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Abstract

One of the most important elements in a lattice are
the irreducible elements. For example, when the
lattice is finite, which is usual in the computational
case, it forms a base from which the complete lattice
is obtained.
These elements are also important in Formal Con-

cept Analysis, since they are the basic information
of a relational system.

In the general fuzzy framework of multi-adjoint
concept lattices, this paper presents a characteriza-
tion of the irreducible elements and so, a mechanism
to detect the base information given in a general re-
lational system. This result is applied to reduce the
size of the concept lattices without losing and mod-
ifying important information.

Keywords: Formal concept analysis, fuzzy sets, ir-
reducible element.

1. Introduction

Rudolf Wille introduced in the eighties [19] a math-
ematical environment to extract information from
databases, which is called formal concept analysis
(FCA).
The main idea is to detect in a considered

database a set of attributes A, a set of objects B
and a relation between them R ⊆ A × B, and use
two operators to extract information (concept) and
hierarchize it to obtain a complete lattice, which is
called concept lattice.
FCA has become an important and appealing re-

search topic from a theoretical perspective [18] as
well as from an applied one [6, 7, 13, 14].

One important problem arises when the whole set
of concepts needs to be computed, since the com-
plexity is exponential, even more in the fuzzy case.
Therefore, it is very interesting to provide strate-
gies to reduce this complexity. In order to do so,
one important procedure is to decrease the size of
the concept lattice, trying to conserve the informa-
tion given in the considered database.
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There exist several mechanisms with this goal,
however almost all of them modify the original con-
cepts, such as the use of hedges [2] or, indeed, the
original context, like granular computing [10], and
others do not use fuzzy subsets of objects and at-
tributes but, for instance, a crisp subset of objects
and a fuzzy subset of attributes, as in [15].

Multi-adjoint concept lattices were intro-
duced [16, 17] as a new general approach to formal
concept analysis, in which the philosophy of the
multi-adjoint paradigm was applied to the formal
concept analysis, in order to provide a general
framework that could conveniently accommodate
different fuzzy approaches given in the literature,
such as [1, 3, 8, 12]. Adjoint triples [5] are used
as basic operators to carry out the calculus in
this framework and so a general non-commutative
environment, which allows different degrees of pref-
erence related to the set of objects and attributes,
can easily be established.

The main result in this paper is the characteriza-
tion of the ∧-irreducible elements of a multi-adjoint
concept lattice, using fuzzy subsets of attributes.
As a consequence, we introduce a strategy to re-
duce the size of the multi-adjoint concept lattices,
without modifying the original concepts and only
considering the most representative ones. A similar
development can be given to ∨-irreducible elements.

The organization of the paper is as follows: pre-
liminary notions and results, together with the
multi-adjoint concept lattice framework, are intro-
duced in Section 2; the main result of this paper is
given in Section 3, and Section 4 presents an appli-
cation of this result to reduce the size of concept
lattices. Lastly, the paper introduces several con-
clusions and pointers for further work.

2. Preliminaries

In order to make this paper as self-contained as pos-
sible, first of all, we recall the well-known definition
of irreducible elements of a lattice.

Definition 1 Given a lattice (L,�), such that ∧,∨
are the meet and the join operators, and an element
x ∈ L verifying

1. If L has a top element >, then x 6= >.
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2. If x = y ∧ z, then x = y or x = z, for all
y, z ∈ L.

we call x meet-irreducible (∧-irreducible) element of
L. Condition (2) is equivalent to

2′. If x < y and x < z, then x < y ∧ z, for all
y, z ∈ L.

Hence, if x is ∧-irreducible, then it cannot be repre-
sented by the infimum of strictly greatest elements.
A join-irreducible (∨-irreducible) element of L is

defined dually.

Another definition about lattice theory, which
will be used later, is the following.

Definition 2 Let (L,�) be a lattice and ∅ 6= M ⊆
L. Then (M,�) is a sublattice of (L,�), if for each
a, b ∈M we have that:

a ∨ b ∈ M, and
a ∧ b ∈ M

The main goal of this paper is to characterize
the ∧-irreducible elements of a fuzzy concept lat-
tice framework. For that, we have considered the
multi-adjoint concept lattice framework, since it is
a general fuzzy setting which embeds other inter-
esting frameworks and provides a great flexibility.
Next, we recall this fuzzy concept lattice introduced
in [17].
In the multi-adjoint concept lattice framework,

the operators that we use to define the concept-
forming operators are the adjoint triples, which are
generalizations of a triangular norm (t-norm) and
its residuated implication [9].

Definition 3 Let (P1,≤1), (P2,≤2), (P3,≤3) be
posets and &: P1 × P2 → P3, ↙ : P3 × P2 → P1,
↖ : P3 × P1 → P2 be mappings, then (&,↙,↖) is
an adjoint triple with respect to P1, P2, P3 if:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x
(1)

where x ∈ P1, y ∈ P2 and z ∈ P3.

Note that the commutativity property is not as-
sumed for the conjunctor &. As a consequence,
there exist two different ways of generalising the
well-known adjoint property between a t-norm and
its residuated implication, depending on which ar-
gument is fixed. This is the reason why two impli-
cations are considered. Condition (1) is also called
adjoint property.
A multi-adjoint frame is the basic structure which

allows the existence of several adjoint triples with
respect to L1, L2, P , where (L1,�1) and (L2,�2)
are complete lattices. L1 and L2 are required to
be lattices since the infimum on L1 and L2 are
considered in the definition of the generalization of
the concept-forming operators and a top element is
needed. Moreover, the lattices L1 and L2 must be

complete since the set of attributes A and objects
B, that will be considered, could be infinite.

Furthermore, considering different adjoint triples
will add more flexibility to the language. For exam-
ple, it was shown that they contribute to describe
preference among objects or attributes.

Definition 4 A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1) and (L2,�2) are complete lattices,
(P,≤) is a poset and, for all i = 1, . . . , n, (&i,↙i

,↖i) is an adjoint triple with respect to L1, L2, P .
Multi-adjoint frames are denoted as
(L1, L2, P,&1, . . . ,&n).

Given a frame, a multi-adjoint context is a tuple
consisting of sets of objects, attributes and a fuzzy
relation among them; in addition, the multi-adjoint
approach also includes a function which assigns an
adjoint triple to each pair of objects and attributes.

Definition 5 Let (L1, L2, P,&1, . . . ,&n) be
a multi-adjoint frame, a context is a tuple
(A,B,R, σ) such that A and B are non-empty
sets (usually interpreted as attributes and objects,
respectively), R is a P -fuzzy relation R : A×B → P
and σ : A×B → {1, . . . , n} is a mapping which as-
sociates any element in A×B with some particular
adjoint triple in the frame.

The denotation of LB2 and LA1 will be considered
for the set of mappings g : B → L2, f : A → L1,
respectively. On these sets a pointwise partial order
can be considered from the partial orders in (L1,�1)
and (L2,�2), which provides LB2 and LA1 with the
structure of complete lattice, that is, (LB2 ,�2) and
(LA1 ,�1) are complete lattices where �2 and �1 are
defined pointwise, given g1, g2 ∈ LB2 , f1, f2 ∈ LA1 ,
g1 �2 g2 if and only if g1(b) �2 g2(b), for all b ∈ B;
and f1 �1 f2 if and only if f1(a) �1 f2(a), for all
a ∈ A.
Once we have fixed a multi-adjoint frame and a

context for that frame, the concept-forming opera-
tors are denoted as ↑σ : LB2 −→ LA1 and ↓σ : LA1 −→
LB2 and are defined, for all g ∈ LB2 , f ∈ LA1 and
a ∈ A, b ∈ B, as

g↑σ (a) = inf{R(a, b)↙σ(b) g(b) | b ∈ B} (2)
f↓σ (b) = inf{R(a, b)↖σ(b) f(a) | a ∈ A} (3)

It is not difficult to show that these two arrows form
a Galois connection [17]. In order to simplify the
denotation we will write ↑ and ↓ instead of ↑σ and
↓σ , respectively.
The notion of concept is defined as usual: amulti-

adjoint concept is a pair 〈g, f〉 satisfying that g ∈
LB2 , f ∈ LA1 and that g↑ = f and f↓ = g; with (↑, ↓)
being the Galois connection defined above.

Given g ∈ LB2 (resp. f ∈ LA1 ), we will call the
concept 〈g↑↓, g↑〉 (resp. 〈f↓, f↓↑〉) the closure con-
cept of g (resp. f).
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Finally, the definition of concept lattice in this
framework is defined.

Definition 6 The multi-adjoint concept lat-
tice associated with a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ)
is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑ = f, f↓ = g}

in which the ordering is defined by 〈g1, f1〉 �
〈g2, f2〉 if and only if g1 �2 g2 (equivalently f2 �1
f1).

In [17], the authors proved that the ordering just
defined above provides M with the structure of
complete lattice. Moreover, a representation the-
orem to multi-adjoint concept lattices was proven,
which generalizes the classical one and different
other fuzzy generalizations.

3. The ∧-irreducible elements of a
multi-adjoint concept lattice

This section characterizes the ∧-irreducible ele-
ments of a multi-adjoint concept lattice. This fact is
very important, since every concept is the infimum
of ∧-irreducible elements. Hence, an algorithm that
builds lattices from the ∧-irreducible elements will
be applied to obtain the concept lattice.
Hereon, we will consider a multi-adjoint concept

lattice (M,�) associated with a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n), a context (A,B,R, σ), were
L1, L2, P , A and B, are finite, an index set I, such
that A = {ai | i ∈ I}, and the following specific
family of fuzzy subsets of LA1 .

Definition 7 For each ai ∈ A, the fuzzy subsets of
attributes φi,x ∈ LA1 defined, for all x ∈ L1, as

φi,x(a) =
{
x if a = ai
0 if a 6= ai

will be called fuzzy-attributes. The set of all fuzzy-
attributes will be denoted as Φ = {φi,x | ai ∈ A, x ∈
L1}

Clearly, these mappings are generalizations of the
crisp attributes and, moreover, they were also as-
sumed in the proof of the representation theorem of
multi-adjoint concept lattices.

The following result provides a first relation
among a general fuzzy subset f ∈ LA1 and the fuzzy-
attributes φi,x ∈ LA1 .

Proposition 8 For all f ∈ LA1 , we have that f =∨
i∈I φi,f(ai).

Consequently, we obtain the following result.

Corollary 9 Given f ∈ LA1 , we have that:

f =
∨
{φi,x ∈ Φ | φi,x �1 f}

Therefore, each fuzzy subset of attributes f can be
written as the supremum of the fuzzy-attributes less
than or equal to f . Hence, given f ∈ LA1 , there
exists a subset {φj,xj | j ∈ J} ⊆ Φ, such that f =∨
j∈J φj,xj .
Note that it is possible that there exist j, k ∈ J

and i ∈ I, such that φj,xj = φi,x and φj,xj = φi,x′ ,
with x, x′ ∈ L1 and x 6= x′.

The following result characterizes the ∧-
irreducible elements of a multi-adjoint concept lat-
tice.

Theorem 10 The set of ∧-irreducible elements
of M, MF (A,B,R, σ), is formed by the pairs
〈φ↓
i,x, φ

↓↑
i,x〉 in M, with ai ∈ A and x ∈ L1, such

that

φ↓
i,x 6=

∧
{φ↓

j,xj
| φj,xj ∈ Φ, φ↓

i,x ≺2 φ
↓
j,xj
}

and φ↓
i,x 6= g>, where > is the maximum element in

L2 and g> : B → L2 is the fuzzy subset defined as
g>(b) = >, for all b ∈ B.

Note that, in this result, the expression φ↓
i,x 6=∧

{φ↓
j,xj
| φ↓

i,x ≺2 φ
↓
j,xj
} may be replaced by φ↓

i,x ≺2∧
{φ↓

j,xj
|φ↓
i,x ≺2 φ↓

j,xj
} since both are equivalent.

However, we prefer to use the inequality in order
to emphasize the difference.

From the previous theorem we obtain that all
the ∧-irreducible elements are the closure concept
of fuzzy-attributes and no more concepts can be
∧-irreducible elements. Moreover, in order to ob-
tain these elements, we only need to check if φ↓

i,x is
the infimum of the fuzzy-attributes that are greater
than φ↓

i,x, and we do not need to consider the whole
set of fuzzy subsets of attributes that are greater.

Now, we present an example in which we ascer-
tain Theorem 10 in order to obtain the fuzzy ∧-
irreducible elements of a particular multi-adjoint
concept lattice.

Example 11 In this example we consider L =
{0.0, 0.5, 1.0}, &G the Gödel conjunctor defined on
L, (L,�,&G) the multi-adjoint frame and the con-
text (A,B,R, σ), where A = {a1, a2, a3, a4, a5, a6},
B = {b1, b2, b3}, R : A×B → L is given by Table 1,
and σ is constant.

Table 1: Relation R of Example 11.
R b1 b2 b3

a1 0.5 1.0 0.0
a2 0.5 1.0 0.0
a3 0.5 0.5 0.5
a4 1.0 1.0 0.5
a5 1.0 0.5 1.0
a6 1.0 0.5 0.5

The concept lattice (M,�), associated with the
considered frame and context, has 9 concepts listed
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below.
C0 = 〈{0.5/b1, 0.5/b2},
{1.0/a1, 1.0/a2, 1.0/a3, 1.0/a4, 1.0/a5, 1.0/a6}〉

C1 = 〈{0.5/b1, 1.0/b2},
{1.0/a1, 1.0/a2, 0.5/a3, 1.0/a4, 0.5/a5, 0.5/a6}〉

C2 = 〈{1.0/b1, 0.5/b2},
{1.0/a1, 0.5/a2, 0.5/a3, 1.0/a4, 1.0/a5, 1.0/a6}〉

C3 = 〈{0.5/b1, 0.5/b2, 0.5/b3},
{1.0/a3, 1.0/a4, 1.0/a5, 1.0/a6}〉

C4 = 〈{1.0/b1, 1.0/b2},
{1.0/a1, 0.5/a2, 0.5/a3, 1.0/a4, 0.5/a5, 0.5/a6}〉

C5 = 〈{1.0/b1, 0.5/b2, 0.5/b3},
{0.5/a3, 1.0/a4, 1.0/a5, 1.0/a6}〉

C6 = 〈{1.0/b1, 1.0/b2, 0.5/b3},
{0.5/a3, 1.0/a4, 0.5/a5, 0.5/a6}〉

C7 = 〈{1.0/b1, 0.5/b2, 1.0/b3},
{0.5/a3, 0.5/a4, 1.0/a5, 0.5/a6}〉

C8 = 〈{1.0/b1, 1.0/b2, 1.0/b3},
{0.5/a3, 0.5/a4, 0.5/a5, 0.5/a6}〉

The Hasse diagram of this lattice is shown in Fig-
ure 1.

C0

C2C1 C3

C4 C5

C6 C7

C8

Figure 1: The Hasse diagram of (M,�)

With respect to the fuzzy-attributes, clearly,
〈φ↓
a,0.0, φ

↓↑
a,0.0〉 = C8, for all a ∈ A. Moreover,

〈φ↓
3,0.5, φ

↓↑
3,0.5〉, 〈φ

↓
4,0.5, φ

↓↑
4,0.5〉 and 〈φ

↓
5,0.5, φ

↓↑
5,0.5〉 are

C8. The rest are

〈φ↓
1,0.5, φ

↓↑
1,0.5〉 = 〈φ↓

2,0.5, φ
↓↑
2,0.5〉 = C4

〈φ↓
1,1.0, φ

↓↑
1,1.0〉 = 〈φ↓

2,1.0, φ
↓↑
2,1.0〉 = C1

〈φ↓
3,1.0, φ

↓↑
3,1.0〉 = C3

〈φ↓
4,1.0, φ

↓↑
4,1.0〉 = C6

〈φ↓
5,1.0, φ

↓↑
5,1.0〉 = C7

〈φ↓
6,1.0, φ

↓↑
6,1.0〉 = C5

Obtaining the concepts associated with the fuzzy-
attributes in Φ, which are C1, C3, C4, C6, C7 and C8.
Referring to the Hasse diagram, it is not hard to see
that the set of ∧-irreducible elements ofM is

MF (A,B,R, σ) = {C1, C3, C4, C6, C7}

Moreover, these irreducible concepts verify the
conditions of the previous theorem, namely, they
are concepts 〈φ↓

i,x, φ
↓↑
i,x〉 associated with fuzzy-

attributes satisfying φ↓
i,x 6=

∧
{φ↓

j,xj
| φ↓

i,x ≺2

φ↓
j,xj
} and φ↓

i,x 6= g>. For instance, φ↓
6,1.0 is equal

to the infimum of φ↓
4,1.0 and φ↓

5,1.0, and it is strictly
less than these fuzzy subsets. Hence, the con-
cept generated by φ↓

6,1.0 is not a meet irreducible
element and so, 〈φ↓

6,1.0, φ
↓↑
6,1.0〉 = C5 is not in

MF (A,B,R, σ).
If we now consider C3 = 〈φ↓

3,1.0, φ
↓↑
3,1.0〉 and

the computations, it is not possible to express this
element as infimum of elements φ↓

j,xj
, such that

φ↓
3,1.0 ≺2 φ

↓
j,xj

, and, moreover, φ↓
3,1.0 is not the top-

element. A similar deduction can be given for the
rest of concepts generated from a fuzzy-attribute, ob-
taining the set of ∧-irreducible elements of (M,�)
from Theorem 10.

From the viewpoint of efficiency, it would be great
if each attribute was associated with only one ∧-
irreducible element in MF (A,B,R, σ). However,
this is not true in general, for instance, the last ex-
ample provides an attribute that is associated with
two ∧-irreducible elements. We have that the con-
cepts C4 = 〈φ↓

2,0.5, φ
↓↑
2,0.5〉 and C1 = 〈φ↓

2,1.0, φ
↓↑
2,1.0〉

are different ∧-irreducible elements of M. There-
fore, two different ∧-irreducible concepts can be
〈φ↓
i,x, φ

↓↑
i,x〉 and 〈φ

↓
i,x, φ

↓↑
i,x′〉, satisfying that x, x′ ∈ L

and x 6= x′.
This is the main reason why we cannot write the

elements of Φ as φi,xi , with i ∈ I, that is, only one
xi associated with one attribute ai.
Theorem 10 also provides a mechanism to obtain

the multi-adjoint concept lattice related to a con-
text. Since it characterizes the ∧-irreducible ele-
ments by the closure concepts of fuzzy-attributes,
which satisfy a specific property, we can only con-
sider these fuzzy-attributes in order to build the
concept lattice. This is the basic idea used in Algo-
rithm 1.

Note that in Line 10 any procedure to obtain a
lattice from the irreducible elements can be consid-
ered.

4. Application to reduce the size of
multi-adjoint concept lattices

One of the most recognized problems in FCA is to
reduce the size of the concept lattices [2, 10, 11, 15].
However, several of the existing mechanisms modify
the information given by the concepts. This section
uses the previous characterization in order to pro-
vide a new procedure to reduce the size of the multi-
adjoint concept lattices, without modifying the in-
formation given by the context, but beginning from
the fuzzy-attributes that really can represent an at-
tribute.
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input : A = {a1, . . . , an}, B,R, σ, L1 =
{⊥, x1, . . . , xm}, L2, P

output: Meet-irred, MAConceptLattice
1 D = ∅
2 for i← 1 to n and x← 1 to m do
3 Compute φ↓

i,x

4 if φ↓
i,x 6∈ D then

5 add φ↓
i,x to D

6 end
7 end

8 Compute I = {φ↓
i,x ∈ D | φ

↓
i,x =∧

φ↓
j,xj

such that φ↓
j,xj
∈ D, φ↓

i,x ≺2 φ
↓
j,xj
};

9 Meet-irred = D \ I;

10 Build the concept lattice from Meet-irred;

Algorithm 1: Obtaining a multi-adjoint concept
lattice

From Theorem 10 we have that every fuzzy-
attribute φi,x associated with an attribute ai, with
x ∈ L, can be considered in the computation of
the concept lattice, if this fuzzy-attribute gener-
ates a meet irreducible element. For instance, if
L = {0.0, 0.2, 0.5, 0.7, 1.0}, then φi,0.2 could be con-
sidered, when the value for the attribute ai is not
representative, since α = 0.2 is very small. There-
fore, it could be more interesting to consider the
fuzzy-attributes φi,x in which the value x exceeds a
threshold α.
From the irreducible elements of MF (A,B,R, σ)

we will only consider the fuzzy-attributes with a
considerable value. Hence, given a threshold α, we
will only assume the fuzzy-attributes of each at-
tribute ai that provides ai with a value greater than
α, that is, we consider the following set of meet ir-
reducible elements of (M,�):

MF (A)α = {〈φ↓
i,x, φ

↓↑
i,x〉 ∈MF (A,B,R, σ) | α �1 x}

Hence, we only consider the concepts of (M,�),
which are obtained from the infimum of elements of
MF (A)α. Moreover, in order to obtain a complete
lattice we also need to consider the greatest element
in (M,�), that is 〈g>, g

↑
>〉.

Definition 12 Given α ∈ L1, the set Mα, defined
as:

{〈g, f〉 ∈ M | g =
∧
j∈J

φ↓
j,xj

, with φj,xj ∈MF (A)α}

together with {〈g>, g
↑
>〉}, is called irreducible α-cut

ofM.
This set, with the ordering defined in M, re-

stricted toMα, forms a lattice.

Theorem 13 For each α ∈ L1, if Mα is an irre-
ducible α-cut ofM, then (Mα,�) is a sublattice of
(M,�).

Therefore, (Mα,�) is a concept lattice and, con-
sequently, the following result holds.

Corollary 14 Given (M,�) and (Mα,�), we
have that

Ext(Mα) ⊆ Ext(M)
Int(Mα) ⊆ Int(M)

where Ext(Mα), Ext(M), Int(Mα) and Int(M) are
the extension and intension sets of the concept lat-
ticesMα andM, respectively.

A similar procedure can be developed with re-
spect to the join irreducible elements.

The granularity of the carriers considered in
Example 11 is very limited, the lattice L =
{0.0, 0.5, 1.0} has only three values and therefore,
the unique value α that could introduce some re-
duction is α = 1.0. In this case, φ1,0.5 and φ2,0.5 are
not considered to obtain the concepts of Mα and,
for that reason, the meet irreducible element C4 is
not obtained by another fuzzy attribute. Thus,

MF (A)1.0 = {C1, C3, C6, C7}

The irreducible 1.0-cut ofM is given in Figure 2, in
which C4 and C2 do not appear. C4 has been erased
by the threshold α, and C2 is not present because
it is only obtained by the infimum of C4 and C5.

C0

C1

C3

C6

C5

C8

C7

Figure 2: The Hasse diagram of (M1.0,�)

Next, we will present another more general ex-
ample which shows different irreducible α-cuts of a
multi-adjoint concept lattice.

Example 15 Given the frame (L,�,&G), where
L = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and &G is the Gödel
conjunctor, the context (A,B,R, σ), where A =
{a1, a2, a3}, B = {b1, b2, b3}, R : A × B → L is de-
fined from Table 2, and σ is constant, the concept
lattice (M,�) has 14 concepts:
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Table 2: Relation R of Example 15.
R b1 b2 b3

a1 0.2 0.8 0.4
a2 0.4 1.0 0.8
a3 0.6 0.0 1.0

C0 = 〈{0.2/b1, 0.4/b3}, {1.0/a1, 1.0/a2, 1.0/a3}〉
C1 = 〈{0.2/b1, 0.8/b2, 0.4/b3}, {1.0/a1, 1.0/a2}〉
C2 = 〈{0.2/b1, 0.8/b3}, {0.4/a1, 1.0/a2, 1.0/a3}〉
C3 = 〈{0.2/b1, 1.0/b2, 0.4/b3}, {0.8/a1, 1.0/a2}〉
C4 = 〈{0.2/b1, 1.0/b3}, {0.4/a1, 0.8/a2, 1.0/a3}〉
C5 = 〈{0.4/b1, 0.8/b3}, {0.2/a1, 1.0/a2, 1.0/a3}〉
C6 = 〈{0.2/b1, 1.0/b2, 0.8/b3}, {0.4/a1, 1.0/a2}〉
C7 = 〈{0.4/b1, 1.0/b3}, {0.2/a1, 0.8/a2, 1.0/a3}〉
C8 = 〈{0.2/b1, 1.0/b2, 1.0/b3}, {0.4/a1, 0.8/a2}〉
C9 = 〈{0.4/b1, 1.0/b2, 0.8/b3}, {0.2/a1, 1.0/a2}〉
C10 = 〈{0.6/b1, 1.0/b3}, {0.2/a1, 0.4/a2, 1.0/a3}〉
C11 = 〈{0.4/b1, 1.0/b2, 1.0/b3}, {0.2/a1, 0.8/a2}〉
C12 = 〈{1.0/b1, 1.0/b3}, {0.2/y1, 0.4/a2, 0.6/a3}〉
C13 = 〈{1.0/b1, 1.0/b2, 1.0/b3}, {0.2/a1, 0.4/a2}〉

and they are hierarchized as Figure 3 shows.

C0

C1

C2 C3

C4 C6C5

C11

C13

C7 C8

C10

C9

C12

Figure 3: The Hasse diagram of (M,�)

With respect to the fuzzy-attributes, we have that
〈φ↓
a,0.0, φ

↓↑
a,0.0〉 = C13, for all a ∈ A. Moreover,

〈φ↓
1,0.2, φ

↓↑
1,0.2〉, 〈φ

↓
2,0.2, φ

↓↑
2,0.2〉 and 〈φ

↓
2,0.4, φ

↓↑
2,0.4〉 are

also the maximum concept C13.

The other fuzzy-attributes generate the next con-
cepts:

〈φ↓
1,0.4, φ

↓↑
1,0.4〉 = C8

〈φ↓
1,0.6, φ

↓↑
1,0.6〉 = 〈φ↓

1,0.8, φ
↓↑
1,0.8〉 = C3

〈φ↓
1,1.0, φ

↓↑
1,1.0〉 = C1

〈φ↓
2,0.6, φ

↓↑
2,0.6〉 = 〈φ↓

2,1.0, φ
↓↑
2,1.0〉 = C9

〈φ↓
2,0.8, φ

↓↑
2,0.8〉 = C11

〈φ↓
3,0.2, φ

↓↑
3,0.2〉 = 〈φ↓

3,0.4, φ
↓↑
3,0.4〉 =

= 〈φ↓
3,0.6, φ

↓↑
3,0.6〉 = C12

〈φ↓
3,0.8, φ

↓↑
3,0.8〉 = 〈φ↓

3,1.0, φ
↓↑
3,1.0〉 = C10

From Theorem 10 and Figure 3, the ∧-irreducible
elements ofM are:

MF (A,B,R, σ) = {C1, C3, C8, C9, C10, C11, C12}

Now, we consider a pair of examples of irreducible
α-cuts concept lattices of M. In order to obtain
proper concept lattices we will assume α = 0.8 and
α = 1.0.
The first one considers the fuzzy-attributes φi,x ∈

Φ which generate a meet irreducible element ofM,
satisfying that α ≤ x. Therefore, the set of meet
irreducible elements considered to build the concept
latticeM0.8 is:

{φ↓
1,0.8, φ

↓
1,1.0, φ

↓
2,0.8, φ

↓
2,1.0, φ

↓
3,1.0}

Note that φ↓
3,0.8 is really considered, since it is equal

to φ↓
3,1.0, which is already in the previous set.

Consequently, the concept lattice obtained is
shown in Figure 4.

C0

C1

C5C3

C7C9

C11

C13

C10

Figure 4: Concept lattice (M0.8,�)

The second considered concept lattice isM1.0. In
this case, the elements that we assume to build the
irreducible 1.0-cut are:

{φ↓
1,1.0, φ

↓
2,1.0, φ

↓
3,1.0}
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and the obtained complete lattice is given in Fig-
ure 5.

C0

C1 C5

C9 C10

C13

Figure 5: Concept lattice (M1.0,�)

5. Conclusions and future work

A characterization of the ∧-irreducible elements of
a multi-adjoint concept lattice has been introduced
using fuzzy-attributes. These elements are very im-
portant, since from them the whole concept lattice
is built. From this characterization, we have intro-
duced a strategy to reduce the size of the multi-
adjoint concept lattices, with the advantage that
the subset of meet irreducible elements build a sub-
lattice of the original concept lattice, and so, the
original information given by the concepts is nei-
ther altered nor modified and the most representa-
tive knowledge is conserved.
In the future, we will compare the introduced size

reduction method with the existing ones, and, using
Theorem 10, a classification in the set of attributes
will be studied and its applicability in the attribute
implications framework [4].
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