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Abstract

This paper addresses a fuzzy set based evolving
modeling (FBeM) approach and the task of fore-
casting exchange rates in order to perform trading
strategies. FBeM is a granular computing tech-
nique that uses fuzzy information granules to model
nonstationary functions providing functional and
linguistic approximations. As an application, this
work considers the BRL/USD exchange rate mar-
ket data for the period from January 2000 to Oc-
tober 2012. Comparisons in terms of goodness of
fit and based on trading performance indicators in-
cludes the granular model against a Multi-Layer
Perceptron (MLP), an autoregressive moving aver-
age (ARMA), a naive strategy and some state of the
art evolving fuzzy systems. Computational results
suggest that the FBeM model statistically outper-
forms the alternative approaches.

Keywords: Granular Computing, Evolving Sys-
tems, Exchange Rates, Trading, Forecasting.

1. Introduction

Forecasting exchange rate trend is a challenging
task due to its high nonlinear, time-varying and
noisy environment. Several factors such as economic
activity, trader’s expectations, political events, and
inflation influence the dynamic of currency markets.
Therefore, new tools and techniques are needed in
dealing with exchange rate prediction, since the tra-
ditional econometric approach based on autoregres-
sive moving average (ARMA) models has been crit-
icized by their limitations to reply the dynamics in-
herent to exchange rate time series [1, 2]. Moreover,
the development of a timely and accurate trading
decision-making tool is the key for traders to make
profits [3].

Due to their success in financial forecasting, arti-
ficial neural networks (ANNs) have been adopted as
an alternative method in the prediction of exchange
rates [4, 5, 6]. Recently, the literature focused the
application of different kinds of structures of ANNs
such as Multi-layer Perceptron (MLP), Recurrent,

© 2013. The authors - Published by Atlantis Press

236

Radial Basis and Psi Sigma Networks to the prob-
lem of foreign exchange rate forecasting and trading
[7, 8, 9, 10]. In the trade strategy based on fore-
casts, the ANN models achieve higher returns (prof-
its) when compared to traditional ARMA models.

However, the main drawback with ANNs is their
black-box nature, revealing difficulty in interpret-
ing the results by not providing an insight into
the dynamic of the interactions between the techni-
cal indicators and the currency market fluctuations
[11]. Another challenge in ANN approaches is the
learning process for models with memory like re-
current networks, essential for time-dependent en-
vironments, which requires intensive training and
suffers low convergence, revealing a key problem in
dynamic markets [12].

To overcome these limitations, the use of fuzzy-
based models provides both predictive accuracy and
interpretation to deal with complex real-world prob-
lems. Unlike traditional sets, fuzzy sets allow for
the concept of partial membership. This enables
discrimination between elements that are relevant
to the phenomenon of interest and those of border-
line importance that involve imprecision and uncer-
tainty. Moreover, information granules can be pro-
cessed using fuzzy logic whereby each linguistic term
describes a fuzzy set, providing an interpretable sys-
tem [13]. Recent studies have been revealing the
high potential of fuzzy models to deal with finan-
cial time series, including exchange rate forecasting
[14, 3, 15, 16]. In general, they considered evolv-
ing fuzzy systems, constructed by fuzzy rules in a
form of “If-Then” statements, comprising an adap-
tive structure based on streaming data [17, 18].

In this paper, we investigate the financial fore-
casting performance of fuzzy granular evolving
modeling by benchmarking their trading results
over the Brazilian BRL/USD daily exchange rate
with a MLP, an ARMA model, a naive trading
strategy and some state of the art evolving fuzzy
modeling approaches. Evolving granular systems
lay emphasis on granulated views of detailed data
and computing with granules coarser than the data
in order to simplify complex real-world problems
and provide low cost solutions [19].



Evolving granular modeling comes as an approach
to capture the essence of streaming data and as
a framework to extrapolate spatio-temporal cor-
relations from lower-level raw data, providing a
more abstract human-like representation of them
[20, 21, 22]. Here, we analyze a fuzzy set based
evolving modeling (FBeM) approach, proposed by
Leite et al. [19], which uses fuzzy-type information
granules to construct granular maps. FBeM mod-
els combine functional and linguistic fuzzy systems
to provide singular and granular approximation of
nonstationary functions. The linguistic component
provides model interpretation and encloses possi-
ble model outputs. The functional component is
derived from input data and real-valued local func-
tions, producing more accurate approximators.

These advantages overcome the limitations de-
rived from ANNs models and also comprise an
autonomous mechanism without requiring expert
knowledge or even specific assumptions about the
data, which is essential for dynamic environments
such as exchange rates. Hence, due to these moti-
vations, the contribution of this paper concerns the
application of the FBeM approach to the task of ex-
change rate forecasting in order to perform trading
strategies.

After this introduction, the paper is organized as
follows. In Section 2, the FBeM approach is pre-
sented. Section 3 describes the data used for this
research, the competing forecasting models and the
metrics for comparisons in terms of goodness of fit
and trading performance. The empirical results are
given in Section 4 while Section 5 provides some
concluding remarks and suggests issues for further
investigation.

2. Fuzzy set based evolving modeling

The fuzzy set based evolving modeling (FBeM) pro-
duces higher level information granules in an evolv-
ing modeling structure based on streaming data and
recursive learning algorithm. A FBeM model is
comprised by a set of If-Then fuzzy rules extracted
from the data, managing information granules and
gradually evolved over time. Each granule corre-
spond to a rule. Rules R’ governing information
granules ¢ are of the type:

IF (21 is A}) AND ... AND (z; is A’) AND ...
AND (z,, is A%)) THEN (y is B") AND y = p'(z;Vj)

where z; and y are variables of the data stream
(z, )M, 5 =1,2,....n, t =1,..; A’ and B’ are
membership functions; p’ are approximation poly-
nomials. One must note that the consequent part
(y is B*) comprises the output linguistic part, pro-
viding interpretability of the results, and the term
y = p'(z;Vj) is the functional output, offering pre-
cision!. The collection of rules R?, i = 1,2,...,c,

IThis paper considers the FBeM model on its single out-

237

forms the rule base. FBeM takes advantage of both,
linguistic and functional systems, within a single
modeling framework [21].

In this paper, scattering-type mechanism was
used for granulation of data into fuzzy objects?.
Specifically, FBeM uses Gaussian fuzzy subsets
A% = G(ut, 0h), where pf is the modal value and o7
the spread. The Gaussian representation are useful
since their necessary parameters are set straightfor-
ward from a data stream, the infinite support does
not ignore the data and comprises a smoothness and
continuously differentiable surface.

Rule’s consequent combines functional and lin-
guistic fuzzy information. The functional part of
the consequent, p’, concerns singular local functions
whereas the linguistic part describes information
granules B’ along the domain of output variable.
This paper assumes affine local functions for func-
tional part of the consequent:

Pl =ab+ Za;xi (1)
j=1

where af and a§» are the corresponding coefficients.

Since Gaussian representation allows all granules
to overlap, each rule in FBeM contributes to the sys-
tem output. The model singular output is obtained

as the weighted mean value:

_ Zle min(A%, ..., AY)p
P= 5 min(Af,. . Al)

(2)

Consequents of rules, B?, also assume Gaussian
fuzzy subsets B = G(u!,0l) to assemble granular
objects in the output space. The granular output
provides useful information than the specific numer-
ical output p, enriching decision making. Moreover,
information granules tend to reflect the essence of
the structure of the underling data stream and em-
phasize the interpretability of the result [19].

There are two main sub-tasks related to FBeM
identification: learning rules antecedents and con-
sequents. These sub-tasks are described as follows.

2.1. Learning antecedents

FBeM learns online from a stream of instances
(z,y)1, where yll is known given z¥ or will be
known at some latter step. The recursive algorithm
associated decide when and how to proceed struc-
tural and parametric adaptation of models. The
learning procedure to evolve fuzzy granular systems
FBeM decides on how to accommodate new infor-
mation given an instance (z,%)). When a new in-
stance does not fit current knowledge, the model
creates a new information granule and a rule gov-
erning the granule. Otherwise, if a new instance

put form, the multivariate structure extension is straightfor-
ward. See [19].

2Granulation of data into fuzzy objects can be based on
grid, tree or scatter partitioning.



fits current knowledge, the procedure adapts exist-
ing granules and rules. Furthermore, the quotient
structure of fuzzy rules may be optimized, coarsed
or refined, according to inter-granules relationships.

FBeM model can start from scratch. Rules are
constructed and evolve when data are input. When
a new granule v is created, a rule R°t! is added to
the current rule base R = {R', ..., R',..., R°}. Ifa
instance !} does not activate the current collection
of rules, a new granule is created. It is assumed that
z[" brings new information about the system.

As a new instance z[! arrives, a new granule is
created if the following condition holds:

LA <pVYi, (3)

where p € [0,1] is a threshold value determining
the granularity of FBeM models. If p is set to zero,
the system is structurally stable and unable to cap-
ture eventual concept shift. On the other hand, if p
equals 1, FBeM creates a rule for each new instance,
which is not practical [21].

Since a new granule v°*! is created, membership
functions A;H and B°t! are initiated as follows:

min(A°, ..

c t
Mj+1 _ JUE-]
’u?c;rl y[t]
C (& 1

The coefficients of local-valued polynomials p°t!
are set to:

agtt =y, 0T =0, j#0

(5)

As stated by [19], this initial parametrization
gives preference to design of granules balanced along
all dimensions rather than granules with unbalanced
geometry, following the principle of balanced infor-
mation granularity [23].

If a new instance z* does not satisfy the con-
dition in (3), the rule base need adaptation, i.e.: i)
expand or contract A; and B! to accommodate new
data; ii) move granules v* toward denser regions of
data over the input and output domains; iii) adjust
coefficients of local approximation function p°.

A rule R is adapted if a data instance !l holds:

(6)
The most active rule for z[*! is then chosen for

adaptation by updating the model value and the

spread of membership functions A} recursively:

min(A%, ..., AL) > p

(w® — 1)p§(01d) +z;

i (ew) = = ()
G‘;- (new) = (wlw—i 1 O’;(Old)
1 i
+ (oﬂ — 1) (xj — Hy (HGW))2 (8)
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where w? is the number of times that the granule ~°
has been activated by the data stream.

Adaptation of fuzzy sets of rule consequents B’
uses output data y[l. Moreover, polynomial coeffi-
cients a} and a§» are updated according to recursive
weighted least squares (wRLS).

As mentioned before, the granularity threshold p
impacts model accuracy and transparency. To alle-
viate guesses on how fast and how often the struc-
ture of the data changes, the parameter p takes val-
ues in the interval according to prediction errors
comprising a recursive adaptation framework. Let
FE be the squared error between predictions p(x[t])
and actual value y!¥), then

E = (y" - p(a))?

Hence, p learning values for itself from

9)

p(new) = p(old) + n(Ep — E)

where 7 is a learning rate and Ep the desired pre-
diction error. We also assume pl® = 0.5 as default
initial value.

As the expansion of granules occurs, relationships
among pairs of granules may be strong enough to
justify a granule structure. In order to avoid redun-
dant granules and to construct a more concise struc-
ture, the quotient structure was coarsened based on
a distance measure between granules. Considering
Gaussian membership functions as internal repre-
sentatives of granules, the distance between two dif-
ferent granules, 7' and %, is computed as follows:

(10)

i i 1 ¢ i i i
D(v",v"?) = %Z||Nj1*ﬂj2||2+0jl
j=1

+ 022 —2\/0;-10;2 (11)

Choosing the pair of granules with the lowest en-
try of D(-), if this entry is less or equal than a
threshold A, a new granule 7*, coarsening of %! and
~%, is represented by Gaussian membership func-
tion with modal value

o't o2
J

) 0;2 u;l + o M?
1 P y
W= m e J=hesn (12)
03.2 + o'Ji.l
J J
and spread
0’;20';14-0';2, j=1...,n (13)

Therefore, the coefficients of the new local poly-
nomial are:

i _ i1 2 s
@ = 5@ +a), =

The mechanism of coarsening granules reduces
the number of rules and redundancy. Moreover,

0,1,....,n  (14)



the FBeM deletes granules when they become inac-
tive during a number of processing steps, h,.. This
mechanism ensures to keep the rule base updated.
Once the structure of the FBeM is defined and es-
tablished, the problem of parameter identification
becomes important, as described below.

2.2. Learning consequents

Estimation of the parameters of the consequent lin-
ear models can be formulated as a least squared
problem [24]. The output can be represented by:

y=A"® (15)
where A = [Ale,AzxZ,...,Aan]T denotes the
fuzzily weighted extended inputs vector, z. =
[1 (ET]T is the expanded input data vector, A\; =
Z::nr(rfri(A{AnQ%) is the normalized firing level of
the rule ¢, ® = [\IllT, vl UT]" represents the
vector of parameters of the rule base, and ¥; =
[ad,al,... a%] is the vector of consequent parame-
ters.

Since the actual target output is provided at each
step, the parameters of the consequents can be up-
dated using weighted recursive least squares algo-
rithm wRLS [24] considering locally or globally op-
timization. This paper uses the locally optimal er-
ror criterion that minimizes the following error cri-
terion:

}T

B =3 N (3 - @) e
h=1

where T is the sample size.

There are not only fuzzily coupled linear subsys-
tems and streaming data, but also structure evolu-
tion, therefore the optimal update of the parameters
of the local subsystem i is given by [24]:

Aixi(old)z! (21 Txi(old)

1+ Xi(z!H TS (0ld)2 !
(17)

Y (new) = %% (old) —

Tinew) = W (old)+ X (new)zl\’

(¥ = @) (o1a) ) (18)

where ¥i = QI, I'isa (n+1) x (n+ 1) identity ma-
trix, € denotes a large number, usually = 1000,
and Y a dispersion matrix.

2.3. FBeM algorithm

The detailed steps of the FBeM model are as fol-
lows. All the steps of the algorithm are non-
iterative. The model can develop/evolve an exist-
ing model when the data pattern changes, and by
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being recursive it means that it is computationally
efficient.

BEGIN

Set parameters Ep, A, h,., n, ¢ = 0;
Read (z,h), t = 1;

Create granule v°1;
Fort=2,...do

Read (, h)l;

If min(A4%,...,4%) <p, Vi
Create granule y°*1;

Else

Adapt the most active granule 7;
If 3 D(y,4%2) <A
Form ~* by coarsening ~** and ~2;
Remove inactive granules;
Update granularity;
Adapt parameters @} using wRLS;
END

3. Methodology

3.1. Data

In this paper, we considered the daily closing
BRL/USD (Brazilian Real/Dollar) exchange rate
from 3 January 2000 trough 26 October 2012. The
data period is partitioned into two sub-periods
namely training and validation data sets. The
training data set covers the period from 3 January
2000 to 31 December 2009. The remaining data
comprises the validation set (out-of-sample). This
mechanism is only necessary for ARMA and MLP
models, since evolving fuzzy systems can start from
scratch avoiding training steps.

The BRL/USD data was transformed into sta-
tionary daily series of returns using:

_ Py 1
Yt = P,

where y; is the rate of return and P; is the price
level at time t.

(19)

3.2. Forecasting models

We compared the performance of the FBeM model
with MLP, ARMA models, a naive strategy and
some state of the art evolving fuzzy models for fore-
casting and trading the BRL/USD exchange rate.
The naive strategy simply takes the most recent
period change as the best prediction of the future

change, i.e., a simple random walk model. The
model is defined by:
Y41 =Yt € (20)

where 3, is the actual rate of return at period t and

€ ~ N(0,0?) the error term with variance o?2.
Autoregressive moving average models (ARMA)

assume that a time series depends on its previous



values and on previous residual values, taking the
form:

Y+ = o+ oyi—1 + Y2+ ... FopYi—p +Er

—P1€t—1 — Pagt—2 — ... — ByEt—q (21)
where a; and §;, for ¢ = 1,2,...,p and j =
1,2,...,q, are regression coefficients and the resid-

ual weights respectively, €; the residual at period ¢
such that € ~ N(0,02), and 02 the model variance.

The MLP model presents nonlinear neurons for
hidden layers with tangent hyperbolic transfer func-
tions and a linear output. It is a feed forward net-
work trained with back-propagation algorithm us-
ing descent gradient. Finally the empirical analysis
include some state of the art evolving fuzzy models
such as TS [25], xTS [17], ePL [26] and eTS+ [24].

3.3. Performance measurement

Comparison of BRL/USD forecasts was done as-
suming one-step ahead forecast and using as er-
ror criterion the mean absolute error (MAE), mean
absolute percentage error (MAPE), and root mean
squared error (RMSE):

T
MAE = Z (22)
o ’yf — yf
MAPE = — g (23)
RMSE = % > (- (24)

t=1

where y; and ¢, are the actual and predicted returns
at time ¢, and 7T is the sample size.

Moreover, we applied the Diebold-Mariano [27]
statistic test which evaluates the null hypothesis of
equal predictive accuracy. The alternative hypoth-
esis states that one model can be considered as a
better predictor than some other model in terms of
goodness of fit. Moreover, it is a widely approach
used for forecasting model validation concerning ap-
plications related to economic and finance. If T is
the sample size and e}, €? (i = 1,2,...,T) are the
forecast errors of the two competing forecasts, then
the loss functions are estimated as:

LYE(ed) = ()%, Ly™P(ef) = (ef)®  (25)

LYAB(ef) = lei], L3"F(ef) = lef|  (26)

The Diebold-Mariano statistic is based on the loss
differentials:

d%\/ISE LMSE ( )

LyE(e?) (27)
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QA = [MAR(l) - JAR(Z)  (28)

The null hypotheses testes based on the d}5 and
dMAE are: 1) Hy: E(dMSP) = 0 against the alterna-
tive Hy: E(dMS®) # 0; i) Ho: E(dMAP) = 0 against
the alternative Hy: FE(dMAF) # 0. The Diebold-
Mariano test statistic s is estimated as:

d;

% N(0,1)
V(d;)

(29)

where V(d;) = T7! [/%0+2ng11 /%k} and kj =

T (di — di)(dimg, — di).

Besides the model’s fitness one also evaluates
their trading performance according to annualized
returns (R4), cumulative returns (RY), annualized
volatility (¢#) and maximum drawdown (MD), de-
scribed as follows:

T
1
A
RY =252 % i (30)
t=1
T
=D w (31)
t=1
1 T
A —
= V252 | —— _az (32
o = V252 Tf1;(yt y? o (32)
t
MD = min Zy (33)

where 7, is the mean value of returns.

4. Empirical results

We examine the BRL/USD exchange rate over the
period from January 2000 to October 2012. The
BRL/USD series was transformed into a station-
ary daily series of rate returns. Figure 1 shows the
dataset in level and in terms of rate returns.

1
200 Dec 2001 Dec 2003 Dec 2005

Time (days)
04 |

Dec 2007 Dec 2009 0ct2012

BRL/USD returns

1 1 1 1
Dec 2005 Dec 2007 Dec 2009 0ct2012

Time (days)

I
Dec 2003

2 I
Jan 2000 Dec 2001

Figure 1: BRL/USD daily closing prices (top panel)
and BRL/USD daily returns (bottom panel).

The summary statistics of the BRL/USD returns,
shown in Table 1, reveal positive skewness and high
kurtosis. The Jarque-Bera [28] statistic confirms



that the BRL/USD return
the 95% level.

series is non-normal at

Statistic Returns
Mean 0.00008
Median -0.00025
Maximum 0.09330
Minimum -0.08937
Std. Dev. 0.00984
Skewness 0.28204
Kurtosis 11.61198
Jarque-Bera | 18077.14
Probability 0.0010

Table 1: Descriptive statistics for BRL/USD daily
returns.

The inputs selection for FBeM, MLP and the
evolving models was conducted based on the return
series partial autocorrelation function (PACF) anal-
ysis. Simulations considering the significant lags in
the PACF and models’ performance indicated as in-
puts a set of autoregressive terms of the BRL/USD
returns: y; and y;—o. Therefore, predictions were
performed for one-step-ahead horizon, i.e., ys1.

To estimate the ARMA model, the autoregres-
sive and moving average parameters range in the
following intervals, respectively, 1 < p < 15 and
1 < ¢ <15. An ARMA(2,1) model was chosen as
the best for the in-sample estimation and can be
specified as follows:

yr = —.1838y;—1 + .0762y;,_o + .2473e¢,—1  (34)

After an extensive experimentation, the MLP
model with best performance presents the charac-
teristics shown in Table 2.

Parameters MLP
Learning algorithm Gradient descent
Learning rate 0.001
Momentum 0.002
Iteration steps 1500
Weights initialization N(0,0.01)
Input nodes 4
Hidden layers 1
Hidden nodes )
Output node 1
Transfer function Sigmoid

Table 2: MLP characteristics.

FBeM control parameters were chosen according
simulation experiments to produce better perfor-
mance in terms of fitness. The model adopted the
following values: n = 0.01, A = 0.08, h, = 70 and
Ep = 0.007. Finally, Table 3 indicates the evolving
fuzzy models control parameters setting®.

To evaluate models forecasts, the MAE, the
MAPE and the RMSE statistics were computed for

3The xTS model does not require control parameters.
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Parameters eTS | ePL | eTS+
Clusters spread 0.05 | 0.04 -
Learning rate - 0.01 -
Utility threshold - - 0.10
Spread update - - 0.50
Arousal update - 0.16 -
Redundancy threshold - 0.84 -
Arousal threshold - 0.16 -

Table 3: Evolving fuzzy models control parameters.

the out-of-sample subset. Table 4 presents the error
measures for the evaluated models, the lower the
output, the better the forecasting accuracy of the
model concerned. The FBeM model outperformed
all remaining models in terms MAE, MAPE and
RMSE measures. Naive, ARMA and MPL strate-
gies showed the worst results, and the evolving mod-
els, €TSS, xTS, ePL and TS+, performed similar.

Models | MAE | MAPE | RMSE
naive 0.0231 | 7,19% | 0.0513
ARMA | 0.0214 | 6.96% | 0.0496
MLP 0.0208 | 7.00% | 0.0351
eTS 0.0192 | 6.52% | 0.0322
xTS 0.0200 | 7.02% | 0.0341
ePL 0.0196 | 6.77% | 0.0331
eTS+ 0.0192 | 6.41% | 0.0283
FBeM 0.0134 | 4.39% | 0.0231

Table 4: Summary of out-of-sample statistical per-
formance.

Besides the models goodness of fit, this paper
also compares them in statistical terms. Hence, the
Diebold-Mariano [27] statistic for predictive accu-
racy is also computed for both MSE and MAE loss
functions, as described in Section 3. The results of
the Diebold-Mariano statistic, comparing the FBeM
model with each other method are summarized in
Table 5. The Diebold-Mariano test were performed
to couples of forecasts, i.e., FBeM vs. another fore-
casting model. The null hypothesis of equal pre-
dictive accuracy is rejected for all comparisons and
for both loss functions at 5% confidence level, since
|3MSE| > 1.96 and |3MAE| > 1.96. Therefore, the
statistical superiority of the FBeM model forecasts
is confirmed as for both loss functions the realiza-
tions of the statistic are negative.

In order to evaluate the results in a real-world
application, trading strategies were applied for all
forecasting methods. The trading strategy is to go
or stay “long” when the forecasting return is above
zero and go or stay “short” when the forecast return
is below zero. The “long” and “short” BRL/USD
positions are defined as buying and selling Brazilian
Reals at the current price respectively. Table 6 re-
ports the out-of-sample trading performance of all
models. The FBeM model performs better than all
other models in terms of trading performance. It



Models SMSE SMAE

naive -3.6588 | -7.9584
ARMA | -3.6333 | -7.7268
MLP -3.2199 | -7.8831
eTS -2.5466 | -7.2442
xTS -2.8825 | -7.4257
ePL -2.6541 | -7.1430
eTS+ -2.1209 | -7.2755

Table 5: Diebold-Mariano statistic for MSE and
MAE loss functions.

presents a slightly higher annualized (R4) and cu-
mulative (R®) returns than the other models. On
the other hand, naive and ARMA strategies pro-
vide lower results. The annualized volatility (o*)
and maximum drawdown (MD) were similar for all
models.

Models RA RC oA MD

naive 12.86% | 32.14% | 12.54% | -5.32%
ARMA | 25.34% | 55.87% | 11.13% | -4.57%
MLP 44.50% | 112.84% | 10.94% | -4.13%
eTS 60.85% | 130.69% | 10.50% | -4.23%
xTS 66.47% | 144.95% | 9.25% | -4.12%
ePL 63.12% | 127.84% | 9.66% | -4.96%
eTS+ | 86.09% | 163.04% | 10.01% | -3.72%
FBeM | 94.74% | 171.41% | 9.43% | -3.57%

Table 6: Summary of trading performance results.

The models were also compared in terms of com-
putational complexity concerning the final number
of rules/nodes and processing (cpu) time, which re-
sults are shown in Table 7. One may see that the
models show similar performance, except the MLP
model which presents a high processing time.

Models | # rules/nodes | Time (in sec.)
ARMA - 4.510
MLP 5 110.9
eTS 4 5.247
xTS 4 5.112
ePL 3 6.714
eTS+ 2 5.322
FBeM 2 6.217

Table 7: Models computational complexity.

Besides the high potential of the FBeM in the
problem of trading and forecasting the BRL/USD
exchange rate, the model recursively adapts its
structure to match current knowledge about the sys-
tem, as in all evolving techniques. Figure 2 shows
the number of rules evolution of the FBeM model.
We can note that the number of rules increases,
reaching the maximum value equal 6, in the peri-
ods of BRL/USD returns high volatility (Figure 2).

One must note that the FBeM model provides
functional and linguistic output terms, which may
be employed to improve decision making process by
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|
May 2010 Py S May 2012
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Figure 2: Evolution of the number of rules for
BRL/USD using the FBeM model.

labeling the output granules in order to give some
insight about the system or even about the trading
rules. Rules of particular interest can be displayed
at any time. The rule base at the final process is:

RY': IF vy is G(.5835,.2486) AND 1y o is
G(.5892,.2537) THEN y,, is G(.6011,.2549) AND
pt = 0154 — 1037y; + 1.0864y;_o.

R% IF y is G(.9299,.1592) AND 1y, is
G(.9045,.1344) THEN ., is G(.8978,.1106) AND
p? = 5264 + .1031y; + .3048y,_.

From this rule base, the consequents output mem-
bership functions may be interpreted as “low re-
turns” and “high returns”, for example, improving
the model interpretability.

5. Conclusion

This paper applies a fuzzy set based evolving model
(FBeM) to a one-day-ahead forecasting and trad-
ing task of the Brazilian Real/Dollar (BRL/USD)
exchange rate. The FBeM model recursively granu-
lates data instances to output singular and linguis-
tic granular approximations. The trading perfor-
mance of the granular method was compared with
a Multi-Layer Perceptron (MLP) neural network,
an autoregressive moving average model (ARMA),
a naive strategy and some state of the art evolving
fuzzy models like TS, xTS, ePL and eTS+. Us-
ing the BRL/USD exchange rate series from Jan-
uary 2000 to October 2012, models comparisons
were conducted based on error measures, statistical
tests and trading performance indicators. Results
have shown the effectiveness of the FBeM approach
by its best trading measures in terms of annual-
ized and cumulative returns. Besides the statistical
superiority and the high potential to describe the
BRL/USD nonlinear behaviour, FBeM allows the
construction of decision making rules according to
its linguistic outputs, improving the results in terms
of interpretability. Future studies shall concern the
application of a time-varying leverage in the trad-
ing strategies as well as the inclusion of transaction
costs in the model.
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