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Abstract

We present a new Priestley-style topological dual-
ity for bounded N4-lattices, which are the algebraic
counterpart of paraconsistent Nelson logic. Our du-
ality differs from the existing one, due to Odintsov,
in that we only rely on Esakia duality for Heyting
algebras and not on the duality for De Morgan alge-
bras of Cornish and Fowler. A major advantage of
our approach is that for our topological structures
we obtain a simple description, which can be eas-
ily extended to other algebras such as non-bounded
N4-lattices and N4-lattices with modal operators.
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1. Introduction

N4-lattices are the algebraic semantics of paracon-
sistent Nelson logic, which was introduced in [1] as
an inconsistency-tolerant counterpart of the better-
known logic of Nelson [2, 3].
Paraconsistent Nelson logic combines interesting

features of intuitionistic, classical and many-valued
logics (e.g., Belnap-Dunn four-valued logic); recent
work has shown that it can also be seen as one mem-
ber of the wide family of substructural logics [4].

The work we present here is a contribution to-
wards a better topological understanding of the al-
gebraic counterpart of paraconsistent Nelson logic,
namely a variety of involutive lattices called N4-
lattices in [5]. A Priestley-style duality for these
algebras was already introduced by Odintsov [6],
the main difference between his approach and ours
is that we only rely on Esakia duality for Heyting
algebras [7], whereas [6] uses both Esakia duality
and the duality for De Morgan algebras [8, 9]: as a
consequence, the description of dual spaces that we
obtain is, in our opinion, much simpler. Moreover,
[6] only deals with N4-lattices whose lattice reduct
is bounded, whereas we show how our treatment
easily extends to the non-bounded case as well.
Outline of the paper. In the next section we intro-

duce the abstract algebraic definition of N4-lattices
and we state a fundamental result of Odintsov
[10], namely that every N4-lattice can be repre-
sented through a concrete construction called twist-
structure. We extend this to a categorial equiva-
lence, which will allow us to work, for our dual-
ity, with a category of twist-structures instead of

the category of N4-lattices as introduced in [6]. In
Section 3 we recall the essentials of Esakia duality
for Heyting algebras, on which we will build ours.
Section 4 contains the main results. We show that
our category of twist-structures (and, as a conse-
quence, the category of N4-lattices) is dually equiv-
alent to a category of Esakia spaces enriched with
additional topological structure. Finally, in Sec-
tion 5 we briefly discuss how to extend our dual-
ity to non-bounded N4-lattices and to N4-lattices
expanded with modal operators.

2. N4-lattices as twist-structures

The abstract definition of N4-lattices [10, Definition
2.3] is rather obscure, but fortunately, as we will see,
a more insightful description is available for these al-
gebras thanks to the so-called twist-structure con-
struction.

Definition 2.1. An N4-lattice is an algebra B =
〈B,∧,∨,→,∼〉 such that:

(i) the reduct 〈B,∧,∨,∼〉 is a De Morgan lat-
tice, i.e., a distributive lattice (with order ≤)
equipped with a unary operation ∼ : B → B
(usually called negation) such that ∼∼ a = a
and ∼(a ∨ b) = ∼ a ∧ ∼ b,

(ii) the relation � defined as a � b iff a → b =
(a → b) → (a → b), is a pre-ordering (i.e.,
reflexive and transitive),

(iii) the relation ≡ defined as a ≡ b iff a � b and
b � a is a congruence w.r.t. ∧,∨,→ and the
quotient algebra B./ = 〈B,∧,∨,→〉/≡ is a
Brouwerian lattice1,

(iv) ∼(a→ b) ≡ a ∧ ∼ b for all a, b ∈ B,

(v) a ≤ b iff a � b and ∼ b � ∼ a for all
a, b ∈ B.

B is said to be bounded if its lattice reduct is
bounded (in which case we include the bounds as
constants in the algebraic signature).

It is known that N4-lattices form a variety (hence,
bounded N4-lattices are also a variety), which is

1A Brouwerian lattice is the 0-free subreduct of a Heyt-
ing algebra. Brouwerian lattices are also known in the liter-
ature as generalized Heyting algebras [11], Brouwerian al-
gebras [12], implicative lattices [5] and relatively pseudo-
complemented lattices [3]. Some authors call “Brouwerian
lattices” structures that are (lattice-theoretic) dual to ours.

8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013)

© 2013. The authors - Published by Atlantis Press 223



the equivalent algebraic semantics of paraconsistent
Nelson logic (see [5]).
Condition (iii) of Definition 2.1 provides a canon-

ical way of associating a Brouwerian lattice to a
given N4-lattice. We are going to describe a method
introduced in [10, Definition 2.1] to construct an N4-
lattice from a Brouwerian lattice, and we shall see
that each N4-lattice is isomorphic to one obtained
in this way.

Let A = 〈A,∧,∨,→, 1〉 be a Brouwerian lattice.
Consider the algebra A./ = 〈A×A,∧,∨,→,∼〉 with
operations defined as follows: for all 〈a, b〉, 〈c, d〉 ∈
A×A,

〈a, b〉 ∧ 〈c, d〉 := 〈a ∧ c, b ∨ d〉
〈a, b〉 ∨ 〈c, d〉 := 〈a ∨ c, b ∧ d〉
〈a, b〉 → 〈c, d〉 := 〈a→ c, a ∧ d〉

∼〈a, b〉 := 〈b, a〉.

It is easy to check that A./ is an N4-lattice.
If A has a minimum element 0, then by defining
> := 〈1, 0〉 and ⊥ := 〈0, 1〉 we obtain a bounded
N4-lattice. Notice that the operations ∧,∨,→ of
A./ are defined component-wise just as in a direct
product in the first component, while they are some-
how “twisted” in the second one; this accounts for
the name twist-structure over A for the algebra A./

used, e.g., in [10].
Although the above construction produces an N4-

lattice, not all N4-lattices are isomorphic to one con-
structed in this way. To achieve this, we need the
following refinement.

Given a Brouwerian lattice A, let D(A) := {a ∨
(a→ b) : a, b ∈ A} be the set of its dense elements2.
If A has a minimum 0 (i.e., if A “is” in fact a Heyt-
ing algebra), then the dense elements can also be
obtained as follows: D(A) = {a ∨ ¬a : a ∈ A} =
{a ∈ A : ¬¬a = 1} where ¬ is the Heyting negation
of A, i.e., ¬a := a → 0. Now consider a lattice
filter ∇ ⊆ A such that D(A) ⊆ ∇ and an arbitrary
(non-empty) lattice ideal ∇⊆ A. Then the set

B := {〈a, b〉 ∈ A×A : a ∨ b ∈ ∇, a ∧ b ∈ ∇}

is closed under the operations ∧,∨,→,∼ of A./ and
thus 〈B,∧,∨,→,∼〉 is an N4-lattice. Following [10],
we denote this algebra by Tw(A,∇, ∇).
The twist-structure construction described above

is very similar to the one used in [13] to represent
Brouwerian bilattices, the main differences being
the following:

• The algebraic signature of Brouwerian bilat-
tices includes the above-defined operations to-
gether with two additional ones, ⊗ and ⊕, de-
fined by 〈a, b〉 ⊗ 〈c, d〉 := 〈a ∧ c, b ∧ d〉 and
〈a, b〉 ⊕ 〈c, d〉 := 〈a ∨ c, b ∨ d〉.
• As a consequence, every Brouwerian bilattice B
corresponds to a twist-structure Tw(A,∇, ∇)

2It is easy to check that D(A) is a lattice filter, which we
may call the filter of dense elements of A.

whose carrier set is the whole direct product
A×A, which means that ∇ = ∇= A.

Brouwerian bilattices can thus be viewed as special
N4-lattices (and, conversely, N4-lattices correspond
to subreducts of Brouwerian bilattices: see [13, p.
130]). These considerations imply that the topo-
logical duality we develop in the next sections also
applies to Brouwerian bilattices. Moreover, since in
this particular case ∇ and ∇do not play any role,
a duality can be obtained as a straightforward ap-
plication of Esakia duality. Indeed, a duality for
Brouwerian bilattices has already been introduced
in [14, Section 3.4], drawing on Odintsov’s duality
for N4-lattices.

In order to show that any N4-lattice can be
obtained as Tw(A,∇, ∇) for a suitable choice of
(A,∇, ∇), we define, for an arbitrary N4-lattice B,

∇(B) := {[a ∨ ∼ a] : a ∈ B}

where [b] denotes the equivalence class of b ∈ B
modulo the relation ≡ introduced in Definition 2.1.
Similarly, we let

∇(B) := {[a ∧ ∼ a] : a ∈ B}.

It is not difficult to check that ∇(B) is a lattice fil-
ter of the Brouwerian lattice B./ = 〈B,∧,∨,→〉/≡
which contains the dense elements of B./, and that∇(B) is an ideal of B./. Thus, we can construct
the N4-lattice Tw(B./,∇(B), ∇(B)), which is in-
deed isomorphic to our original B [10, Corollary
3.2].

Proposition 2.2. Every N4-lattice (bounded
N4-lattice) B is isomorphic to the algebra
Tw(B./,∇(B), ∇(B)) with B./ a Brouwerian
lattice (Heyting algebra), through the map
jB : B → B/≡ ×B/≡ defined, for all a ∈ B, as
jB(a) := 〈[a], [∼ a]〉.

Thus, any (bounded) N4-lattice can be associated
to a triple of the form (A,∇, ∇) with A a (bounded)
Brouwerian lattice and ∇, ∇, respectively, a filter
and an ideal of A. We are going to see that jB is
in fact the unit of a categorical equivalence between
two naturally associated categories.

The category N4 has as objects N4-lattices and
as morphisms algebraic N4-lattice homomorphisms.
On the other side of our equivalence, the category
Twist has as objects triples A = (A,∇, ∇) with A a
Brouwerian lattice, ∇ ⊆ A a lattice filter containing
the dense elements D(A), and ∇⊆ A an ideal. We
call objects in this category twist-structures, but no-
tice that we view them just as triples (A,∇, ∇), not
as the product algebra Tw(A,∇, ∇) defined above.
A morphism between twist-structures A1,A2 is a
Brouwerian lattice homomorphism h : A1 → A2
such that h[∇1] ⊆ ∇2 and h[ ∇1] ⊆ ∇

2. Twist-
structures with twist-structure morphisms form a
category, where the composition of morphisms is
set-theoretical.
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We proceed to define functors T : N4 → Twist
and N : Twist → N4 that will allow us to prove the
equivalence between the two categories.
Given an N4-lattice B, we let T (B) :=

(B./,∇(B), ∇(B)). If f : B1 → B2 is an N4-
morphism, we define T (f) : (B1)./ → (B2)./ as
T (f)([a]≡1) := [f(a)]≡2 , where [a]≡1 is the equiv-
alence class of a ∈ B1 modulo the relation intro-
duced in Definition 2.1 and likewise [b]≡2∈B2/≡2
for all b ∈ B2. Then, T (f) is a Twist-morphism
from (B1)./ to (B2)./ satisfying T (f) ◦α1 = α2 ◦ f ,
where αi : Bi → Bi/≡ is defined by αi(a) := [a]≡i

for all a ∈ Bi. It is straightforward to check that T
is indeed a functor.
Conversely, for A = (A,∇, ∇) ∈ Twist, we let

N(A) := Tw(A,∇, ∇). We know by Proposi-
tion 2.2 that Tw(A,∇, ∇) is an N4-lattice. For
a morphism h : A1 → A2 between twist-structures
A1,A2, we define the map N(h) : N(A1)→ N(A2),
for all a, b ∈ A1, as N(h)〈a, b〉 := 〈h(a), h(b)〉. It is
easy to see that this map is well defined, that is, if
〈a, b〉 ∈ N(A1), then 〈h(a), h(b)〉 ∈ N(A2), and that
it is an N4-lattice homomorphism. As before, it is
easy to see that we have a functor N : Twist→ N4.
For any N4-lattice B, by Proposition 2.2 we have

an algebraic isomorphism jB : B ∼= N(T (B)). This
implies that jB is an isomorphism in the category
N4.
Observe, that for each twist-structure A, we have

〈a, a → b〉 ∈ N(A) for any a ∈ A and any
b ∈ ∇. That is, π1[N(A)] = A. Denoting, for all
a, b, a′, b′ ∈ A, by [〈a, a′〉], [〈b, b′〉] the equivalence
classes of 〈a, a′〉, 〈b, b′〉 modulo the equivalence re-
lation of Definition 2.1, we have [〈a, a′〉] = [〈b, b′〉]
if and only if a = b [10, Proposition 2.1]. Thus,
the map ηA : A → T (N(A)) given by ηA(a) :=
{〈a, a′〉 ∈ N(A)} = [〈a, a′〉] for all a ∈ A is well-
defined.
In this way we obtain the following.

Proposition 2.3. For any twist-structure A, the
map ηA : A → T (N(A)) is an isomorphism in the
category Twist.
Proof. It follows from the above considerations that
ηA is a bijection whose inverse is precisely π1. Let
us check that ηA is a Brouwerian lattice homo-
morphism. Let a, b ∈ A. Then ηA(a) ∧ ηA(b) =
[〈a, a′〉]∧ [〈b, b′〉] = [〈a, a′〉∧〈b, b′〉] = [〈a∧b, a′∨b′〉].
But [〈a ∧ b, a′ ∨ b′〉] = [〈a ∧ b, c〉] for any c ∈ A
such that 〈a∧b, c〉 ∈ N(A), so in particular we have
[〈a ∧ b, a′ ∨ b′〉] = ηA(a ∧ b). A similar reasoning
establishes the cases of the other connectives. To
prove that ηA[∇] = ∇(N(A)), it is sufficient to ob-
serve that

∇(N(A)) = {[〈a, b〉 ∨ ∼〈a, b〉] : 〈a, b〉 ∈ N(A)}
= {[〈a ∨ b, a ∧ b〉] : a ∨ b ∈ ∇, a ∧ b ∈ ∇}
= {[〈c, d〉] : c ∈ ∇, d ∈ ∇

, d ≤ c}
= {[〈c, d〉] : c ∈ ∇}
= ηA[∇].

The proof that ηA[ ∇] = ∇(N(A)) is analogous.

Checking that the required diagrams commute is
at this point just routine.

Proposition 2.4. Let f : B1 → B2 be an N4-
morphism. Then N(T (f)) ◦ jB1 = jB2 ◦ f .

Proof. For any a ∈ B1,

N(T (f)) ◦ jB1(a) = N(T (f))(〈[a]≡1 , [∼ a]≡1〉)
= 〈T (f)([a]≡1), T (f)([∼ a]≡1)〉
= 〈[f(a)]≡2 , [f(∼ a)]≡2〉
= 〈[f(a)]≡2 , [∼ f(a)]≡2〉
= jB2 ◦ f(a).

Proposition 2.5. Let h : A1 → A2 be a Twist-
morphism. Then T (N(h)) ◦ ηA1 = ηA2 ◦ h.

Proof. For any a ∈ A1,

T (N(h)) ◦ ηA1(a) = T (N(h))([〈a, a′〉]≡1)
= [N(h)(〈a, a′〉)]≡2

= [〈h(a), h(a′)〉]≡2

= [〈h(a), (h(a))′]≡2

= ηA2 ◦ h(a).

Recall that the equality [〈h(a), h(a′)〉]≡2 =
[〈h(a), (h(a))′]≡2 holds because [〈h(a), h(a′)〉]≡2 =
[〈h(a), b〉]≡2 for any b ∈ A2 as long as 〈h(a), b〉 ∈
N(A2).

The above propositions imply the announced
equivalence result.

Theorem 2.6. Functors T : N4 → Twist and
N : Twist → N4 establish a natural equivalence be-
tween the category N4 of N4-lattices and the cate-
gory Twist of twist-structures over Brouwerian lat-
tices.

It is straightforward to show that the above re-
sult restricts to an equivalence between the cate-
gory N4⊥ of bounded N4-lattices (with algebraic
homomorphisms which preserve the bounds as mor-
phisms) and the category Twist⊥ of twist-structures
over bounded Brouwerian lattices (i.e., Heyting al-
gebras), whose morphisms are defined as Twist-
morphisms that also preserve the bounds. The pic-
ture is thus the following:

N4 (N4⊥)

T ,,
Twist (Twist⊥)

N

kk

3. Esakia duality

We briefly recall the main definition and results of
Esakia duality [7], on which we are going to build
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ours in the next section. We assume familiarity with
Priestley duality for distributive lattices [15].
A Priestley space is a compact ordered space X =
〈X, τ,≤〉 such that, for every x, y ∈ X with x 6≤ y,
there is a clopen up-set U such that x ∈ U and
y 6∈ U . A Priestley space is an Esakia space if, in
addition, the down-set ↓U of every clopen U ⊆ X
is clopen. The distributive lattice of clopen up-sets
of an Esakia space forms a Heyting algebra when
endowed with the following implication operation:
for clopen up-sets U, V ⊆ X, we let U → V := {x ∈
X : ↑x ∩ U ⊆ V }. We denote this Heyting algebra
by A(X ).
Conversely, to each Heyting algebra A cor-

responds an Esakia space 〈X(A), τA,⊆〉 where
〈X(A),⊆〉 is the poset of prime filters of A ordered
by inclusion and τA is the topology generated by the
subbasis {σA(a) : a ∈ A}∪{X(A)−σA(a) : a ∈ A}
where σA(a) := {P ∈ X(A) : a ∈ P}.

Using the same definitions involved in Priestley
duality, the maps X(.) and A(.) can be extended to
contravariant functors that establish a dual equiva-
lence between (1) the category of Heyting algebras
with algebraic homomorphisms as morphisms and
(2) the category of Esakia spaces, whose morphisms
are Esakia functions, defined as follows. An Esakia
function is a map f : X → Y between Esakia spaces
X ,Y which is continuous, order-preserving and such
that ↑Y f(x) ⊆ f [↑Xx] for every x ∈ X.
If h : A1 → A2 is a homomorphism of Heyting

algebras, then the map X(h) : X(A2) → X(A1)
between the corresponding Esakia spaces defined
by X(h)(P ) = h−1[P ] for every P ∈ X(A2) is an
Esakia function. Conversely, if f : X → Y is an
Esakia function, the map A(f) : A(Y)→ A(X ) de-
fined by A(f)(U) = f−1[U ] for every clopen up-set
U ⊆ Y is a Heyting algebra homomorphism.
The natural transformations are given by the fol-

lowing families of morphisms. For a Heyting alge-
bra A, the map σA : A → A(X(A)) defined above
is an isomorphism. For any Esakia space X , the
map εX : X → X(A(X )) defined by εX(x) = {U ∈
A(X ) : x ∈ U} for every x ∈ X is a homeomorphism
and an order isomorphism.

4. Duality for twist-structures

We are now going to introduce a category of topo-
logical structures which we will prove to be equiva-
lent to the category Twist⊥ of twist-structures over
Heyting algebras. At the end of the section we will
sketch how to extend this duality to twist-structures
over Brouwerian lattices.
The following property is going to be useful for

the description of our topological structures.

Lemma 4.1. Let P ⊆ A be a prime filter of
a Brouwerian lattice (or Heyting algebra) A and
D(A) the filter of dense elements. Then D(A) ⊆ P
if and only if P is maximal in the poset 〈X(A),⊆〉.

Proof. We prove that, if P ( Q for some prime
filter Q, then Q = A, so Q is not prime. Assume
that P ⊆ Q and there is a ∈ Q such that a /∈ P . We
claim that b ∈ Q for an arbitrary element b ∈ A. By
assumption we have a∨(a→ b) ∈ D(A) ⊆ P . Since
P is prime and a /∈ P , we conclude that a → b ∈
P ⊆ Q. Now a, a→ b ∈ Q imply that a∧(a→ b) =
a ∧ b ∈ Q. This means that b ∈ Q as we claimed.
Conversely, suppose that P is a maximal element of
the poset of prime filters of A. Let a, b ∈ A and
assume that a ∨ (a → b) 6∈ P . Consider the filter
F generated by P ∪ {a}. Then a→ b 6∈ F . On the
contrary there is c ∈ P such that c ∧ a ≤ a → b.
Then c ≤ a → (a → b) = a → b. It would thus
follow that a → b ∈ P , against our assumption.
So there is a prime filter Q such that P  F ⊆ Q
and a → b 6∈ Q. Therefore P is not maximal: a
contradiction. Hence D(A) ⊆ P .

From now on, unless otherwise specified, we
consider only twist-structures over Heyting alge-
bras. Let then A = (A,∇, ∇) ∈ Twist⊥ and let
〈X(A), τA,⊆〉 be the Esakia space of A. We know
from Priestley duality that there is a one-to-one cor-
respondence between all lattice filters of A and the
closed up-sets of X(A), and similarly ideals of A
correspond to open up-sets of X(A). Then, us-
ing the isomorphism σA : A ∼= A(X(A)), the sets
∇, ∇⊆ A can be represented as follows. We define

CA :=
⋂

a∈∇
σA(a) OA :=

⋃
a∈∆

σA(a)

which are, respectively, a closed up-set and an open
up-set. It is also easy to check that

CA = {P ∈ X(A) : ∇ ⊆ P}
OA = {P ∈ X(A) : P ∩ ∇6= ∅}.

We can thus use whichever of the above definitions
is more convenient. We notice that CA is included
in the set max(X(A)) of maximal elements of our
Esakia space (which also implies, trivially, that CA
is an up-set). This follows from Lemma 4.1, because
P ∈ CA implies that D(A) ⊆ ∇ ⊆ P . We use this
insight to introduce formally the topological struc-
tures we will deal with.

Definition 4.2. An NE-space (for Nelson-Esakia)
is a structure X = 〈X,≤, τ, C,O〉 such that

(i) 〈X,≤, τ〉 is an Esakia space,

(ii) C is a closed set such that C ⊆ max(X),

(iii) O is an open up-set.

In order to view NE-spaces as a category, we
adopt the following notion of morphism.

Definition 4.3. Let X1 = 〈X1,≤1, τ1, C1, O1〉 and
X2 = 〈X2,≤2, τ2, C2, O2〉 be NE-spaces. An NE-
morphism is a map f : X1 → X2 such that
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(i) f is an Esakia function, i.e., f is monotone,
continuous and ↑f(x) ⊆ f [↑x] for every x ∈
X1,

(ii) f [C1] ⊆ C2,

(iii) f−1[O2] ⊆ O1.

Given NE-spaces X1,X2,X3 and NE-morphisms
f : X1 → X2, g : X2 → X3, it is easy to see that
g ◦ f : X1 → X3 is also a morphism. Moreover, the
identity map on an NE-space is a morphism. Thus,
we have a category NE-Sp of NE-spaces.

Definition 4.2 immediately implies that, for
any twist-structure A = (A,∇, ∇), X(A) :=
〈X(A), τA,⊆, CA, OA〉 is an NE-space. Given a
morphism of twist-structures h : A1 → A2, we de-
fine the map X(h) : X(A2) → X(A1) as in Esakia
duality, so X(h) is obviously an Esakia function.
Let us check that the other requirements of Defini-
tion 4.3 are also met.

Lemma 4.4. Let h : A1 → A2 be a morphism
between twist-structures A1 = 〈A1,∇1,

∇

1〉 and
A2 = 〈A2,∇2,

∇

2〉. Then X(h) : X(A2) → X(A1)
is an NE-morphism between the corresponding NE-
spaces.

Proof. In order to see that X(h)[CA2 ] ⊆ CA1 , as-
sume Q ∈ X(h)[CA2 ], i.e., Q ∈ h−1[CA2 ]. This
means that there is Q′ ∈ X(A2) such that ∇2 ⊆ Q′
and Q = h−1[Q′]. Since h is a morphism of twist-
structures, we have h[∇1] ⊆ ∇2. This implies that
∇1 ⊆ h−1[∇2] ⊆ h−1[Q′] = Q. We conclude that
∇1 ⊆ Q, which means that Q ∈ CA1 as desired. As-
sume now that P ∈ X(h)−1[OA1 ]. This means that
X(h)(P ) = h−1[P ] ∈ OA1 . Then h−1[P ] ∩ ∇

1 6= ∅.
Let a ∈ A1 be such that a ∈ h−1[P ] ∩ ∇

1. We
then have h(a) ∈ P ∩ h( ∇1). From the assump-
tions we have P ∩ h( ∇1) ⊆ P ∩ ∇

2, so we obtain
h(a) ∈ P ∩ ∇

2 6= ∅, which implies P ∈ OA2 as
required. Thus, X(h) is indeed a morphism of NE-
spaces.

It follows from Esakia duality that the map X
preserves composition and identity maps. So we
actually have a functor X : Twist⊥ → NE-Sp. It
remains to define a functor A : NE-Sp → Twist⊥ in
the opposite direction.
To each NE-space X = 〈X,≤, τ, C,O〉 we asso-

ciate a twist-structure in the following way. Recall
that A(X ) is the Heyting algebra of clopen up-sets
of X . To the closed set C we associate the follow-
ing filter of A(X ): ∇C := {U ∈ A(X ) : C ⊆ U}.
Similarly, to the open up-set O we associate the fol-
lowing ideal of A(X ): ∇

O := {U ∈ A(X ) : U ⊆ O}.
In order to ensure that ∇C does indeed contain

the dense elements of A(X ), it is enough to realize
that condition (ii) of Definition 4.2 is equivalent to
the following property: for every clopen up-set U ∈
A(X ), C ⊆ U ∪ (↓U)c. In fact, we have

max(X) =
⋂
{U ∪ (↓U)c : U ∈ A(X )}.

The above considerations imply that
〈A(X ),∇C ,

∇

O〉 is a twist-structure. Thus,
for every object X ∈ NE-Sp, we have an object
A(X ) = 〈A(X ),∇C ,

∇

O〉 ∈ Twist⊥. Let us now
look at morphisms.

Given NE-spaces X1 = 〈X1,≤1, τ1, C1, O1〉 and
X2 = 〈X2,≤2, τ2, C2, O2〉, let f : X1 → X2 be an
NE-morphism. We know from Esakia duality that
the map A(f) : A(X2) → A(X1) is a Heyting alge-
bra homomorphism. Let us check that it is in fact
a Twist⊥-morphism (as defined in Section 2) from
〈A(X2),∇C2 ,

∇

O2〉 to 〈A(X1),∇C1 ,

∇

O1〉.

Lemma 4.5. Let f : X1 → X2 be an NE-morphism.
Then A(f) : A(X2)→ A(X1) is a Twist⊥-morphism.

Proof. We need to show that A(f)[∇C2 ] ⊆ ∇C1 and
A(f)[∆O2 ] ⊆ ∆O1 . Let U ∈ A(f)[∇C2 ] and V ∈
∇C2 be such that U = A(f)(V ) = f−1[V ]. Since
V ∈ ∇C2 we have C2 ⊆ V . So f−1[C2] ⊆ f−1[V ].
Then, since f [C1] ⊆ C2, we have C1 ⊆ f−1[C2].
Therefore, C1 ⊆ f−1[V ]. Hence, f−1[V ] ∈ ∇C1 .
Now let U ∈ A(f)[∆O2 ] and assume that V ∈ ∆O2

is such that A(f)(V ) = U , so that f−1[V ] = U .
Since V ∈ ∆O2 , we have V ⊆ O2. Therefore, U =
f−1[V ] ⊆ f−1[O2] ⊆ O1. Hence, U ∈ ∆O1 .

We thus have a functor A : NE-Sp → Twist⊥
as required. We are now going to see that, for
any twist-structure A and any NE-space X , there
are natural isomorphisms σA : A ∼= A(X(A)) and
εX : X ∼= X(A(X )).

Given a twist-structure A = (A,∇, ∇), consider
the twist-structure associated with the dual space of
A, namely 〈A(X(A)),∇CA ,

∇

OA〉. We know from
Esakia duality that the map σA : A→ A(X(A)) is a
Heyting algebra isomorphism. Thus, we only need
to check that σA is indeed a Twist⊥-morphism. This
follows from next lemma (we omit the subscript of
σA when no ambiguity can arise).

Lemma 4.6. For any twist-structure A =
〈A,∇, ∇〉, the map σA : A→ A(X(A)) satisfies:

(i) σA[∇] = ∇CA

(ii) σA[ ∇] = ∇

OA .

Proof. (i) Let a ∈ ∇. Then CA ⊆ σ(a), so σ(a) ∈
∇CA . Let now σ(a) ∈ ∇CA . Then CA ⊆ σ(a).
Suppose that a 6∈ ∇. Let P be a prime filter such
that∇ ⊆ P and a 6∈ P . Then P ∈

⋂
b∈∇ σ(b) = CA.

So P ∈ σ(a), a contradiction. Therefore a ∈ ∇,
hence σ(a) ∈ σ[∇]. (ii) Let a ∈ ∇. Then σ(a) ⊆
OA. Therefore, σ(a) ∈ ∇

OA . Suppose now that
σ(a) ∈ ∇

OA . Then, σ(a) ⊆ OA. Suppose that
a 6∈ ∇. Let P be a prime filter such that a ∈ P and
P ∩ ∇= ∅. Since OA =

⋃
b∈

∇σ(b), we obtain that
P 6∈ OA, a contradiction. We conclude that a ∈ ∇

and σ(a) ∈ σ[ ∇].

Conversely, given an NE-space X , consider
the NE-space corresponding to the twist-structure
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A(X ), i.e., 〈X(A(X )),⊆, τA, CA(X ), OA(X )〉. Re-
call that the map εX : X → X(A(X )) is an
Esakia-homeomorphism between X = 〈X,≤, τ〉 and
〈X(A(X )),⊆, τA(X )〉. We check that εX is an NE-
morphism as well.

Lemma 4.7. Let X = 〈X,≤, τ, C,O〉 be an NE-
space. The map εX : X → X(A(X )) satisfies:

(i) εX [C] = CA(X )

(ii) εX [O] = OA(X ).

Proof. (i) Let x ∈ C. We have to see that εX (x) ∈⋂
U∈∇C

σ(U), i.e., that for every U ∈ A(X ) such
that C ⊆ U , it holds that U ∈ εX (x). As-
sume then C ⊆ U ∈ A(X ). Then x ∈ U , so
U ∈ εX (x). Conversely, assume x ∈ U for every
clopen up-set U ⊇ C. Since C is a closed up-set,
C =

⋂
{U ∈ A(X ) : C ⊆ U}. Therefore, x ∈ C

and εX (x) ∈ εX [C]. (ii) For x ∈ O, we have to see
that εX (x) ∈

⋃
U∈∆O

σ(U), i.e., that U ∈ εX (x) for
some U ∈ A(X ) such that U ⊆ O. Suppose the
contrary. Then, for every U ∈ A(X ) with U ⊆ O,
it holds that x /∈ U . It follows that x 6∈ O, a con-
tradiction. Hence, εX (x) ∈

⋃
U∈∆O

σ(U). Assume
now εX (x) ∈

⋃
U∈∆O

σ(U). Then there is a clopen
up-set U ⊆ O such that x ∈ U . Since O is an open
up-set, O =

⋃
{U ∈ A(X ) : U ⊆ O}. Therefore,

x ∈ O and εX (x) ∈ εX [O].

The fact that σA and εX are natural follows im-
mediately from Esakia duality. Thus, if h : A1 →
A2 is a morphism of twist-structures, then σA2 ◦h =
A(X(h)) ◦ σA1 . Likewise, if f : X1 → X2 is a mor-
phism of NE-spaces, then εX2 ◦ f = X(A(f)) ◦ εX1 .
Joining these results, we obtain the announced dual
equivalences.

Theorem 4.8. The functors X : Twist⊥ → NE-Sp
and A : NE-Sp → Twist⊥ establish a dual equiva-
lence between the category Twist⊥ of twist-structures
over Heyting algebras and the category NE-Sp of
NE-spaces.

Corollary 4.9. The category N4⊥ of bounded N4-
lattices and the category NE-Sp of NE-spaces are
dually equivalent via functors X ◦T : N4⊥ → NE-Sp
and N ◦A : NE-Sp→ N4⊥.

The figure below displays the equivalences estab-
lished so far.

N4⊥
T

**
Twist⊥

N

ii

X
**
NE-Spop

A

ii

5. Extending the duality

As mentioned in the introduction, the duality pre-
sented above can be easily extended to twist-
structures over Brouwerian lattices. All that is

needed for this is to adapt Esakia duality to Brouw-
erian lattices. We sketch the main idea below.

Any Brouwerian lattice A = 〈A,∧,∨,→, 1〉 can
be extended to a Heyting algebra in the following
way. Regardless of whether A has a minimum, we
add a new one 0∗, setting 0∗ ≤ a for all a ∈ A∪{0∗}.
This determines the behaviour of Heyting impli-
cation, because it must hold that 0∗ → a = 1
for all a ∈ A ∪ {0∗}, and residuation implies that
a → 0∗ = max{b ∈ A ∪ {0∗} : a ∧ b ≤ 0∗}, which
means that for a 6= 0∗ the only possible choice is
b = 0∗. Hence, we define

a→ 0∗ :=
{

0∗ if a ∈ A
1 otherwise (i.e., if a = 0∗).

In this way we obtain a Heyting algebra A∗ with
universe A ∪ {0∗}, of which A is a {∧,∨,→, 1}-
subalgebra. Notice that a map h : A∗1 → A∗2 is a
Heyting algebra homomorphism if and only if the
restriction h�A1 : A1 → A2 is a Brouwerian lattice
homomorphism. This implies that the category of
Brouwerian lattices is equivalent to a full subcate-
gory of the category of Heyting algebras.

If we now look at X(A∗), the Esakia space cor-
responding to A∗, we may notice that X(A∗) has
a greatest element, namely A, so that A ∈ σA∗(a)
for every a ∈ A. The map σA∗ restricted to A
establishes an isomorphism between A and the al-
gebra of non-empty clopen up-sets of X(A∗), which
is a Brouwerian lattice. This makes it possible to
recover our original A as the lattice of non-empty
clopen up-sets of the Esakia dual of A∗.
Thus, we can develop a duality between Brouwe-

rian lattices and a category whose objects are Esakia
spaces X = 〈X, τ,≤〉 where the poset 〈X,≤〉 has
a maximum element 1X and whose morphisms are
Esakia functions f : X → Y such that f(1X) = 1Y .

Once we have this, a duality for twist-structures
(A,∇, ∇) with A a Brouwerian lattice can be ob-
tained by applying the same technique used in the
previous sections to take care of the topological
counterparts of ∇ and ∇. The dual category ob-
tained in this way has as objects structures X =
〈X,≤, 1X , τ, C,O〉 where 〈X,≤, 1X , τ〉 is an Esakia
space with maximum, O is a non-empty open up-
set and C is a non-empty closed up-set whose ele-
ments are maximal in X − {1X}. The morphisms
are simply NE-morphisms f : X → Y such that
f(1X) = 1Y .

We mention, as a topic for further investigation,
another direction in which our duality might be
extended. Recent works on modal expansions of
Belnap-Dunn logic [16, 17, 18] consider N4-lattices
expanded with modal operators. These enriched
algebras are also representable as twist-structures
(A,∇, ∇), where A is a Brouwerian lattice (or a
Heyting or a Boolean algebra) which is itself en-
dowed with modal operators. A topological duality
for these “modal twist-structures” (and, therefore,
for N4-lattices with modal operators) might be de-
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veloped following the same ideas expounded in the
previous sections, drawing on the existing duality
theory for distributive lattices with modal opera-
tors (see, e.g., [19]). Besides its intrinsic interest,
such an investigation is likely to shed further light
on the semantics of modal expansions of Belnap-
Dunn logic; it might, for instance, enable us to in-
troduce a state-based semantics for the non-normal
paraconsistent modal logic of [18].
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