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Abstract

In this paper, we continue the devel-
opment of a formal theory of intermediate
quantifiers (linguistic expressions such as
“most”, “many”, “few”, “almost all”, etc.).
In previous work, we demonstrated that 105
generalized syllogisms are valid in our the-
ory. We turn our attention to another prob-
lem which is the analysis of the generalized
Aristotelian square of opposition which, be-
sides the classical quantifiers, is extended
also by several selected intermediate quan-
tifiers. We show that the expected relations
can be well modeled in our theory. The for-
mal theory of intermediate quantifiers is de-
veloped within a special higher-order fuzzy
logic — Łukasiewicz fuzzy type theory.
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1. Introduction

In this paper, we continue the development of the
formal theory of intermediate quantifiers (linguistic
expressions such as “most”, “many”, “few”, “almost
all”, etc.) which was initiated by V. Novák in [7] and
continued in [3]. This theory has been inspired by
the book of P. L. Peterson [10] and is an attempt
to formalize some of its results using an appropriate
formal logical system.

Our main idea consists in the assumption that
intermediate quantifiers are just classical quantifiers
∀ or ∃ whose universe of quantification is modified
using an evaluative linguistic expression (expression
such as “very small”, “extremely large”, “roughly
big”, “more or less medium”, etc.). Because the
meaning of the latter is imprecise, the meaning of
intermediate quantifiers is imprecise as well.

The formal theory of intermediate quantifiers is
developed using a higher-order fuzzy logic, namely
Łukasiewicz fuzzy type theory (denoted by Ł-FTT).
Recall that the fuzzy type theory was introduced by
V. Novák in [5], first for IMTL∆-algebra of truth

values and later on also for other kinds of algebras
(cf. [8]). The algebra of truth values in Ł-FTT is
a linearly ordered MV∆-algebra. Let us emphasize
that such kind of the fuzzy logic is strong enough
to prove nice properties of our theory.

A constituent of the formal theory of interme-
diate quantifiers introduced below is also the for-
mal theory of evaluative linguistic expressions. The
latter are special expressions of naturale language,
for example, small, medium, big, very short quite
roughly strong. In this paper, we will consider
only simple evaluative expressions with the follow-
ing syntactical structure:

〈linguistic hedge〉〈TE-adjective〉 (1)

where 〈TE-adjective〉 is an evaluative adjective
(good, interesting, etc.), gradable adjective (small,
warm, etc.), and possibly also other specific kind of
adjective sharing the following characteristics: TE-
adjectives semantically characterize various posi-
tions on a bounded ordered scale (possibly abstract)
and typically form pairs of antonyms (e.g., small–
big) completed by the middle member (medium).
Canonical TE-adjectives are small, medium, big.

The 〈linguistic hedge〉 is an intensifying adverb
making the meaning of the evaluative expression ei-
ther more, or less specific. We distinguish the fol-
lowing:

〈linguistic hedge〉 := empty hedge |
〈narrowing hedge〉 | 〈widening hedge〉 |

〈specifying hedge〉.

Typical examples of the linguistic hedges are ex-
tremely, significantly, very (narrowing), more or
less, roughly, quite roughly, very roughly (widening)
or rather (specifying). The empty hedge makes it
possible to develop a unified theory of the meaning
of an evaluative linguistic expressions by consider-
ing the expression “small” as an evaluative expres-
sion of the form “empty hedge small” (similarly also
“medium” and “big”). We argue that this is correct
since there is no essential difference in the meaning
of, e.g., “large” and “very large”, and other similar
expressions.
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A special case are the negative evaluative expres-
sions

not (empty hedge〈TE-adjective〉). (2)

The meaning of evaluative expressions is formal-
ized within a special theory of Ł-FTT denoted by
TEv. Semantics of each evaluative expression is in
TEv construed by a special formula representing an
intension whose an interpretation in every model
is a function from the set of possible worlds (in our
theory, we prefer to speak about contexts) into a set
of fuzzy sets. Intension determines in each context
the corresponding extension that is a fuzzy set in
a certain universe. The extension is constructed as
a certain horizon that can be deformed and shifted
along the universe. All the details of the formal the-
ory TEv including its special axioms and the moti-
vation can be found in [6].

The language of TEv contains besides the stan-
dard constants >,⊥ (truth falsity) also a constant
† ∈ Formo which represents a middle truth value
(in the standard Łukasiewicz MV∆-algebra, it is in-
terpreted by 0.5). Another special constant is ∼ (a
formula of type (oo)o) for an additional fuzzy equal-
ity on the set of truth values L. The theory TEv has
11 special axioms which characterize properties of
both constants, properties of contexts (see below)
and properties of special formulas which represent
linguistic hedges.

By the context in TEv, we understand a formula
wαo whose interpretation is a function w : L −→
Mα. Hence, the context determines in Mα a triple
of elements 〈vL, vS , vR〉 where vL, vS , vR ∈Mα and
vL =Mp(w⊥), vS =Mp(w†), vR =Mp(w>).

We introduce the following special linguistic
hedges: {Ex,Si,Ve,ML,Ro,QR, VR} (extremely,
significantly, very, more or less, roughly, quite
roughly, very roughly, respectively) which are or-
dered as follows:

Ex � Si � Ve � ν̄νν � ML � Ro � QR � VR (3)

By � we denote a relation of a partial ordering of
hedges. It can be found in [6, p.23]. ν̄νν is the empty
hedge. Note that the hedges Ex,Si,Ve have a nar-
rowing effect and ML,Ro,QR,VR have widening ef-
fect with respect to the empty hedge.

Specific role in our theory is played by the for-
mulas Sm ∆∆∆, Me ∆∆∆, Bi∆∆∆ where the connective ∆∆∆
has been used as a specific hedge that can be taken
as a linguistic hedge “utmost” (or, alternatively a
“limit”). This makes it possible to include in our
theory also classical quantifiers without necessity
to introduce them as special cases different from
the rest of the theory. How we can see later, the
formula Bi ∆∆∆ will be used for the definitions of the
classical quantifiers ∀ and ∃.

2. The theory of intermediate quantifiers

We will introduce a formal theory of intermediate
quantifiers T IQ which is a special theory of Ł-FTT

extending the theory TEv of evaluative linguistic ex-
pressions introduced in the previous section.

Definition 1
Let R ∈ Formo(oα)(oα) be a formula. Put

µ := λzoα λxoα (Rzoα)xoα. (4)

We say that the formula µ ∈ Formo(oα)(oα) repre-
sents a measure on fuzzy sets in the universe of type
α ∈ Types if it has the following properties:

(M1) ∆∆∆(xoα ≡ zoα) ≡ ((µzoα)xoα ≡ >),
(M2) ∆∆∆(xoα ⊆ zoα)&&&∆∆∆(yoα ⊆ zoα)&&&∆∆∆(xoα ⊆

yoα)⇒⇒⇒ ((µzoα)xoα⇒⇒⇒ (µzoα)yoα),
(M3) ∆∆∆(zoα 6≡ ∅oα)&&&∆∆∆(xoα ⊆ zoα) ⇒⇒⇒

((µzoα)(zoα − xoα) ≡ ¬¬¬(µzoα)xoα),
(M4) ∆∆∆(xoα ⊆ yoα)&&&∆∆∆(xoα ⊆ zoα)&&&∆∆∆(yoα ⊆

zoα)⇒⇒⇒ ((µzoα)xoα⇒⇒⇒ (µyoα)xoα).

One can see that the measure is normed with re-
spect to a distinguished fuzzy set zoα.

For the following definition, we have to consider
a set of selected types S to which our theory will be
confined. The reason is to avoid possible difficulties
with the interpretation of the formula µ for complex
types which may correspond to sets of very large,
possibly non-measurable cardinalities. This means
that our theory is not fully general. We do not see
it as a limitation, though, because one can hardly
imagine the meaning of “most X’s” over a set of in-
accessible cardinality. On the other hand, our the-
ory works whenever there is a model in which we
can define a measure in the sense of Definition 1.
The theory T IQ defined below is thus parametrized
by the set S.

Let us introduce the following special formula
representing a fuzzy set of all measurable fuzzy sets
in the given type α:

Mo(oα) := λzoα ·∆∆∆(µzoα)zoα&&&(∀xoα)(∀yoα)
((M2)&&&(M4))&&&(∀xoα)(M3) (5)

where (M2)–(M4) are the respective axioms from
Definition 1.

Definition 2
Let S ⊆ Types be a distinguished set of types and
{R ∈ Formo(oα)(oα) | α ∈ S} be a set of new
constants. The theory of intermediate quantifiers
T IQ[S] w.r.t. S is a formal theory of Ł-FTT defined
as follows:

• The language of T IQ[S] is

JEv ∪ {Ro(oα)(oα) ∈ Formo(oα)(oα) | α ∈ S}.

• Special axioms of T IQ[S] are those of TEv and

(∃zoα)Mo(oα)zoα, α ∈ S. (6)

Intermediate quantifiers have been formally defined
by Novák in [7]. The following definition is a slight
modification of the original definition by consider-
ing strong conjunction instead of the ordinary one.
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Definition 3
Let T IQ[S] be a theory of intermediate quantifiers
in the sense of Definition 2 and Ev ∈ Formoo be
intension of some evaluative expression. Further-
more, let z ∈ Formoα, x ∈ Formα be variables and
A,B ∈ Formoα be formulas, α ∈ S, such that

T IQ `Mo(oα)Boα

holds true. Then a type 〈1, 1〉 intermediate gener-
alized quantifier interpreting the sentence

“〈Quantifier〉 B’s are A”

is one of the following formulas:

(Q∀Ev x)(B,A) :=
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(z x⇒⇒⇒ Ax))∧∧∧Ev((µB)z)),

(7)

(Q∃Ev x)(B,A) :=
(∃z)((∆∆∆(z ⊆ B)&&&(∃x)(zx∧∧∧Ax))∧∧∧ Ev((µB)z)).

(8)

These quantifiers represent formal meaning of nat-
ural language expressions, such as

“most(many, a lot of, a few, some etc.) B’s are A”.

If the presupposition is necessary then the fol-
lowing definition must be considered.

Definition 4
Let T IQ[S] be a theory of intermediate quantifiers
in the sense of Definition 2 and Ev, z, x, A,B be the
same as in Definition 3. Then an intermediate gen-
eralized quantifier with presupposition is the for-
mula

(∗Q∀Ev x)(B,A) ≡ (∃z)((∆∆∆(z ⊆ B)&&&(∃x)zx&&&
(∀x)(z x⇒⇒⇒ Ax))∧∧∧ Ev((µB)z)). (9)

Note that only non-empty subsets of B are consid-
ered in this definition.

We continue with the theorem which says us that
the hedge “utmost” degenerates intermediate quan-
tifiers to the ordinary classical ones. Do not forget,
that still truth values of the respective formulas can
lay between zero and unit.

Theorem 1 ([7])
The following is equivalent:

• T IQ ` (Q∀Bi ∆∆∆x)(B,A) ≡ (∀x)(Bx⇒⇒⇒ Ax),
• T IQ ` (Q∃Bi ∆∆∆x)(B,A) ≡ (∃x)(Bx⇒⇒⇒ Ax).

We will now introduce definitions of several spe-
cific intermediate quantifiers based on the analysis
provided by Peterson in his book [10].

A: All B are A := (Q∀Bi∆∆∆x)(B,A) ≡ (∀x)(Bx⇒⇒⇒ Ax),

E: No B are A := (Q∀Bi∆∆∆x)(B,¬¬¬A) ≡ (∀x)(Bx⇒⇒⇒¬¬¬Ax),

P: Almost all B are A := (Q∀Bi Exx)(B,A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒ Ax))∧∧∧ (Bi Ex)((µB)z)),

B: Few B are A (:=Almost all B are not A) := (Q∀Bi Exx)(B,¬¬¬A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒¬¬¬Ax))∧∧∧ (Bi Ex)((µB)z)),

T: Most B are A := (Q∀Bi Vex)(B,A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒ Ax))∧∧∧ (Bi Ve)((µB)z)),

D: Most B are not A := (Q∀Bi Vex)(B,¬¬¬A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒¬¬¬Ax))∧∧∧ (Bi Ve)((µB)z)),

K: Many B are A := (Q∀¬¬¬(Sm ν̄νν)x)(B,A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒ Ax))∧∧∧¬¬¬(Sm ν̄νν)((µB)z)),

G: Many B are not A := (Q∀¬¬¬(Sm ν̄νν)x)(B,¬¬¬A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒¬¬¬Ax))∧∧∧¬¬¬(Sm ν̄νν)((µB)z)),

I: Some B are A := (Q∃Bi∆∆∆x)(B,A) ≡ (∃x)(Bx∧∧∧Ax),

O: Some B are not A := (Q∃Bi∆∆∆x)(B,¬¬¬A) ≡ (∃x)(Bx∧∧∧¬¬¬Ax).

For example, the quantifier P says that we con-
sider the greatest fuzzy set z being subset of B such
that all its elements have the property A and z is
“extremely big” (in the sense of the measure µ).

The meaning of the other intermediate quantifiers
is similar. Note that the quantifiers A, E, I, O use
∆∆∆ as a hedge and so, they coincide with the clas-
sical quantifiers defined in first-order classical logic
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(cf. [7]). Recall that the formula (Bi Ex)((µB)z)
represents the truth value of the linguistic expres-
sion “the measure (µB)z of the fuzzy set z is ex-
tremely big”, (Sm ν̄νν)((µB)z) represents truth value
of the linguistic expression “the measure (µB)z of
the fuzzy set z is small” and similarly the others
formulas.

Remark 1
By ∗A, ∗E, ∗P, ∗B, ∗T, ∗D, ∗K, ∗G we denote quan-
tifiers which contain the presupposition. Analo-
gously, the specific quantifiers “Most”, “Many”, etc.
with the presupposition will be written as “*Most”,
“*Many”, etc.

Remark 2
Let us emphasize that there are two meanings of
the quantifier “Most”, namely “more than half” and
“close to all”. In our theory, we construe “Most” in
the second meaning.

The following theorem demonstrates that mono-
tonicity plays an important role in our theory.

Theorem 2
Let A, . . . , G be the basic intermediate quantifiers
defined above. Then the following sets of implica-
tions are provable in T IQ:

• T IQ ` A⇒⇒⇒ P, T IQ ` P⇒⇒⇒ T,
T IQ ` T⇒⇒⇒ K.
• T IQ ` E⇒⇒⇒ B, T IQ ` B⇒⇒⇒ D,
T IQ ` D⇒⇒⇒ G.

If the presupposition is needed then also the follow-
ing theorem is provable.

Theorem 3
Let A, . . . , G be the basic intermediate quantifiers
defined above. Then the following sets of implica-
tions are provable in T IQ:

• T IQ ` ∗A⇒⇒⇒ ∗P, T IQ ` ∗P⇒⇒⇒ ∗T,
T IQ ` ∗T⇒⇒⇒ ∗K.
• T IQ ` ∗E⇒⇒⇒ ∗B, T IQ ` ∗B⇒⇒⇒ ∗D,
T IQ ` ∗D⇒⇒⇒ ∗G.

Both theorems say that in arbitrary model, the
truth value of the quantifier on the left side is
smaller than or equal to the truth value of the quan-
tifiers on the right side. In [3], we constructed a
model of T IQ. Consequently, the theory T IQ is con-
sistent by completeness.

3. Analysis of the generalized square of
opposition

In this section, we will deal with the main task of
this paper which is to study and formally analyze re-
lationships among intermediate quantifiers in a gen-
eralized complete square of opposition studied first
by Thompson in [12]. There are many publications
that are related to this area. Recall the work of

Peterson [10] and many others (see [4, 14]). In [9],
the author presents classical and modern squares
of opposition, where the problem with presuppo-
sition is discussed. Below, we will show how pre-
supposition is analysed in our theory. In [2], the
author introduced generalized quantifiers and the
classical square of opposition based on first-order
classical predicate logic. We can find here defi-
nitions of generalized quantifiers as well as defini-
tions of many other relations between generalized
quantifiers (equivalence, anti-subalternation, anti-
superalternation) that are defined in classical logic.
The semantical properties of generalized quantifiers
(isomorphism, extension and conservativity) based
on classical logic are studied in [1]. All of the cited
papers consider classical logic only. Recall that the
main idea of this paper is model generalized Aris-
totle and also Peterson’s square of opposition using
higher-order fuzzy logic.

The square comprises relations among gener-
alized intermediate quantifiers. Analogously to
the classical square, we will also consider relations
of contrary, contradictory and subcontrary in Ł-
FTT and show that the generalized complete square
formed of the generalized intermediate quantifiers
defined above can be constructed also in Ł-FTT..

3.1. Formalization of relations among
quantifiers in Ł-FTT

In this subsection, we denote by P1, P2 ∈ Formo

formulas of type o (i.e. propositions).

Definition 5 (Contraries)
We say that P1, P2 are contraries in T IQ if in every
modelM |= T IQ the following is true:

M(P1)⊗M(P2) =M(⊥).

Due to completeness theorem, we can alterna-
tively say that P1 and P2 are contraries if T IQ `
P1 &&&P2 ≡ ⊥.

Definition 6 (Sub-contraries)
We say that P1 and P2 are sub-contraries in T IQ if
in every modelM |= T IQ the following is true:

M(P1)⊕M(P2) 6=M(⊥).

Analogously as above P1 and P2 are sub-contraries,
if T IQ ` P1∇∇∇P2 6≡ ⊥.

The first idea how to define contradictories in
T IQ was to say that P1 and P2 are contradictories if
they are both contraries and subcontraries. Unfor-
tunately, this does not work because the classical
quantifiers A and O, as well as E and I must be
contradictories. However, if we consider T IQ and
realize that ` ¬¬¬(∀x)(Bx⇒⇒⇒ Ax) ≡ (∃x)(Bx&&&¬¬¬Ax)
then

T IQ ` ¬¬¬A 6≡ O
since O := (∃x)(Bx ∧∧∧ ¬¬¬Ax). The use of the delta
connective solves the problem.
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Definition 7 (Contradictories)
The formulas P1 and P2 are contradictories in T IQ

if in every modelM |= T IQ the following two equal-
ities hold:

(a) M(∆∆∆P1)⊗M(∆∆∆P2) =M(⊥),
(b) M(∆∆∆P1)⊕M(∆∆∆P2) =M(>).

Alternatively we can say that P1 and P2 are contra-
dictories, if both T IQ ` ∆∆∆P1 &&&∆∆∆P2 ≡ ⊥ as well as
T IQ `∆∆∆P1∇∇∇∆∆∆P2.

Definition 8 (Subalterns)
The formula P1 is a subaltern of P2 in T IQ if in
every modelM |= T IQ the inequality

M(P1) ≤M(P2)

holds true. We will call P2 a superaltern of P1. Al-
ternatively we can say that P1 is a subaltern of P2
if T IQ ` P1⇒⇒⇒ P2.

3.2. Aristotle square of opposition in T IQ

In this section, we will formally prove that in T IQ

the above properties are shared by the classical
quantifiers. On many places in formal proofs, we
write simply “by properties of Ł-FTT” and refer the
reader to the cited papers for the details. We will
also fix the set S and write T IQ instead of T IQ[S].

Theorem 4 (Contraries)
(a) The formulas ∗A,E are contraries in T IQ.
(b) If T IQ ` (∃x)Bx then the formulas A,E are

contraries in T IQ.

Theorem 5 (Sub-contraries)
If T IQ ` (∃x)Bx then the formulas O and I are
sub-contraries in T IQ.

Theorem 6 (Contradictories)
(a) The formulas A and O are contradictories in

T IQ.
(b) The formulas E and I are contradictories in

T IQ.

Theorem 7 (Subalterns)
(a) The formula ∗A is subaltern of I in T IQ.
(b) If T IQ ` (∃x)Bx, then the formula A is sub-

altern of I in T IQ.
(c) The formula E is subaltern of ∗O in T IQ.
(d) If T IQ ` (∃x)Bx, then E is subaltern of O in

T IQ.

We introduce the example of the interpretation
of generalized Aristotelian square of opposition in
T IQ.

Example 1
Let us consider a modelM |= T IQ such that T IQ `
(∃x)Bx and let M(A) = a > 0 (e.g., a = 0.2).
Since A,E are contraries, we have M(E) = e ≤

1−a. Because the formulas A and O are contradic-
tories, it follows from the definition of contradicto-
ries thatM(∆∆∆A) = 0 and soM(∆∆∆O) = 1 because
M(∆∆∆A)⊗M(∆∆∆O) = 0 andM(∆∆∆A)⊕M(∆∆∆O) = 1.
Consequently, E is subaltern of O.

The I is superaltern of A and thusM(I) = i ≥
0.2. However, I is contradictory with E and so
M(I) = i = 1. Finally, I is sub-contrary with O be-
causeM(O∇∇∇ I) = 1 and I is superaltern of A. By
the straight lines mark contradictories, the dashed
lines contraries, the dotted lines sub-contraries, and
the arrows indicate subalterns.

A :M(A) = a = 0.2 E :M(E) = e < 0.8

I :M(I) = i = 1 O :M(O) = o = 1

3.3. Necessary extension of T IQ

The complete generalized square of opposi-
tion contains couples of intermediate quantifiers
(Q∀Ev x)(B,A) and (Q∀Ev x)(B′,¬¬¬A). The universes
B and B′, however, can be different. To be able to
compare both quantifiers, we need the universes B
and B′ to be equal. Additionally, it is quite often
also desirable that the universe is a normal fuzzy
set. Therefore, we must introduce a new special
theory T [B,B′] being a consistent extension of T IQ

in which the above requirements are fulfilled.

Definition 9
Let B,B′ ∈ Formoα be selected formulas. The the-
ory T [B,B′] is a consistent extension of T IQ such
that

(a) T [B,B′] ` B ≡ B′,
(b) T [B,B′] ` (∃xα)∆∆∆Bx and T [B,B′] `

(∃xα)∆∆∆B′x.

The first axiom assures that both universes are
the same and the second two axioms assure their
normality. If we consider the theory T [B,B′] in the
sequel then the formulas B,B′ will always be taken
as universes of quantification of intermediate quan-
tifiers in concern.

Remark 3
To make the theory of intermediate quantifiers more
general, we did not specify explicitly axioms of the
theory T [B,B′]. Instead, we only require in Defini-
tion 10 that T [B,B′] is consistent and (a) and (b)
are provable. It is not difficult to construct a model
of T IQ in which (a) and (b) are true and so, the sim-
plest consistent extension of T IQ can be obtained by
taking (a) and (b) as new special axioms.

We introduce a special theory T [B,B′] which is
a consistent extension of T IQ where B,B′ are for-
mulas occurring in the definition of special interme-
diate quantifiers. The reason is that, when studying
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relations of two intermediate generalized quantifiers
we need them to be defined on the same universes
which, moreover, are normal fuzzy sets. These re-
quirements lead to the following definition.

Definition 10
Let B,B′ ∈ Formoα. The theory T [B,B′] is a con-
sistent extension of T IQ such that

(a) T [B,B′] ` B ≡ B′,
(b) T [B,B′] ` (∃xα)∆∆∆Bx,
(c) T [B,B′] ` (∃xα)∆∆∆B′x.

This means, that if we study two intermediate quan-
tifiers (positive and negative) then we always work
with the following formulas:

(Q∀Ev x)(B,A) :=
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(z x⇒⇒⇒ Ax))∧∧∧ Ev((µB)z))

(10)

and

(Q∀Ev x)(B′, A) := (∃z′)((∆∆∆(z′ ⊆ B′)&&&
(∀x)(z′ x⇒⇒⇒¬¬¬Ax))∧∧∧ Ev((µB′)z′)). (11)

Obviously, all relations in Subsection 3.2 hold
also in T [B,B′].

3.4. Properties of intermediate quantifiers
in T [B,B′]

This subsection contains formal proofs of proper-
ties of the intermediate quantifiers described in the
complete square of opposition. The z ∈ Formoα,
x ∈ Formα are variables and A,B ∈ Formoα are
formulas, α ∈ S.

Theorem 8 (Contraries)
(a) The formulas B and P are contraries in

T [B,B′].

(b) The formulas D and T are contraries in
T [B,B′].

Theorem 9 (Contraries)
The following couples of formulas are contraries in
the theory T [B,B′]:

(a) G and P,
(b) K and B,
(c) E and K,
(d) E and T,
(e) E and P,
(f) A and G,
(g) A and D,
(h) A and B,
(i) B and T,
(j) P and D.

Theorem 10 (Subalterns)
The following holds in T [B,B′]:

(a) ∗A is subaltern of ∗P,
(b) ∗P is subaltern of ∗T,
(c) ∗T is subaltern of ∗K,
(d) ∗K is subaltern of I,
(e) ∗E is subaltern of ∗B,
(f) ∗B is subaltern of ∗D,
(g) ∗D is subaltern of ∗G,
(h) ∗G is subaltern of O.

3.5. Generalized complete square of
opposition

We finish this paper with the figure depicting the
generalized complete square with contradictions,
contraries, sub-contraries and subalterns which gen-
eralizes the classical complete square of opposition.
Recall that, the straight lines mark contradictories,
the dashed lines contraries, the dotted lines sub-
contraries, and the arrows indicate subalterns.

∗A : All B are A ∗E : No B are A

∗P : Almost all B are A ∗B : Few B are A

∗T : Most B are A ∗D : Most B are not A

∗K : Many B are A ∗G : Many B are not A

I : Some B are A O : Some B are not A

Finally, we review the formulas having different
properties in comparison with the classical Peter-
son’s square of opposition. Namely, we showed that
the couples formulas ∗P and ∗G, and ∗B and ∗K are
contraries (they are contradictories in the classical
complete square).

Remark 4
In the scheme above, we omitted relations among
the quantifiers K, O, G and I. The reason is that
the quantifiers K and G and “typically fuzzy” in the
sense, that their meaning is very indefinite. There-
fore, the relations among them and the other quan-
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tifiers are more intricate and depend also on inner
relations between the considered subsets of their
universe. Consequently, it seems that depending on
the specific situation, the relation between K and
G can vary from contrary to subcontrary. This is
not yet well understood and so, we postpone this
part of our analysis to a subsequent paper.

Example 2
LetM |= T [B,B′] be a model such thatM(∗P) > 0
(e.g., 0 < p ≤ 0.4). Let us denote M(∗A) = a,
M(∗E) = e, M(∗B) = b, M(∗T) = t, M(∗D) = d,
M(∗K) = k,M(∗G) = g,M(O) = o andM(I) = i.

Because the formula ∗P is contrary both with
∗E as well as with ∗B, we haveM(∗B) = b ≤ 1 − p
andM(∗E) = e ≤ 1 − p where e ≤ b because ∗E is
subaltern of ∗B.

Since the formula ∗A is subaltern of ∗P, we have
a ≤ p. From the fact that the couples of formulas
∗A and O, and ∗E and I are contradictory it follows
that M(I) = i = 1 and M(O) = o = 1. Because
the formula ∗T is contrary with ∗D and ∗T is su-
peraltern of ∗P then p ≤ t where t ⊗ d = 0. We
may verify that also p ⊗ d = 0 as well as b ⊗ t = 0
which means that the formulas ∗P, ∗D and ∗T, ∗B
are indeed contraries. All the results are summa-
rized in the following picture (recall that by the
straight lines mark contradictories, the dashed lines
contraries, the dotted lines sub-contraries, and the
arrows indicate subalterns):

∗A : a ≤ p ∗E : e ≤ 1− p

∗P : 0 < p ≤ 0.4 ∗B : e ≤ b ≤ 1− p

∗T : p ≤ t ∗D : b ≤ d

∗K : t ≤ k ∗G : d ≤ g

I : i = 1 O : o = 1

If we set some concrete truth degrees, we obtain
the following result:

∗A : a = 0.3 ∗E : e = 0.2

∗P : p = 0.4 ∗B : e = 0.3

∗T : t = 0.45 ∗D : d = 0.49

∗K : k = 0.5 ∗G : g = 0.5

I : i = 1 O : o = 1

4. Conclusion

This paper is a continuation of the formal theory of
intermediate quantifiers which are special linguistic
expressions such as “most”, “many”, “few”, “almost
all”, etc. Using means of Łukasiewicz fuzzy type
theory we developed their semantics and demon-
strated that many relations studied informally in
the literature hold also in our theory. Following the
analysis of the generalized syllogisms presented in
the previous paper [3], we continued here the anal-
ysis of generalized Aristotelian square of opposition
which contains, besides the classical quantifiers, also
selected intermediate ones. We introduced formal
definitions of contraries, subcontraries, contradicto-
ries and subalterns in our theory and demonstrated
that they naturally generalize the classical proper-
ties which can thus be extended also to generalized
intermediate quantifiers.

The future work will focus on extension of the
list of generalized intermediate quantifiers by fur-
ther specific ones, definition of their semantics and
on the analysis of their syllogisms and also proper-
ties of the generalized square of opposition.
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