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Abstract

This paper represents the third step in the develop-
ment of EQ-logics. Namely, after developing propo-
sitional and higher-order EQ-logics, we focus also
on predicate one. First, we give a brief overview
of the propositional EQ-logic and then develop syn-
tax and semantics of predicate EQ-logic. Finally,
we prove completeness by constructing a model of
a consistent theory of EQ-logic from the syntactical
material, as usual.
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1. Introduction

This paper is the third step in the development
of EQ-logics as special kinds of fuzzy logics based
on EQ-algebras. Recall that the latter are alge-
bras in which the basic operation is fuzzy equal-
ity (i.e., interpretation of equivalence) instead of
residuation (i.e., interpretation of implication). Till
now, propositional EQ-logic [1] and EQ-algebra-
based higher-order fuzzy logic (fuzzy type theory)
[2] have been developed. Therefore, it is interest-
ing to complete the picture also by first-order EQ-
logic. Let us emphasize that the strong conjunction
&&& (interpreted the multiplication ⊗) in EQ-logics is
non-commutative.
In this paper, we will show, how EQ-logic with

complete syntax can be developed. The proof pro-
ceeds in the standard way by constructing a model
from the considered syntactical material. To do
it, however, several special questions had to be an-
swered and elaborated in detail. Besides others, we
had to decide, what properties of the considered
EQ-algebra are necessary to be able to construct
a model of a theory in EQ-logic. We found that
we need the ∆-operation, linearity, and also require
fulfilling of the inequality ∆(a ∼ b) ≤ a⊗ c ∼ b⊗ c.

2. EQ-logic: An overview

In this section, we will briefly overview basic defi-
nitions and the main properties of EQ-algebras and
basic propositional EQ-logics.

2.1. EQ-algebra

The concept of EQ-algebra appeared for the first
time in [3] and elaborated in more detail in [4, 5].

Definition 1
A non-commutative EQ-algebra E is an algebra

E = 〈E,∧,⊗,∼, 1〉 ,

of type (2, 2, 2, 0) fulfilling the following axioms for
all a, b, c, d ∈ E:

(E1) 〈E,∧, 1〉 is a commutative idempotent
monoid (i.e. ∧-semilattice with top element
1). We put a ≤ b iff a ∧ b = a, as usual.

(E2) 〈E,⊗, 1〉 is a monoid and ⊗ is isotone w.r.t.
≤ .

(E3) a ∼ a = 1

(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b)

(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d)

(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a

(E7) a⊗ b ≤ a ∼ b

The operation ∼ is fuzzy equality, ∧ is meet and
⊗ is multiplication. An EQ-algebra is commutative
if ⊗ is a commutative operation.
A derived operation

a→ b = (a ∧ b) ∼ a (1)

where a, b ∈ E is called implication.
If E contains also the bottom element 0 then we

put
¬a = a ∼ 0, a ∈ E

and call ¬a a negation of a ∈ E.

Definition 2
Let E be an EQ-algebra and a, b, c, d ∈ E. We say
that E is:

(i) separated if a ∼ b = 1 implies a = b.

(ii) good if a ∼ 1 = a.

(iii) prelinear if for all a, b ∈ E, sup{a → b, b →
a} = 1.

(iv) lattice EQ-algebra (`EQ-algebra) if it is a lat-
tice and for all a, b, c, d ∈ E,

(E8) ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ (d ∨ b) ∼ c.
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Theorem 1 ([6])
If a good EQ-algebra E satisfies

(a→ b) ∨ (d→ (d⊗ (c→ (b→ a)⊗ c))) = 1 (2)

for all a, b, c, d ∈ E then it is prelinear and repre-
sentable, i.e. it is isomorphic to a subdirect product
of linearly ordered EQ-algebras.

2.2. Basic EQ-logic

The basic EQ-logic was introduced in [1]. It has
three basic binary connectives ∧∧∧,&&&,≡ and the truth
constant >. Implication is a derived connective de-
fined by

A⇒⇒⇒ B := (A∧∧∧B) ≡ A.

The algebra of truth values for basic EQ-logic
is formed by a good non-commutative EQ-algebra.
The following formulas are its logical axioms:

(EQ1) (A ≡ >) ≡ A

(EQ2) A∧∧∧B ≡ B ∧∧∧A

(EQ3) (A©B)©C ≡ A©(B©C), © ∈ {∧∧∧,&&&}

(EQ4) A∧∧∧A ≡ A

(EQ5) A∧∧∧ > ≡ A

(EQ6) A&&&> ≡ A

(EQ7) >&&& A ≡ A

(EQ8a) ((A∧∧∧B)&&& C)⇒⇒⇒ (B &&& C)

(EQ8b) (C &&&(A∧∧∧B))⇒⇒⇒ (C &&& B)

(EQ9) ((A∧∧∧B) ≡ C)&&&(D ≡ A)⇒⇒⇒ (C ≡ (D ∧∧∧B))

(EQ10) (A ≡ B)&&&(C ≡ D)⇒⇒⇒ (A ≡ C) ≡ (D ≡ B)

(EQ11) (A⇒⇒⇒ (B ∧∧∧ C))⇒⇒⇒ (A⇒⇒⇒ B)

The inference rules of basic EQ-logic are equa-
nimity rule (EA) (from A and A ≡ B derive B)
and Leibniz rule (Leib) (from A ≡ B derive C[p :=
A] ≡ C[p := B] where the expression of the form
C[p := X] for X := A or X := B denotes a for-
mula resulting from C by replacing all occurrences
of the variable p in C by the formula X).

Lemma 1 ([1])
(a) ` A ≡ A,

(b) ` (A⇒⇒⇒ B)⇒⇒⇒ ((A∧∧∧ C)⇒⇒⇒ B)),

(c) A, A⇒⇒⇒ B ` B, (Modus Ponens)

(d) A, B ` A&&& B,

(e) ` (A ≡ B) ≡ (B ≡ A),

(f) ` (A ≡ B)⇒⇒⇒ (A⇒⇒⇒ B),

(g) ` (A⇒⇒⇒ B)&&&(B⇒⇒⇒ A)⇒⇒⇒ (A ≡ B),

(h) ` (A ≡ B)&&&(B ≡ C)⇒⇒⇒ (A ≡ C),

(i) ` (A&&&(A ≡ B))⇒⇒⇒ B,

(j) ` (A⇒⇒⇒ B)&&&(B⇒⇒⇒ C)⇒⇒⇒ (A⇒⇒⇒ C),

(k) ` A&&& B⇒⇒⇒ A ≡ B,

(l) ` (C ⇒⇒⇒ A)&&&(C ⇒⇒⇒ B)⇒⇒⇒ (C ⇒⇒⇒ (A∧∧∧B)),

(m) ` ((A ≡ B)&&&(C ≡ D))⇒⇒⇒ ((A∧∧∧C) ≡ (B∧∧∧D)),

(n) ` (A⇒⇒⇒ B)⇒⇒⇒ ((B⇒⇒⇒ C)⇒⇒⇒ (A⇒⇒⇒ C)),

(o) ` (A⇒⇒⇒ (B⇒⇒⇒ C))⇒⇒⇒ (B⇒⇒⇒ (A⇒⇒⇒ C)).

Theorem 2 (Completeness)
The following is equivalent for every formula A:

(a) ` A,

(b) e(A) = 1 for every good non-commutative EQ-
algebra E and a truth evaluation e : FJ −→ E.

For more details and other kinds of EQ-logic see [1].

3. EQ∆∆∆-logic

This logic is obtained from the basic one by enrich-
ing it by a ∆∆∆ connective.

3.1. Lattice EQ∆-algebra

Lattice EQ∆-algebras form one of important classes
of EQ-algebras. Algebras from this class are used as
structures of truth values for prelinear EQ∆∆∆-logic.

Definition 3
A lattice EQ∆-algebra (`EQ∆-algebra) is an alge-
bra E∆ = 〈E,∧,∨,⊗,∼, ∆, 0, 1〉 where 〈E,∧,∨,⊗,
∼, 0, 1〉 is a good non-commutative and bounded
`EQ-algebra (0 and 1 are bottom and top ele-
ments, respectively) expanded by a unary operation
∆ : E −→ E fulfilling the following axioms:

(E∆1) ∆1 = 1

(E∆2) ∆a ≤ ∆∆a

(E∆3) ∆(a ∼ b) ≤ ∆a ∼ ∆b

(E∆4) ∆(a ∧ b) = ∆a ∧∆b

(E∆5) ∆a = ∆a⊗∆a

(E∆6) ∆(a ∼ b) ≤ (a⊗ c) ∼ (b⊗ c)

(E∆7) ∆(a ∼ b) ≤ (c⊗ a) ∼ (c⊗ b)

(E∆8) ∆(a ∨ b) ≤ ∆a ∨∆b

(E∆9) ∆a ∨ ¬∆a = 1

Remark 1
Axioms of the lattice EQ∆-algebra are motivated
by Novák’s definition of the delta operation in EQ-
algebras (see [2]), where it was introduced for the
first time. Axioms (E∆6) and (E∆7) guarantee
good behavior of the multiplication with respect to
the crisp equality. It follows from the results of [4]
that if we omit ∆ in (E∆6) and (E∆7) then the
resulting EQ-algebra becomes residuated.
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As shown in the following lemma, two substitu-
tion axioms can be replaced by the only one in pre-
linear and good `EQ-algebra.

Lemma 2
Let E be a prelinear and good `EQ-algebra. Then
the substitution axioms (E4) and (E8) are equiva-
lent to the following one:

(E9) ((((a ∧ b) ∨ c) ∼ d)⊗ (f ∼ c))⊗ (e ∼ a) ≤
d ∼ (f ∨ (b ∧ e))

The following theorem characterizes a repre-
sentable class of `EQ∆-algebras.

Theorem 3 ([7])
Let E∆ be `EQ∆-algebra. Then the following prop-
erties are equivalent:

(a) E∆ is subdirectly embeddable into a product of
linearly ordered `EQ∆-algebras (i.e., E∆ is rep-
resentable).

(b) E∆ satisfies condition (2) for all a, b, c, d ∈ E.

3.2. Prelinear EQ∆∆∆-logic

This logic is interesting because stronger form of the
completeness theorem holds in it. Moreover, this
logic will become the basis for the development of
the predicate EQ-logic. The language of this logic
is that of the basic EQ-logic extended by the binary
connective ∨∨∨, unary connective ∆∆∆ and logical con-
stant ⊥ (falsum). We also extend the language by
the short

¬A := A ≡ ⊥. (3)

Formula (3) is definition of negation in this logic.
Semantics of this logic is formed by a non-

commutative `EQ∆-algebra in which condition (2)
is satisfied.
The complete list of logical axioms of the prelin-

ear EQ∆∆∆-logic is the following:

(EQ1) (A ≡ >) ≡ A

(EQ2) A∧∧∧B ≡ B ∧∧∧A

(EQ3) (A©B)©C ≡ A©(B©C), © ∈ {∧∧∧,&&&}

(EQ4) A∧∧∧A ≡ A

(EQ5) A∧∧∧ > ≡ A

(EQ6) A&&&> ≡ A

(EQ7) >&&& A ≡ A

(EQ8a) ((A∧∧∧B)&&& C)⇒⇒⇒ (B &&& C)

(EQ8b) (C &&&(A∧∧∧B))⇒⇒⇒ (C &&& B)

(EQ9) ((((A∧∧∧B)∨∨∨ C) ≡ D)&&&(F ≡ C))&&&
(E ≡ A)⇒⇒⇒ (D ≡ (F ∨∨∨ (B ∧∧∧ E)))

(EQ10) (A ≡ B)&&&(C ≡ D)⇒⇒⇒ (A ≡ C) ≡ (D ≡ B)

(EQ11) (A⇒⇒⇒ (B ∧∧∧ C))⇒⇒⇒ (A⇒⇒⇒ B)

(EQ12) (A∨∨∨B)∨∨∨ C ≡ A∨∨∨ (B ∨∨∨ C)

(EQ13) A∨∨∨ (A∧∧∧B) ≡ A

(EQ14) (A∧∧∧ ⊥) ≡ ⊥

(EQ15) (A⇒⇒⇒ B)∨∨∨
(D⇒⇒⇒ (D &&&(C ⇒⇒⇒ ((B⇒⇒⇒ A)&&& C))))

(EQ∆∆∆1) ∆∆∆A⇒⇒⇒∆∆∆∆∆∆A

(EQ∆∆∆2) ∆∆∆(A ≡ B)⇒⇒⇒ (∆∆∆A ≡∆∆∆B)

(EQ∆∆∆3) ∆∆∆(A∧∧∧B) ≡ (∆∆∆A∧∧∧∆∆∆B)

(EQ∆∆∆4) ∆∆∆A ≡ (∆∆∆A&&&∆∆∆A)

(EQ∆∆∆5) ∆∆∆(A ≡ B)⇒⇒⇒ ((A&&& C) ≡ (B &&& C))

(EQ∆∆∆6) ∆∆∆(A ≡ B)⇒⇒⇒ ((C &&& A) ≡ (C &&& B))

(EQ∆∆∆7) ∆∆∆(A∨∨∨B)⇒⇒⇒ (∆∆∆A∨∨∨∆∆∆B)

(EQ∆∆∆8) ∆∆∆A∨∨∨ ¬∆∆∆A

Remark 2
Axioms of the basic EQ-logic are extended by
axioms (EQ12)–(EQ14) which reflect the join-
semilattice structure. Moreover, axiom (EQ15)
stands for the prelinearity and axiom (EQ9) express
a common substitution axiom both for ∧∧∧ and for ∨∨∨
and thus it replaces the original substitution axioms
in EQ-logics. Finally, the ∆∆∆-axioms correspond to
the ∆-axioms of the lattice EQ∆-algebra.

Inference rules of the prelinear EQ∆∆∆-logic are
those of the basic EQ-logic and the necessitation
rule:

(N) A

∆∆∆A
.

The main properties of the prelinear EQ∆∆∆-logic,
with emphasize to the disjunction connective are
introduced in the following lemma. Notice that the
substitution property of both ∧∧∧ (Lemma (3d)) and
∨∨∨ (Lemma (3b)) is provable. Lemma 4 then shows
properties of the delta connective in the prelinear
EQ∆∆∆-logic.

Lemma 3 ([7])
(a) ` A∨∨∨B ≡ B ∨∨∨A,

(b) ` ((A∨∨∨B) ≡ C)&&&(D ≡ A)⇒⇒⇒ ((D∨∨∨B) ≡ C),

(c) ` A∨∨∨ ⊥ ≡ A,

(d) ` ((A∧∧∧B) ≡ C)&&&(D ≡ A)⇒⇒⇒ (C ≡ (D∧∧∧B)),

(e) ` (A⇒⇒⇒ B)∨∨∨ (B⇒⇒⇒ A),

(f) ` >∨∨∨A,

(g) ` A⇒⇒⇒ (A∨∨∨B),

(h) ` A∧∧∧ (A∨∨∨B) ≡ A,
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(i) ` ((A∨∨∨B) ≡ B) ≡ (A⇒⇒⇒ B),

(j) ` (A⇒⇒⇒ C)&&&(B⇒⇒⇒ C)⇒⇒⇒ ((A∨∨∨B)⇒⇒⇒ C),

(k) ` ((A∨∨∨B)⇒⇒⇒ C)⇒⇒⇒ (A⇒⇒⇒ C),

(l) ` (A⇒⇒⇒ B)⇒⇒⇒ (A⇒⇒⇒ (B ∨∨∨ C)),

(m) ` (A∨∨∨ B) ≡ (((A⇒⇒⇒ B)⇒⇒⇒ B)∧∧∧ ((B ⇒⇒⇒ A)⇒⇒⇒
A)),

(n) ` (A ≡ B)⇒⇒⇒ ((A∨∨∨ C) ≡ (B ∨∨∨ C)),

(o) ` (A ≡ B)&&&(C ≡ D)⇒⇒⇒ ((A∨∨∨C) ≡ (B ∨∨∨D)).

Lemma 4 ([7])
(a) `∆∆∆A⇒⇒⇒ A,

(b) `∆∆∆(A⇒⇒⇒ B)⇒⇒⇒ (∆∆∆A⇒⇒⇒∆∆∆B),

(c) `∆∆∆(¬A)⇒⇒⇒ ¬(∆∆∆A),

(d) `∆∆∆(A∨∨∨B) ≡ (∆∆∆A∨∨∨∆∆∆B),

(e) ` (∆∆∆A&&&∆∆∆(A⇒⇒⇒ B))⇒⇒⇒∆∆∆B,

(f) `∆∆∆((A ≡ B)&&&(C ≡ D))⇒⇒⇒
((A&&& C) ≡ (B &&& D)).

Theorem 4 (Completeness)
For every formula A ∈ FJ and for every theory T
the following is equivalent:

(a) T ` A.

(b) e(A) = 1 for every truth evaluation e : FJ −→
E and every linearly ordered, `EQ∆-algebra E∆.

(c) e(A) = 1 for every truth evaluation e : FJ −→
E and every `EQ∆-algebra E∆ satisfying condi-
tion (2).

4. First-order EQ-logic

In this section, we will introduce first-order EQ-
logic. After detailed analysis it turned out that this
logic can be developed only on the basis of the pre-
linear EQ∆∆∆-logic. Moreover, its EQ-algebra of truth
values must be linearly ordered.

4.1. Syntax
Definition 4
The language J of predicate EQ-logic consists of:

(i) Object variables x, y, . . .

(ii) Set of object constants Const = {u, v, . . .}

(iii) Non-empty set of n-ary predicate symbols
Pred = {P, Q, . . . }

(iv) Logical (truth) constants > and ⊥.

(v) Binary connectives ∧∧∧,∨∨∨,&&&,≡ and unary con-
nective ∆∆∆.

(vi) Quantifiers ∀,∃.

(vii) Auxiliary symbols: brackets.

Terms are object variables and object constants.
Formulas of predicate EQ-logic are defined as fol-

lows:

Definition 5
(i) If P is an n-ary predicate symbol and t1, . . . , tn

are terms then P (t1, . . . , tn) is atomic formula.

(ii) Logical constants > and ⊥ are formulas.

(iii) If A, B are formulas then A ∧∧∧ B, A ∨∨∨ B,
A&&& B, A ≡ B,∆∆∆A are formulas.

(iv) If A is formula and x is an object variable then
(∀x)A, (∃x)A are formulas.

The set of all the well-formed formulas for the lan-
guage J is denoted by FJ (we will also speak about
J-formulas). The concepts of bound and free vari-
ables and open and closed formulas are classical.
Let A(x) be a formula and t a term. By Ax[t] we

denote a formula in which all the free occurrences
of the variable x are replaced by the term t. The
concepts of substitutable term, scope of quantifiers,
instance of a formula, closure are defined classically.

4.2. Semantics

Let J be a language of the predicate EQ-logic
and let E = 〈E,∧,∨,⊗,∼, ∆, 0, 1〉 be a non-
commutative linearly ordered `EQ∆-algebra. The
E-structure for J is

ME = 〈M, E , {rP }P∈Pred, {mu}u∈Const〉

where M is a nonempty set (domain), rP : Mn −→
E is an n-ary fuzzy relation assigned to each predi-
cate symbol P and mu ∈M is an element assigned
to each object constant u. An evaluation of object
variables is a mapping v assigning to each object
variable x an element v(x) ∈ M . If v is an evalu-
ation then by v′ = v \ x we denote an evaluation
which differs from v in the variable x only.
Interpretation of terms in E-structureME is de-

fined as follows:

MEv (u) = mu, u ∈ J,

MEv (x) = v(x)

where v is an evaluation of variables.

Definition 6
Let ME be a structure for the language J . We
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define interpretationMEv of formulas as follows:

MEv (P (t1, . . . , tn)) = rP (ME(t1), . . . ,ME(tn)),
MEv (A∧∧∧B) =MEv (A) ∧MEv (B),
MEv (A&&& B) =MEv (A)⊗MEv (B),
MEv (A ≡ B) =MEv (A) ∼MEv (B),

MEv (∆∆∆A) = ∆MEv (A),
MEv (>) = 1, MEv (⊥) = 0,

MEv ((∀x)A) = inf{MEv′(A) | v′ = v \ x},
MEv ((∃x)A) = sup{MEv′(A) | v′ = v \ x}

provided that the infimum (supremum) exists in the
sense of E ; otherwise the truth value of the formula
in question is undefined.

By Ax[t] we denote a formula in which all free
occurrences of a variable x are replaced by the term
t. A theory over predicate EQ-logic is a set T of
formulas. If A is a formula then it is provable in T
if there is a proof of A. Then we write T ` A.
The structure ME is a model of T , ME |= T , if
ME(A) = 1 holds for all axioms A of T .
The structureME is safe if all the needed infima

and suprema exist, i.e. MEv (A) is defined for all A
and each evaluation v of variables.

A formula A is a tautology if MEv (A) = 1 for
each E-safe structure M and each evaluation v. A
formula A is true in T , T |= A, ifMEv (A) = 1 in all
its modelsME .
The truth value of a formula A in E-structureME

is defined as follows:

ME(A) =
∧
{MEv (A) | v is an evaluation}. (4)

4.3. Logical axioms and inference rules
Definition 7 (Logical axioms)
The logical axioms of predicate EQ-logic are (EQ1)–
(EQ15), (EQ∆∆∆1)–(EQ∆∆∆8) and also the following
formulas:

(EQP1) (∀x)A(x)⇒⇒⇒ A(t)
(t substituable for x in A(x)),

(EQP2) A(t)⇒⇒⇒ (∃x)A(x)
(t substituable for x in A(x)),

(EQP3) ∆∆∆(∀x)(A⇒⇒⇒ B)⇒⇒⇒ (A⇒⇒⇒ (∀x)B)
(x not free in A),

(EQP4) (∀x)(A⇒⇒⇒ B)⇒⇒⇒ ((∃x)A⇒⇒⇒ B)
(x not free in B),

(EQP5) (∀x)(A∨∨∨B)⇒⇒⇒ ((∀x)A∨∨∨B)
(x not free in B).

Remark 3
The above axioms are the well known axioms on
quantifiers used in many other kinds of predicate
logics. Note that axiom (EQP3) is weakened by
adding the ∆∆∆-connective.

Definition 8
Basic inference rules of predicate EQ-logic are the
Equanimity rule (EA), Leibniz rule

(Leib) A ≡ B

C[p := A] ≡ C[p := B]) ,

provided that the subformula p of C is not in the
scope of a quantifier in C, the necessitation rule (N),
and the rule of generalization

(G) A

(∀x)A.

4.4. Main properties
Lemma 5
For an arbitrary formula A, B, C where x is not free
in A, the following formulas are provable:

(a) ` (A⇒⇒⇒ (∀x)B)⇒⇒⇒ (∀x)(A⇒⇒⇒ B),

(b) ` (∀x)(B⇒⇒⇒ A) ≡ ((∃x)B⇒⇒⇒ A),

(c) ` (∃x)(A⇒⇒⇒ B)⇒⇒⇒ (A⇒⇒⇒ (∃x)B),

(d) ` (∃x)(B⇒⇒⇒ A)⇒⇒⇒ ((∀x)B⇒⇒⇒ A),

(e) `∆∆∆(∀x)(C ⇒⇒⇒ B)⇒⇒⇒ ((∀x)C ⇒⇒⇒ (∀x)B),

(f) ` (∀x)(C ⇒⇒⇒ B)⇒⇒⇒ ((∃x)C ⇒⇒⇒ (∃x)B).

Lemma 6
If A is an axiom of predicate EQ∆∆∆-logic then for
every structureME and an evaluation v,MEv (A) =
1 holds true.

proof: This is straightforward using the axioms
and properties of `EQ∆-algebra. �

Lemma 7
The inference rules of predicate EQ∆∆∆-logic are
sound, i.e. the following holds for every structure
ME and every evaluation v:

(a) If MEv (A) = 1 and MEv (A ≡ B) = 1 then
MEv (B) = 1.

(b) If MEv (B ≡ C) = 1 then MEv (A[p := B] ≡
A[p := C]) = 1 for any formula A.

(c) IfMEv (A) = 1 thenMEv (∆∆∆A) = 1.

(d) IfMEv (A) = 1 thenMEv ((∀x)A) = 1.

proof:
(a) Obviously, if a = 1 and a ∼ b = 1 then neces-

sarily b = 1.
(b) By induction on the complexity of the formula

A. If A is p then MEv (A[p := B] ≡ A[p := C]) =
MEv (B ≡ C) = 1. If A is >, ⊥, P (t1, . . . , tn) or
q (other than p) then MEv (A[p := B] ≡ A[p :=
C]) =MEv (A ≡ A) = 1.

For induction step, we pick an arbitrary
nonatomic A and prove

MEv (A[p := B] ≡ A[p := C]) = 1
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that is

MEv (A[p := B]) ∼MEv (A[p := C]) = 1

and thus with the using of property (1) and this
that every good algebra is also separated conclude

MEv (A[p := B]) =MEv (A[p := C]) (5)

on the induction hypothesis (I.H.) that the claim
MEv (D[p := B]) =MEv ( D[p := C]) is true for all
formulae less complex than A.
We have this case: Let A be E ∧∧∧ F . The I.H.

applies on E and F .
Now, A[p := B] ≡ A[p := C]) is MEv (E[p :=

B]∧∧∧ F [p := B] ≡ F [p := C]∧∧∧ F [p := C]) thus we
get (5) as follows:

MEv (E[p := B]∧∧∧ F [p := B]) =
MEv (E[p := B]) ∧MEv (F [p := B]) =

MEv (E[p := C]) ∧MEv (F [p := C]) (by I.H.) =
MEv (E[p := C]∧∧∧ F [p := C])

The cases where A is E &&& F , E ∨∨∨ F or E ≡ F are
proved analogously.
Let A be (∀x)E. Then

MEv ((∀x)E[p := B])) =
inf{MEv′((E[p := B]) | v′ = v \ x} =
inf{MEv′((E[p := C]) | v′ = v \ x} =

MEv ((∀x)E[p := C])).

The case where A is (∃x)E can be proved by the
similar way.
Let A be ∆∆∆E. Then

MEv (∆∆∆E[p := B])) = ∆MEv (E[p := B])) =
∆MEv (E[p := C])) =MEv (∆∆∆E[p := C])).

(c) is trivial. (d) is obvious from definitionME(A)
(see (4)). �

The following is the deduction theorem formu-
lated in the style natural for EQ-logic. The proof
proceeds by induction on the length of the proof of
C.

Theorem 5
For each theory T , closed formulas A, B and arbi-
trary formula C it holds that

T ∪ {A ≡ B} ` C iff T `∆∆∆(A ≡ B)⇒⇒⇒ C.

If we put B := > in Theorem 5 then we get the
“standard” form of the delta deduction theorem.

Corollary 1
For each theory T , closed formula A and arbitrary
formula C it holds that

T ∪ {A} ` C iff T `∆∆∆A⇒⇒⇒ C. (6)

Definition 9
Let T be a theory. Then we say that

(a) T is inconsistent if T ` ⊥. Otherwise it is con-
sistent.

(b) T is maximal consistent if each its extension S,
T ⊂ S is contradictory.

(c) T is linear∗) if

T ` A⇒⇒⇒ B or T ` B⇒⇒⇒ A (7)

for every two formulas A, B.

(d) T is extensionally complete if for every formula
of the form (∀x)(A(x) ≡ B(x)) such that T 6`
(∀x)(A(x) ≡ B(x)) there is a constant u for
which T 6` (Ax[u] ≡ Bx[u]).

4.5. Completeness

The proofs of the following two theorems proceed
similarly as items 3 and 1 of [9, Lemma 2].

Theorem 6
Every consistent theory T can be extended to a
maximally consistent linear theory.

Theorem 7
Every consistent theory T can be extended to an
extensionally complete consistent theory T ′.

Now we construct the Lindenbaum algebra ET for
the theory T in a standard way from equivalence
classes using the following equivalence on formulas:

A ≈ B iff T ` A ≡ B, A, B ∈ FJ .

Theorem 8
Let T be a linear extensionally complete theory.
Then the algebra

ET = 〈Ē,∧T ,∨T ,⊗T ,∼T , ∆T , 0T , 1T 〉 (8)

is a non-commutative linearly ordered `EQ∆-
algebra.

proof: It is easy to verify the axioms of non-
commutative linearly ordered `EQ∆-algebra. More-
over,

|A| ≤ |B| iff |A| ∧T |B| = |A|
iff T ` (A∧∧∧B) ≡ A iff T ` A⇒⇒⇒ B

iff T ` (A⇒⇒⇒ B) ≡ > iff |A| →T |B| = |>|.

From here and the linearity of T follow that ET is
linear ordered.

Analogously as in Lemma 5.2.6 from [8] we prove
the following equalities:

|(∀x)A| =
∧
{|Ax[u]|

∣∣ all constants u ∈ Const},

|(∃x)A| =
∨
{|Ax[u]|

∣∣ all constants u ∈ Const}.

�

∗)In [8] and elsewhere such a theory is called complete.
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Definition 10
Let T be a linear extensionally complete theory.
Then the canonical model of the theory T is the
following structure:

MT = 〈M, ET , {rP }P∈P red, {mu}u∈Const〉,

where we put M as the set of all constants of the
language of T , ET is Lindenbaum algebra (8), mu =
u for each such constant and rP = |P (u1, . . . , un)|T .

Now, we prove the following version of complete-
ness of predicate EQ-logic.

Theorem 9
A theory T is consistent iff it has a safe modelM.

proof: Suppose that T is inconsistent. This
means that T ` ⊥. Thus, ifM |= T thenMv(⊥) =
1 that is impossible.
For the proof of the converse implication, we ex-

pand T to a linear extensionally complete theory
T̄ . Further, we construct its canonical modelMT .
Assume that A is an axiom of T , thus T ` A and
T̄ ` A too. Using (EQ1) and rule (EA) we obtain
T̄ ` A ≡ T , thus T ` A ≡ T and consequently
MT

v (A) = |>| = 1T . Hence, MT is a model of T .
�

Theorem 10
Let T be a theory. Then for each formula A

T ` A iff T |= A.

proof: The implication left-to-right follows from
Lemma (6) and (7).

For the converse implication, assume that T 6` A.
We have to show that it exists a model M of a
theory T and evaluation v such that Mv(A) 6= 1.
Let us take the canonical modelMT of the theory
T and letMT

v (A) = 1 = |>| for some evaluation v.
Thus, T ` A ≡ >, and so, T ` A. Therefore, T 6` A
means thatMT

v (A) 6= 1T . �

5. Conclusion

After propositional and higher order EQ-logic, this
paper deals with the third kind of it, namely the
first-order EQ-logic. By this, we concluded the ba-
sic phase of the development of logics, whose truth
values are formed by an EQ-algebra. This algebra is
characteristic by taking fuzzy equality as the basic
operation and implication is derived from it. More-
over, the multiplication (serving as natural inter-
pretation of strong conjunction) is in general non-
commutative. EQ-algebras algebra generalize resid-
uated lattices in the sense that every residuated lat-
tice is an EQ-algebra but not vice-versa.
After detailed analysis it turned out that

first-order EQ-logic requires presence of the ∆∆∆-
connective. The reason is that classical properties

of the fuzzy equality must be preserved in limit
cases. Moreover, the EQ-algebra used as an alge-
bra of truth values must be linearly ordered. Using
standard techniques adapted for specific properties
of EQ-algebra, we proved that the first-order EQ-
logic is syntactico-semantically complete.
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