset characterization, illustrating
it on an example. It then presents the proposed
formalization.

3.1. Illustrative example and interpretation

Figure 1 represents a data set described with two at-
tributes, for which the gradual itemset I = A≥B≥

is supported by the path represented by • data. Its
gradual support is 14/23 = 60%. Now it can be
visually observed that the covariation between A
and B especially holds in the center part of the
graph, whereas more noisy data occur for low A
values and high A values. Indeed, if the data are
restricted to objects for which A takes values in the
interval [32; 53], graphically delimited by the ver-
tical lines on Figure 1, the support of the itemset
increases to 9/10 = 90%. This motivates the ex-
traction of the characterized itemset A≥B≥; espe-
cially if A ∈ [32; 53].
More generally, we propose to interpret the char-

acterisation of gradual itemsets as an increased va-

Figure 1: Example of gradual itemset characterisation,
leading to the “the more A, the more B, especially if
A ∈ [32; 53].

lidity when the data are restricted to the objects
satisfying the characterisation clause. Yet, in order
to be informative, such a characterisation should
not restrict the data too drastically: it is easy to
achieve 100% support, for instance restricting the
data to a couple of data points satisfying the order
induced by the considered gradual itemset. Yet the
derived characterization would be too specific and
not valuable. In the previous example, restricting
the data to the smaller interval [32; 42] increases the
support to 100%, but leads to a less general charac-
terisation.

The principle of characterised gradual itemsets is
thus to find a trade-off between a high support and
a high number of objects when restricting the data
set to a subset.

3.2. Formalisation

Formally, the principle illustrated above can be pre-
sented as follows: for a gradual itemset I, e.g. ex-
tracted using the GRITE algorithm [8], a character-
isation is denoted as “I, especially if J ∈ R”, where
J is a set of attributes occurring in I and R is an
associated set of intervals. The region R induces a
restriction D′ of the data set D, considering only
the data satisfying the value constraint expressed
by R.

The previous principle then consists in both max-
imising the support of the considered itemset I on
the restricted data and the number of objects satis-
fying the constraints, i.e.

{
max
R
|D′|

max
R

GSD′(I) (2)

A trade-off must be found between these two ob-
jectives that can be contradictory: indeed, an in-
crease of the size of the subset D′ can lead to the de-
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crease of the proportion of objects compatible with
the order induced by the considered itemset.

3.3. Proposed approach

We propose to decompose the task of identifying
relevant attributes and their associated intervals of
interest by successively considering each attribute
occurring in the considered gradual itemset I and
further by successively considering each path sup-
porting I, e.g. available when I is extracted by
GRITE [8]: the computation of the restricted grad-
ual support GSD′(I) can be based on the restriction
of these paths. We thus propose to consider the
effect of candidate restriction for each path, later
combining them to select the optimal bounds.

Transcription Given a gradual itemset I, a max-
imal path D and the attribute A for which an in-
terval of interest is looked for, and following the
method existing for the elicitation of fuzzy parti-
tion [17], we encode the path information through
a transcription process into a word composed of the
symbols {+,−, ◦}. The ith character is obtained
as the transcription of the ith object in the order
induced by A, denoted x, as

• x→ + iff x ∈ D
• x→ − iff (x /∈ D) ∧ (AmD ≤ A(x) ≤ AMD)
• x→ ◦ otherwise

where AmD and AMD denote the minimal and max-
imal values of attribute A obtained for objects in D:
AmD = minx∈D A(x) and AMD = maxx∈D A(x).
The ◦ symbol encodes data outside the boundaries
of the processed path, it is necessary to handle the
case of multiple maximal paths, as described in Sec-
tion 5.1.
The lower part of Figure 1 indicates the transcrip-

tion result for the illustrative example.

Word characteristics The objective formalised in
Equation 2 can then be transposed to the path rep-
resentation as a word: the restriction of the data set
corresponds to a subpart of the word, and recipro-
cally, |D′| corresponds to the length of the subpart.
The restricted support GSD′(I) equals the propor-
tion of + symbols in this subpart.
Given a word v, we denote l(v) its length and

NP (v) the number of + it contains. The support
definition of gradual itemsets is extended to words
as supp(v) = NP (v)/l(v).

The highest support is obtained when the consid-
ered subpart is a + sequence containing no − sym-
bol, leading to supp = 1. In particular, the longest
+ sequence observed in v, denoted S(v), has for size
l(S(v)) and its support is supp(S(v)) = 1.
The issue is then to extend such a sequence, in-

corporating some − symbols, so as to increase the
size of the restricted data set without deteriorat-
ing the proportion of + in the considered subpart.

It may for instance be the case that in v, two
+ sequences s1 and s2, by definition shorter than
S(v), are only separated by a short − sequence, de-
noted s−. In this case, considering the word sub-
part made of the concatenation s′ = s1s−s2 leads
to a long sequence with still a high number of +.
More formally, l(s′) = l(s1) + l(s−) + l(s2) and
supp(s′) = (l(s1) + l(s2))/l(s′).

The trade-off between size and support then re-
lates to the question whether one prefers to con-
sider the data subset corresponding to S(v), that
maximises the support, or the one induced by s′,
which has a higher length at the expense of a lower
support.

To that aim, we propose to exploit mathematical
morphology tools as described in the next section.

4. Mathematical morphology tools for the
identification of interval of interest

This section presents the mathematical morphol-
ogy tools proposed to address the task presented
in the previous section, as well as the analysis of
their properties and relevance.

4.1. Principle

Mathematical morphology [18], denoted MM in the
following, defines a set of tools for the identifica-
tion of spatial structures as the shape and size of
objects. It has been extensively used for image pro-
cessing and functional analysis. One-dimensional
MM [17], 1DMM, applies to words, obtained as data
transcriptions on a set of symbols. The latter is
{+,−, ◦} in the case of interval of interest charac-
terising gradual itemsets.

The aim is to smooth the considered words, ignor-
ing isolated − symbols that prevent from building
large restricted data sets: indeed, it is then pos-
sible to increase the size of the considered subse-
quence, with a limited decrease of the proportion
of +. As detailed below, such smoothing effects can
be obtained when applying appropriate MM opera-
tors: the principle consists in applying an operator
ϕ, leading to v′ = ϕ(v) in order to bridge gaps be-
tween + sequences in v, identifying the longest + se-
quence in v′, S(v′), and evaluating the correspond-
ing sequence in v, Sv(v′), with length l(Sv(v′)) and
support NP (Sv(v′))/l(Sv(v′)).

Existing 1DMM tools have been proposed to get
such smoothing effects in order to build fuzzy parti-
tions in a supervised learning framework [17]. These
operators transform a word defined on a binary
symbol set, say {+,−}, to a ternary one {+,−, u},
where u denotes modified characters. The latter
are interpreted as unstable regions, and thus fuzzy
frontiers of the elicited fuzzy modalities.

In the case of characterising gradual subsets, the
modified words are defined on the same symbol set,
{+,−, ◦}, as the initial words. Moreover this set is
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ternary from the beginning, because of the ◦ sym-
bol that encodes data outside the boundaries of the
processed path. The latter can be interpreted as
bounds on the considered words and thus not modi-
fied by any considered operator. Another specificity
of the characterising gradual subset issue is the ab-
sence of symmetry between the + symbol and the
− symbol: the interest is entirely focused on + se-
quences, whereas in the case of fuzzy partition, + se-
quences and − sequences play equivalent roles.

4.2. Considered operators

This section describes the operators proposed
to perform the desired mathematical morphology
smoothing. They are transpositions of classic oper-
ators defined in image MM to the one-dimensional
case.

Erosion Given a word defined on {+,−, ◦}, the
erosion operator, denoted Er1, decreases the size of
+ sequences replacing the outer + by −: for any
m ≥ 0

− +m+2 − −→ − − +m − −
◦ +m+1 − −→ ◦ +m − −
− +m+1 ◦ −→ − − +m ◦

The last two rows make explicit the specificity of
the ◦ symbol.

For instance, for v =−+ + +−−−+
Er1(v) =−−+−−−−−

Ern, where n is an integer parameter, denotes
the combination of n successive erosions. It can
be observed that the application of Ern erases all
+ sequences of length lower than 2n, as each of their
elements is progressively replaced with −.

Dilatation Reciprocally the dilatation operator,
denoted Di1, decreases − sequences and expands
+ sequences: for any m ≥ 0

+ −m+2 + −→ + + +m + +
◦ −m+1 + −→ ◦ −m + +
+ −m+1 ◦ −→ + + −m ◦

Dn is the combination of n successive dilatations.
For instance, for the previous word v, D1(v) pro-
duces Di1(v) = ++++ +−+ +.
The application of Din erases all − sequences of

length lower than 2n.

Opening The opening operator is then defined, as
in classical mathematical morphology, as Opn =
Din ◦ Ern. For example, with the word

v =−−+++++−+ + +−+
one has Op1(v) =−−+++++−+++−−

and Op2(v) =−−+++++−−−−−−

The effect of the erosion is to expand− sequences,
the posterior dilatation makes it possible to reduce

them again, except in the regions where the erosion
step deleted all the + symbols. Indeed, in this case,
there is no + symbol left to propagate. This means
that, as compared to the initial word, the opening
operator bridges the gap between − sequences sep-
arated by less than 2n + symbols.

Closure Reciprocally, the closure operator is de-
fined as Cln = Ern ◦ Din. For example, starting
from the word used in the previous example

one hasCl1(v) =−−++++++++++−
and Cl2(v) =−−+++++++++−−

It bridges the gap between + sequences separated
by less than 2n − symbols.

Alternated filter The alternated filter is the recur-
sive combination of opening and closure operations:

n = 1 Filt1 = Cl1 ◦Op1
n > 1 Filtn = Cln ◦Opn ◦ Filtn−1

For a given n, the combination Cln ◦ Opn first
deletes short + sequences, of length lower than 2n,
bridging the gap between − sequences. The remain-
ing + sequence, that are thus of length greater than
2n+1, can be grouped together by the closure oper-
ator if they are separated by less than 2n − symbols.

Moreover, the alternated filter is defined recur-
sively, meaning that this behaviour is applied to the
result of the previous filters, Filtn−1 ◦Filtn−2 ◦· · ·◦
Filt1.

4.3. Properties

The analysis of the considered operators makes it
possible to establish their properties, so as to exam-
ine the characteristics of the resulting word subpart
extracted from the initial word.

Alternated filter trade-off behaviour It must first
be underlined that the alternated filter is both more
tolerant and more demanding when n increases: on
one hand, it makes it possible to replace longer − se-
quences in + sequences, i.e. it is more tolerant to
gaps within + blocks. On the other hand, to per-
form such modifications, it requires the longer − se-
quences to be surrounded by longer + sequences,
i.e. it is more demanding for bridging gaps. This
is the reason why it implements a trade-off between
length and proportion of + symbols, providing an
interesting tool for extracting intervals of interest.

This property is illustrated on Figure 2 which
shows the support and the length of the extracted
sequences from 10 random words and for filter sizes
from 1 to 10: each line corresponds to one word, the
connected points to the couples (support, length) af-
ter applying filters of increasing order, from n = 1 to
n = 10. Two types of words can be observed: some
of them are transformed to words with no + se-
quence, leading to null support and length. In these
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Figure 2: Support (x-axis) and length (y-axis) of the
extracted sequences for 10 random words and alternated
filter F ilt1 to F ilt10.

words, the + sequences are too short and bridged
with low level filters. On the other hand, some other
words show the trade-off between size and support:
for low filter values, the + sequences are short and
pure (i.e. high support, possibly 100%), when the
filter order increases, more − symbols are erased,
leading to longer extracted sequences but lower sup-
ports.
It can also be underlined, on the graph and more

generally, that after applying the alternated filter
Filtn, either no + symbol at all occur in the ob-
tained word, or the + sequence contains at least
2n + 1 + symbols. This partially gives a guaran-
tee about the size of the extracted intervals when
applying an alternated filter.

Alternated filter asymmetry From the observations
given in the previous subsection, it can also be un-
derlined that the combination of opening and clo-
sure leads to an interesting asymmetry of the Filtn
filter. Indeed after the application of Filtn,

• + sequences with length lower than 2n are re-
placed by − sequences
• − sequences with length lower than 2n and sur-
rounded by + sequences of length greater than
2n+ 1 are replaced by + sequences.

Defining short and long with respect to the
threshold value 2n, these properties show that short
+ sequences are unconditionally replaced by − se-
quences, whereas the replacement of short − se-
quences imposes conditions on the length of the
surrounding + sequences (as previously defined in
terms of tolerance and demand). This property is
highly relevant in the context of gradual itemset
characterisation, that focuses on + symbols, and is
related to the requirement of not deteriorating the
support value when lengthening the sequences.
Indeed, whereas a closure operator bridges the

gap between + sequences independently of their
lengths, possibly leading to long sequences with low
support, the alternated filter only allows to bridge
− sequences under the condition that they come
along with even longer + sequence.

Some specific cases More precisely, in the worst
case, i.e. the case with the lowest support, the com-
bination Cln ◦Opn transforms in a + sequence the
initial word v = +2n+1−2n+2n+1. Sv(v′) has length
6n+2 and support (4n+2)/(6n+2), which is always
greater than 0.66.

As a comparison, in the case with the lowest sup-
port, a closure operator transforms to a + sequence
the initial word +−2n+ of length 2n+2 and support
2/(2n+ 2). The latter can be very low.
Examining the worst case of the alternated fil-

ter is more complex because of the recursive def-
inition that can lead to a lower support than the
value computed above. Indeed, as Filtn(v) =
Cln ◦Opn ◦Filtn−1(v), it may be the case that the
+2n+1 sequence in the word v = +2n+1 −2n +2n+1

mentioned as worst case for Cln◦Opn has been built
by a bridging, or consolidating, effect of a previous
filter, referring to less + symbols in the initial word.
Starting from low filter orders, this consolidation

effect can be seen as follows: the consolidated se-
quence built by Filt1 with the lowest number of
+ symbols is u1 = +3−2 +3, of length 8. Thus, the
consolidated sequence built by Filt2 with the lowest
number of + symbols is u2 = u1 −4 u1. More gen-
erally, denoting un the consolidated sequence built
by Filtn with the lowest number of + symbols, one
has the recursive relation un+1 = un −2n un. The
sizes and supports of these sequences, respectively
denoted Cn and Sn, verify{

C1 = 8
Cn = 2Cn−1 + 2n

{
S1 = 6
Sn = 2Sn−1

5. Post-processing steps

The method described in the previous section
presents the extraction of a relevant interval of in-
terest for a given path. Now in the general case a
gradual itemset is based on several complete paths,
that can correspond to several characteristic inter-
vals. This section describes the proposed aggrega-
tion operator to combine the results obtained from
these paths.

5.1. Aggregation: processing multi-paths

A gradual itemset can rely on several paths, each
one leading to a characteristic interval of interest;
the latter must be aggregated to a single interval.
We propose to perform an early aggregation, ap-
plied to the filtered words representing the paths:
more precisely, the proposed aggregation function
applies to words defined on {+,−, ◦} having the
same length, equal to the number of objects in the
data set |D|, obtained after filtering the transcrip-
tion of paths as described in the previous section.
It successively applies to each element of the se-
quence, and outputs a word defined on {+,∅}. The
∅ symbol denotes values on which the itemset is not
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characterised. This proposed aggregation function
is defined as

Agg : {+,−, ◦}2 → {+,∅}
(s1, s2) 7→ s

It is symmetrical and defined as follows, for all pos-
sible pairs of symbols

s1 +++− ◦ ◦
s2 + ◦ −−− ◦

Agg(s1, s2)++∅∅∅∅

Values outside a path, denoted ◦, are neutral and do
not influence the results; values that are excluded
from a path are associated with ∅, i.e. excluded
from the final result. This is compatible with the
characterisation objective: only highly significant
and representative elements are to be considered.
Figure 3 illustrates the aggregation step in the

case of two paths, transcripted as v1 and v2, that
present a high agreement when applying a filter of
order n = 1. The aggregation thus leads to a large
final + sequence Sc, whose bounds translated back
to the attribute value domain define the interval of
interest.
The paths considered for transcription and ag-

gregation are the maximal paths in L∗(M). Indeed
taking into account all complete paths L(M) could
generate too many counter-examples and lead to a
aggregated sequence only containing the ∅ symbol:
in the transcription process, even if an object be-
longs to another path of the considered itemset, it
is transcribed as − if it does not belong to the pro-
cessed path.
The characterisation interval is finally defined by

its bounds, set as the minimal and maximal values
of the considered attribute in the aggregated word.

5.2. Linguistic representation

The extracted intervals to characterise gradual
itemsets are included in the corresponding linguis-
tic summary, by default using a clause of the form
“especially if”, leading to the form “the more/less
A, the more/less B, especially if J ∈ R”.
When an interval J associated to an attribute

AJ is very narrow, it seems to be relevant to re-
place the expression “especially if AJ is between
min(J),max(J)]” by “especially if AJ equals J∗”
where J∗ is the central value of the interval.
The definition of the threshold defining whether

an interval is narrow or not may be left to the user,
to make the yielded summaries adapted to his/her
needs and preferences.

6. Experimental study

This section describes the experiment carried out
using the proposed characterisation method on a
real data set. The analysis of the results is based
on the comparison of the gradual support itemsets
before and after characterisation.

v1 +−−+−+−++++++−+++−+−+◦ ◦
v2 +−+−−++++++−+++++−++◦ ◦ ◦

Filt1(v1)−−−−−−−++++++++++−−−−◦ ◦
Filt1(v2)−−−−−++++++++++++−−−◦ ◦ ◦
Agg ∅∅∅∅∅∅∅++++++++++∅∅∅∅∅∅

Sc

Figure 3: Aggregation obtained for two paths.

6.1. Considered data

We used a real data set called weather down-
loaded from the site http://www.meteo-paris.com/
ile-de-france/station-meteo-paris/pro: these data
come from the Parisian weather station of St-
Germain-des-Prés. The data set contains 2133 me-
teorological observations realised during eight days
(November 23rd to 30th 2012), described by 22 nu-
merical attributes such as temperature (C), rain
(mm), outside humidity (%), pressure (hPa), wind
speed (km/hr) among others.

6.2. Comparison of GSD and GSD′

We first extract gradual itemsets from the consid-
ered data, using the GRITE algorithm [8], setting
the minimum gradual support s = 20% and defin-
ing the order induced by an attribute as a strict one:
data with equal attribute values are not considered
as supporting an itemset. This exclusion avoids the
presence of characteristic intervals whose bounds
are equal. We then apply the proposed characteri-
sation methodology, setting the filter order n = 4.

The number of extracted itemsets before charac-
terisation is 835; 509 are enriched by a characteri-
sation clause, which corresponds to more than 60%
of the extracted itemsets. Here are some examples
of extracted gradual itemsets.

• The higher the temperature, the lower wind
speed, especially if wind speed ∈ [1, 10],
GSD = 36.3%, GSD′ = 78.6%
• The higher the pressure, the higher the tem-
perature, especially if temperature ∈ [13, 19.2],
GSD = 22%, GSD′ = 76%
• The lower the humidity, the lower the temper-
ature, especially if temperature ∈ [8.1, 12.2],
GSD = 22.8%, GSD′ = 70%

Figure 4 shows a comparison between the gradual
support obtained before and after characterisation
for each of the 509 extracted characterised gradual
itemsets. All points being above the y = x line, it
shows that after characterisation, the gradual sup-
ports are higher than before, which confirms the in-
creased validity of the gradual itemsets. The highest
support obtained before characterisation is 42.4%;
after characterisation the highest value is 78.6%,
which is higher.
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Figure 4: Comparison of the gradual support before (x-
axis) and after (y-axis) characterisation, for each of the
509 extracted characterised gradual itemsets.

7. Conclusion and future work

In this paper we propose an approach to charac-
terise gradual itemsets, linguistically expressed by
the addition of a clause introduced by the expression
“especially if”, so as to extract more information
summarising data sets. The extraction of charac-
terised gradual itemsets relies on the identification
of intervals of interest for the attributes occurring in
the considered gradual itemset. The approach pro-
posed to address this task is based on mathematical
morphology tools to achieve a trade-off between an
increased validity of the itemset when restricted to
the interval and large intervals of interest, imposing
meaningful characterisations
Future works aim at studying more formally the

properties of the proposed mathematical morphol-
ogy operators, in particular to establish guarantees
on the minimum support and minimum length ob-
tained for a given filter order. Perspectives also
include applying characterisation using attributes
that do not occur in the considered gradual item-
set. This task raises issues regarding the time and
memory consumption, so as to efficiently rule out
non-relevant features as soon as they can be de-
tected as such. Another perspective is to introduce
density constraints so as to focus on relevant regions
of the domain that are not too sparsely populated.
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