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Abstract

We use the interpretation of fuzzy sets in terms
of coherent conditional probabilities for handling
probabilistic fuzzy IF-THEN rules. We show by
some examples how this interpretation can help
when fuzzy and statistical information need to be
combined and the available probabilistic informa-
tion on the fuzzy events is possibly imprecise or in-
complete.
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1. Introduction

In the last decades the fuzzy set theory has seen a
growing interest in the literature both from a prac-
tical and theoretical point of view. One of the main
objectives is to jointly handle probability and vague-
ness [3, 4, 6, 8, 9, 11, 14, 15, 16, 21, 22, 23, 31, 32,
39, 40, 41, 46, 43, 44, 47, 48, 49]. For this task it
is suitable to have a general framework in which it
is possible to handle uncertainty encoding the dif-
ferent aspect by maintaining consistency with the
model of reference: this is crucial to ensure a sound
inference.
In this paper we refer to the interpretation of a

fuzzy subset E∗ϕ as a pair (Eϕ, µϕ) with µϕ(x) =
P (Eϕ|X = x), where X is a variable ranging in the
set CX , ϕ is any property related to X, Eϕ is the
Boolean event “You claim that X is ϕ” and P is a
coherent conditional probability. We are interested
in evaluating the (conditional) probability of “fuzzy
events”.
In the literature, the notion of probability has

been extended to non-Boolean events represented
as elements of a MV-algebra [35]. In this environ-
ment, conditioning and coherence have been also in-
vestigated [36, 34] obtaining to some extent a many-
valued generalization of existing concepts.

Our aim is not to endow a set of fuzzy events with
a predetermined algebraic structure induced by a
predetermined t-norm (and t-conorm) but rather to
show how our interpretation is useful when we have
to deal with fuzzy and probabilistic information. In
particular the paper focuses on probabilistic fuzzy
reasoning based on collections of probabilistic fuzzy

IF-THEN rules, showing their applicability to gen-
eral problems such as fuzzy classification and fuzzy
control.

In practical situations, the available information
is often partial or even only available on sets of
events which are not those of interest and come out
possibly from different sources. Then the general
framework of coherent conditional probability pro-
vides accurate tools for testing the coherence (i.e.,
the consistency with the model of reference) of the
available assignments and for ruling their extension
to other events of interest (that is for making in-
ference). Usually the extension is not unique and
so in order to preserve as much as possible the in-
formation at hand we must refer to the whole set
of coherent extensions and so to coherent lower and
upper conditional probabilities.

Concerning coherent lower and upper conditional
probabilities often their computation is not easy
and there are no explicit analytic formulas. On the
other hand, in some cases these uncertainty mea-
sures have features which allow to obtain the de-
sired goals by a direct computation, for instance by
using the Choquet integral (see Example 2). Other
difficulties arise when events with zero lower prob-
ability are involved, in fact unconditional measures
are not able to bound the extensions that can range
in the entire interval [0, 1], and so a conditional as-
sessment needs to be considered [13] or otherwise
some specific restriction has to be adopted [33].

By using coherent conditional probability as uni-
fying model for every kind of uncertainty (pro-
duced by different sources, but essentially due to
incomplete information) makes possible to treat
probabilistic fuzzy IF-THEN rules possibly involv-
ing fuzzy subsets both in the antecedent and in
the consequent. As a side effect, it is possi-
ble to benefit of some existing results related to
other reasoning models connected with coherent
conditional probabilities such as System P or de-
fault reasoning for Boolean events (see for instance
[27, 28, 29, 12, 11, 15]).

This is a position paper focusing on the analysis
of some paradigmatic examples, in a way to show
the potentiality of the coherent conditional proba-
bility framework for encoding and managing fuzzy
information. The theoretical results of reference are
just recalled in the Appendix A since they are es-
sentially developed in previous papers.
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2. Probabilistic Fuzzy IF-THEN rules

A relevant problem in literature is the managing
of fuzzy IF-THEN rules based systems: they are
essentially composed by a collection of rules of the
form

“IF A THEN B, with a given probability”,

where either premise A and consequence B of the
rule can be fuzzy subsets [4, 31, 32, 39, 41, 46, 49].
Here we study this problem by adopting the inter-
pretation of fuzzy sets in terms of coherent condi-
tional probabilities introduced in [7, 8, 9] (and de-
veloped in [40, 6, 14, 15]) whose main concepts are
recalled in Appendix A. Under this interpretation
the membership function µϕ(·) of a fuzzy set re-
lated to the property ϕ is represented by a condi-
tional probability P (Eϕ|·) regarded as function of
the conditioning event.
A noticeable example in the above systems is the

task of determining the class Y ∈ {c1, . . . , cs} to
which a data point x = (x1, . . . , xm) related to the
vector X = (X1, . . . , Xm) belongs. For this aim a
probabilistic fuzzy classifier could be performed, by
giving some rules such as:

IF X IS ϕ THEN Y = ck, with probability pk|ϕ,

where “X IS ϕ” stands for “You claim that X IS
ϕ” (see Appendix A). By using these probabilistic
rules between crisp or fuzzy events, a related task
is to determine the “most probable” point x under
the hypothesis that Y has class ck.
More generally, given a finite collection of fuzzy

subsets E∗ = {E∗ϕj
= (Eϕj

, µϕj
)}j=1,...,m, related

to the components of the vector X, with µϕj (xj) =
P (Eϕj |xj) for any xj ∈ CXj , let us consider the
fuzzy set E∗ϕ = (Eϕ, µϕ) obtained as intersection
of some E∗ϕj

’s (see Appendix A for details on fuzzy
union and intersection). The problem consists in
determining

P (A|Eϕ),
where A can be either an event of the Boolean al-
gebra 〈CY 〉 generated by CY or a fuzzy event Eψ
related to a fuzzy subset E∗ψ of CY .
The main problem related to the performance of

a probabilistic fuzzy classifier (i.e., when A = cr)
consists into the elicitation of the probabilities pk|ϕ:

pk|ϕ = P (ck|Eϕ) = P (Eϕ|ck)P (ck)∑s
r=1 P (Eϕ|cr)P (cr)

.

However, when the probability distribution on
the ck’s is not completely available or the mem-
bership function is defined on a different partition
(even if related to that of the ck’s), the unicity of
pk|ϕ is not guaranteed, so the lower and upper en-
velope of a class {pk|ϕ} of such probabilities must
be computed.
The simplest case is when a joint probability on

the vectorX is available: the following trivial exam-
ple shows a probabilistic fuzzy IF-THEN rule base

for the humidity forecasting of a garden center’s re-
frigerating room, given the temperature.

Example 1. Denote with X and Y , respectively,
the temperature and the relative humidity of a gar-
den center’s refrigerating room. The temperature of
the system is guaranteed to range from a nominal
minimum of 0◦C to a nominal maximum of 20◦C,
thus we can put CX = [0, 20] and CY = [0, 1]. After
an empirical analysis, the joint probability distribu-
tion of (X,Y ) has been approximated with the joint
density function

f(x, y) =
{ 3

8030 (x2 + y), (x, y) ∈ [0, 20]× [0, 1],
0, otherwise.

For the variable X, consider the linguistic prop-
erties ϕ1 = “cold”, ϕ2 = “warm” and ϕ3 = “hot”,
and the relevant fuzzy subsets E∗ϕi

, i = 1, 2, 3, of
CX , having the following membership functions

µϕ1(x) =

 1, if x < 2.5,
−x5 + 3

2 , if x ∈ [2.5, 7.5],
0, if x > 7.5,

µϕ2(x) =


0, if x < 2.5,
x
5 −

1
2 , if x ∈ [2.5, 7.5),

1, if x ∈ [7.5, 12.5],
−x5 + 7

2 , if x ∈ (12.5, 17.5],
0, if x > 17.5,

µϕ3(x) =

 0, if x < 12.5,
x
5 −

5
2 , if x ∈ [12.5, 17.5],

1, if x > 17.5.

In analogy, for the variable Y , consider the lin-
guistic properties ψ1 = “dry” and ψ2 = “wet”,
to which we relate the fuzzy subsets of CY , E∗ψj

,
j = 1, 2, having the following membership functions

µψ1(y) =

 1, if y < 0.3,
−10y + 4, if y ∈ [0.3, 0.4],
0, if y > 0.4,

µψ2(y) =

 0, if y < 0.3,
10y − 3, if y ∈ [0.3, 0.4],
1, if y > 0.4.

Choosing the algebraic product TP as t-norm (that
is a coherent choice, see Appendix A), it is possible
to compute the coherent TP -extension of the above
globally coherent assessment. In particular, we have
PTP

(Eϕ1) = 0.0204, PTP
(Eϕ2) = 0.4144 and

PTP
(Eϕ3) = 0.5652.

Thus, a probabilistic fuzzy IF-THEN rule base de-
riving from the problem is the following one:

• IF X IS cold THEN
– Y IS dry, PTP

(Eψ1 |Eϕ1) = 0.3396;
– Y IS wet, PTP

(Eψ2 |Eϕ1) = 0.6604;
• IF X IS warm THEN

– Y IS dry, PTP
(Eψ1 |Eϕ2) = 0.3490;

– Y IS wet, PTP
(Eψ2 |Eϕ2) = 0.6510;
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• IF X IS hot THEN
– Y IS dry, PTP

(Eψ1 |Eϕ3) = 0.3496;
– Y IS wet, PTP

(Eψ2 |Eϕ3) = 0.6504.

Notice that probabilities PTP
(Eϕi), i = 1, 2, 3, as

well as probabilities PTP
(Eψj |Eϕi), j = 1, 2, for ev-

ery given Eϕi
, in this particular case, sum up to

1. This holds since the product t-norm is chosen
and {E∗ϕi

}i=1,2,3 and {E∗ψj
}j=1,2 are fuzzy parti-

tions in the sense of Ruspini (i.e., for every x ∈
CX ,

∑3
i=1 µϕi

(x) = 1 and for every y ∈ CY ,∑2
j=1 µψj

(y) = 1). In general the sum of PTP
(Eϕi

),
i = 1, 2, 3 (as PTP

(Eψj |Eϕi), j = 1, 2) need not be
1 for arbitrary fuzzy subsets or a different t-norm.

Until now we considered the case where the prob-
ability distribution on the variable X, to which the
fuzzy subset refers, is available. However in many
situations this condition does not hold (see, e.g.,
[6]): consider, for instance, to evaluate the uncer-
tainty on the elements of a database (i.e., a par-
tition) having statistical information elicited on a
set of values related to some feature and a mem-
bership related to a property on a different (but
related) attribute. First of all the global coherence
of the whole assessment needs to be checked, and if
it holds, then by Theorem 1 in Appendix A we can
extend the whole assessment to other elements.
Nevertheless, as the extension is generally non-

unique, we get a set of conditional probabilities and
so the coherent lower (and upper) conditional prob-
ability. A particular but interesting case is when the
lower probability is 2-monotone, i.e., for any A,B
in the Boolena algebra 〈CX〉,

P (A ∨B) ≥ P (A) + P (B)− P (A ∧B).

In this case, the infimum of the expected values of
a bounded function on CX computed w.r.t. a class
of probabilities is obtained by the Choquet integral
w.r.t. the lower probability P (see e.g. [20]). Then,
the value P (Eϕ) can be directly computed as the
Choquet integral of the membership µϕ w.r.t. P .
More precisely, being µϕ(·) = P (Eϕ|·) a function
with values in [0, 1]

C

∫
µϕdP =

∫ 1

0
P ({s : µϕ(s) ≥ x})dx.

Notice that the 2-monotonicity property is veri-
fied, for instance, when the lower probability on a
partition (or Boolean algebra) is obtained as lower
envelope of the coherent extensions of a probability
defined on a different partition (or Boolean algebra):
in this case in fact, independently of the logical con-
straints among the events of the two partitions we
obtain a completely monotone (and so 2-monotone)
lower probability (i.e., a belief function, see, e.g.,
[25, 10]). This situation applies when the fuzzy set is
defined on a partition different from that one where
the probability distribution is defined. Therefore,

in these cases

{PT (Eϕi), PT (Eϕi ∧ Eϕj )}

can be computed by means of the Choquet integral.
A different situation arises when we extend on a

Boolean superalgebra several probabilities assessed
on different Boolean algebras. This happens, for
instance, when we have marginal probabilities and
we are interested in obtaining the joint probability
(on the conjunctions). In this case in fact we could
have a non-2-monotone extension (see [14] for an
example).

An interesting case in statistics is related to im-
putation and statistical matching [38, 17], where
the information come from different sources. These
two problems have been studied in terms of coher-
ence in [1, 42], respectively. To give an example
of statistical matching, consider three categorical
variables A = “age”, EL = “educational level” and
PS = “professional status”, which are not jointly
observed. In file 1, the variables A and PS are
observed, while file 2 the variables A and EL are
considered.

Logical constraints between the variables A and
EL (as well as, between A and PS) are present: for
example, in Italy a 17 years old person cannot have
a University degree. By considering the maximum
likelihood estimations as evaluation of the relevant
conditional probabilities, due to logical constraints,
the global assessment could be not coherent (see
[42]), then the assessment has to be corrected with
respect to a pseudo-distance [2] and so the corrected
assessment could not be 2-monotone.

Now, by considering the fuzzy subsets related
to EL (“high”, “medium” and “low”) and to PS
(“good”, “middle”, “bad”) we could look for the
evaluation of EL is “high” and PS is “good”. When
the lower (conditional) probability on EL and PS
(given A) is 2-monotone this evaluation can be com-
puted by means of Choquet integral otherwise we
need to find, for any coherent extension, the proba-
bility of the relevant fuzzy event and then take the
infimum.

Next example presents a situation in which a com-
pletely monotone lower probability on a variable is
obtained through a probabilistic extension proce-
dure, and how this enables the use of Choquet in-
tegral.

Example 2. Consider the situation of Example 1.
After 5 years of monitoring it has been observed that
the internal temperature never exceeds 10◦C dur-
ing 24:00–6:00, it is always comprised between 5◦C
and 15◦C during 6:00–12:00 and 18:00–24:00, while
it never decreases below 5◦C during 12:00–18:00.
Nevertheless, no relevant connection with relative
humidity has been observed due to the variability of
the plants stored in the refrigerating room.
Thus denote with Z the variable expressing the

part of the day ranging in CZ = {D1, D2, D3, D4}
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with D1 = “24:00–6:00”, D2 = “6:00–12:00”, D3 =
“12:00–18:00” and D4 = “18:00–24:00”.
We are interested in deriving a set of probabilistic

fuzzy IF-THEN rules related to the vector (Y,Z).
To simplify the problem, we discretize the range
of X putting A1 = [0, 5] and Ai = (5(i − 1), 5i],
i = 2, 3, 4, and the range of Y putting B1 =

[
0, 1

5
]

and Bj =
(
j−1

5 , j5
]
, i = 2, . . . , 5 thus the joint dis-

tribution on (X,Y ) becomes, for i = 1, . . . , 4 and
j = 1, . . . , 5,

P (Ai ∧Bj) = 250(i3 − (i− 1)3) + 3(j2 − (j − 1)2)
80300 .

Moreover, also the membership functions are aggre-
gated as

P (Eϕh
|Ai) =

∫
Ai
P (Eϕh

|x)fX(x)dx∫
Ai
fX(x)dx

,

P (Eψk
|Bj) =

∫
Bj
P (Eψk

|y)fY (y)dy∫
Bj
fY (y)dy

.

Thus we have

µϕ1(Ai) = P (Eϕ1 |Ai) =

 0.7424, if i = 1,
0.0741, if i = 2,
0, otherwise,

µϕ2(Ai) = P (Eϕ2 |Ai) =


0.2576, if i = 1,
0.9259, if i = 2,
0.8414, if i = 3,
0.1018, if i = 4,

µϕ3(Ai) = P (Eϕ3 |Ai) =

 0.1586, if i = 3,
0.8982, if i = 4,
0, otherwise,

and analogously

µψ1(Bi) = P (Eψ1 |Bj) =

 1, if j=1,
0.7499, if j=2,
0, otherwise,

µψ2(Bi) = P (Eψ2 |Bj) =

 0, if j=1,
0.2501, if j=2,
1, otherwise.

If we extend the above globally coherent as-
sessment P (·|·) on the Boolean algebra generated
by {Di, Bj}i=1,...,4,j=1,...,5, the corresponding lower
probability P is completely monotone (i.e., it is a
belief function) [25].
Related to the variable Z we consider the proper-

ties ν1 = “light” and ν2 = “dark” corresponding to
the fuzzy subsets E∗ν1

and E∗ν2
, having membership

µν1(Di) =

 0, if i = 1,
1
2 , if i = 2,4,
1, if i = 3,

µν2(Di) =

 1, if i = 1,
1
2 , if i = 3,4,
0, if i = 2.

In this context we take the minimum t-norm TM
(which is a coherent choice, see Appendix A). In

order to compute the coherent lower TM -extension
on Eνi |Eψj we notice that, for i, j = 1, 2,

PTM
(Eνi
|Eψj

) =
PTM

(Eνi
∧ Eψj

)
PTM

(Eψj
) ,

i.e., the denominators are the precise probabili-
ties PTM

(Eψ1) = 0.3492 and PTM
(Eψ2) = 0.6508,

thus it is sufficient to compute the lower probabil-
ity PTM

(Eνi
∧ Eψj

) for which, being P completely
monotone, we can use the Choquet integral.
For example, one has PTM

(Eν1 ∧ Eψ1) = 0.2609
that corresponds to the imprecise probabilistic fuzzy
IF-THEN rule:

• IF Y IS dry THEN
– Z IS light, PTM

(Eν1 |Eψ1) = 0.7471.

We stress that the Choquet integral cannot be used
to compute PTM

(Eψj |Eνi), but the general exten-
sion procedure for coherent conditional lower prob-
abilities must be applied, instead (see [9, 14]).

In previous example, since the fuzzy information
is related to a partition finer than that where the
probability is assessed, we need to aggregate the
membership functions.

Example 3 considers “certain” fuzzy IF-THEN
rules (i.e., for which the corresponding probability
is 1) and presents a relevant notion of entailment,
consisting in the value 1 as unique coherent exten-
sion for the new fuzzy conditional event Eψ|Eϕ.

Example 3. The headmaster of a primary school
is interested in monitoring the obesity among the
pupils of the school, whose age is between 5 and 10
years. The Body Mass Index (BMI) (see for in-
stance [6]) computed as

BMI = mass/(height)2,

is a known statistical measure used for a qualita-
tive (crisp) evaluation of the physique by means of
a linguistic label (ϕ1 = “sever underweight”, ϕ2 =
“underweight”, ϕ3 = “normal”, ϕ4 = “overweight”,
ϕ5 = “obese”).
Thus consider the variables X and Y expressing,

respectively, the mass in Kg and the height in m,
with ranges (due the particular age of the pupils)
CX = (0, 70] and CY = (0, 1.5].
The BMI does not take into account the age of

the person neither other environmental features so,
due to the particular population under study, the
linguistic labels ϕi are fuzzified introducing the fuzzy
subsets E∗ϕi

, i = 1, . . . , 5, related to the BMI (that
we denote by means of the variable Z).
On the other hand, on the variable X the lin-

guistic properties ψ1 = “very short”, ψ2 = “short”,
ψ3 = “medium”, ψ4 = “tall”, ψ5 = “very tall” are
considered, with corresponding fuzzy subsets of CX ,
E∗ψj

, j = 1, . . . , 5. Analogously, on the variable
Y the linguistic properties ν1 = “very thin”, ψ2 =
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“thin”, ψ3 = “normal”, ψ4 = “fat”, ψ5 = “very fat”
are considered, with corresponding fuzzy subsets of
CY , E∗νh

, h = 1, . . . , 5.
Suppose that the assessment P on

{Eϕ5 , Eψ1 ∧Eψ2 , Eν1 ∧Eν2 , Eϕ5 ∧Eψj ∧Eνh
}j,h=1,2

(that can be computed as the coherent T -extension
of a joint probability on (X,Y ) together with the
membership functions) is everywhere positive with
P (Eϕ5) = α, P (Eϕ5 ∧ Eψ2 ∧ Eν2) = β and α > β.
Then the headmaster finds “natural” to consider

the following “certain” fuzzy IF-THEN rules:

• IF X IS short AND Y IS fat THEN
– Z IS obese, P (Eϕ5 |Eψ2 ∧ Eν2) = 1;

• IF X IS very short THEN
– X IS short, P (Eψ2 |Eψ1) = 1;

• IF Y IS very fat THEN
– Y IS fat, P (Eν2 |Eν1) = 1.

Trivial computations show that the value 1 is the
unique coherent extension of the above assessment
on the events {Eϕ5 |Eψj ∧ Eνh

}j,h=1,2. Thus, one
entails the further “certain” fuzzy IF-THEN rules:

• IF X IS very short AND Y IS fat THEN
– Z IS obese, P (Eϕ5 |Eψ1 ∧ Eν2) = 1;

• IF X IS short AND Y IS very fat THEN
– Z IS obese, P (Eϕ5 |Eψ2 ∧ Eν1) = 1;

• IF X IS very short AND Y IS very fat THEN
– Z IS obese, P (Eϕ5 |Eψ1 ∧ Eν1) = 1.

On the contrary, the extension on Eψ2 ∧Eν2 |Eϕ5

is unique but strictly less than 1, thus we get the
probabilistic fuzzy IF-THEN rule

• IF Z IS obese THEN
– X IS short AND Y IS fat,
P (Eψ2 ∧ Eν2 |Eϕ5) = β

α .

A. Appendix

A real function P defined on an arbitrary set of con-
ditional events G = {Ei|Hi}i∈I is a coherent condi-
tional probability (assessment) if and only if is the
restriction of a conditional probability [18, 19, 24]
defined on B×H ⊇ G, where B is a Boolean algebra
and H ⊆ (B\{∅}) is an additive set (i.e., it is closed
under finite logical sums).
For coherent assessments the following fundamen-

tal result, essentially due to de Finetti [19], holds:

Theorem 1. Let G,G′ be arbitrary sets of condi-
tional events with G ⊂ G′, P a real function on G.
There exists a coherent conditional probability P ′

extending P on G′ if and only if P is a coherent
conditional probability on G.

When G′ = G ∪ {E|H}, then the coherent val-
ues for the probability of E|H are a closed inter-
val [p∗, p∗]. Given a coherent conditional proba-
bility P on G = {Ei|Hi}i∈I its extension to G′ =
G ∪{Ej |Hj}j=1,...,m requires to proceed event-wise,
choosing at each step a value in the corresponding
extension interval. Previous discussion highlights
that the final coherent conditional probability P ′

on G′ depends on the chosen order for the extension
on the Ej |Hj ’s and on the chosen value inside each
extension interval: thus, any choice could lead to
a loss of information. Hence, in order to preserve
all the available information, any choice is avoided
and so the extension is carried on the Ej |Hj ’s sep-
arately, obtaining in this way a family of extension
intervals [pj∗, pj

∗]’s. In other words, this approach
to extension generates a class

P = {P γ : G′ → [0, 1]}γ∈Γ

of coherent conditional probabilities on G′ extend-
ing P . The entire information of the class P is
summarized by the corresponding lower and upper
envelopes P and P on G′, that are coherent condi-
tional lower and upper probabilities [7]. Recall that
the functions P and P are conjugated in the sense
that, if E|H,Ec|H ∈ G′, then it must hold

P (E|H) = 1− P (Ec|H). (1)

Notice that the functions P and P are conditional
assessments satisfying weaker properties w.r.t. a
coherent conditional probability.

A.1. Fuzzy sets as coherent conditional
probabilities

Let X be a (non-necessarily numerical) variable,
with range CX , and, for any x ∈ CX , let us indi-
cate by x the event (X = x).

Let ϕ be any property related to the variable X
and let us refer to the state of information of a real
(or fictitious) person that will be denoted by “You”.
Moreover, consider the Boolean event

Eϕ = “You claim that X is ϕ”.

A coherent conditional probability assessment
{P (Eϕ|x)}x∈CX

measures the degree of belief of You
in Eϕ, when X assumes the different values of its
range. We stress the total freedom of choice of
the function P (Eϕ|·) in fact, by Corollary 1 in [14],
any assessment {P (Eϕ|x)}x∈CX

satisfying the triv-
ial consistency condition

(L1) P (Eϕ|x) = 0, if Eϕ∧x = ∅ and P (Eϕ|x) = 1,
if x ⊆ Eϕ, for x ∈ CX ,

(and assuming any value in [0, 1] otherwise) is a
coherent conditional probability assessment.

Then P (Eϕ|·) comes out to be a natural interpre-
tation of the membership function µϕ(·), according
to [8] (see also [7, 9]).
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Definition 1. For any variable X with range CX
and a related property ϕ, a fuzzy subset E∗ϕ of CX
is any pair

E∗ϕ = (Eϕ, µϕ),

with µϕ(x) = P (Eϕ|x) for every x ∈ CX .

Remark 1. The lower envelope of a class {µjϕ}j∈J
of membership functions concerning the same prop-
erty ϕ w.r.t. the same variable X, satisfies con-
dition (L1) and so is still a coherent conditional
probability.

A.2. Operations

In what follows we consider Frank’s t-norms [26],
i.e., those defined for x, y ∈ [0, 1] and λ ∈ [0,+∞],
as

TFλ (x, y) = logλ
(

1 + (λx − 1)(λy − 1)
λ− 1

)
. (2)

Distinguished instances of previous class are the
minimum TM (x, y) = TF0 (x, y) = min{x, y}, the al-
gebraic product TP (x, y) = TF1 (x, y) = x · y and
the Łukasiewicz t-norm TL(x, y) = TF+∞(x, y) =
max{x+ y − 1, 0}.

By referring to [8] we recall the operations be-
tween fuzzy subsets: the binary operations of union
and intersection and that of complementation can
be obtained directly by using the rules of coher-
ent conditional probability and the logical inde-
pendence between Eϕ and Eψ w.r.t. the partition
{(X = x)}x∈CX

(or w.r.t. X for short).
Recall that events {Ei}i=1,...,n are logically inde-

pendent w.r.t. a partition {Hj}j∈J whenever for
any j ∈ J , Ei ∧ Hj 6= ∅ for i = 1, . . . , n implies∧n
i=1Ei ∧ Hj 6= ∅. A relevant examples of logi-

cal independent events are {Eϕ, E¬ϕ} and {Eϕ, Eψ}
where ψ is “very ϕ”. In fact, we can claim both “X
is ϕ” and “X is ¬ϕ”, or only one of them or finally
neither of them (similarly for ϕ and “very ϕ”). As
proved in [8], for any given x in the range of X, the
assessment P (Eϕ ∧ Eψ|x) is coherent if and only if
it holds

TL(P (Eϕ|x), P (Eψ|x))≤P (Eϕ ∧ Eψ|x) (3)
≤TM (P (Eϕ|x), P (Eψ|x)),

and all the values in the above interval are coherent
when Eϕ and Eψ are logically independent w.r.t.
X.
Given two fuzzy subsets E∗ϕ, E∗ψ, corresponding

to the same variable X, with the events Eϕ, Eψ
logically independent w.r.t. X let us define:

E∗ϕ∧ψ = (Eϕ ∧Eψ, µϕ∧ψ);E∗ϕ∨ψ = (Eϕ ∨Eψ, µϕ∨ψ)

with µϕ∧ψ(x) = P (Eϕ ∧ Eψ|x), µϕ∨ψ(x) = P (Eϕ ∨
Eψ|x). Since from probability rules

P (Eϕ∨Eψ|x) = P (Eϕ|x)+P (Eψ|x)−P (Eϕ∧Eψ|x).

then we can compute µϕ∧ψ, µϕ∨ψ through any t-
norm and its dual t-conorm of Frank class (when-
ever Eϕ, Eψ logically independent w.r.t. X).

Notice that the hypothesis of logical indepen-
dence w.r.t. X is essential. For the events Eϕ,
Eψ, that are not logically independent w.r.t. X,
the value of PEϕ ∨Eψ|x) is obtained by a coherent
extension: the value satisfies inequality (3), but not
all the values in such interval can be assumed. For
example, it holds P (Eϕ∧Eϕ|x) = P (Eϕ|x) thus, in
this case, only the right extreme of (3) is a coherent
choice.

We finally recall that in this context the comple-
ment of a fuzzy subset is defined as

(E∗ϕ)′ = (E¬ϕ, µ¬ϕ) = (E¬ϕ, 1− µϕ).

Obviously it holds E¬ϕ 6= (Eϕ)c, since the proposi-
tions “You claim X is ¬ϕ” and “You do not claim
X is ϕ” are logically independent. Then, while
Eϕ∨(Eϕ)c = Ω, one has Eϕ∨E¬ϕ ⊆ Ω and so (E∗ϕ)′
is generally only a fuzzy subset of the universe CX ,
for which µϕ∨¬ϕ(x) = µϕ(x) + µ¬ϕ(x)− µϕ∧¬ϕ(x).
A similar discussion holds even for Eϕ and Eψ,

where ψ is the superlative of ϕ.
For two fuzzy subsets E∗ϕ and E∗ψ, corresponding

to the random quantities X and X ′, respectively,
the following choice for the membership of conjunc-
tion and disjunction is coherent [9]:

µϕ∧ψ(x, x′) = P (Eϕ ∧ Eψ|x ∧ x′),

µϕ∨ψ(x, x′) = P (Eϕ ∨ Eψ|x ∧ x′),

with, for any x ∈ CX and x′ ∈ CX′ , the only con-
straints:

TL(µϕ(x), µψ(x′)) ≤ µϕ∧ψ(x, x′) (4)
≤ TM (µϕ(x), µψ(x′))

and

µϕ∨ψ(x, x′) = µϕ(x) + µψ(x′)− µϕ∧ψ(x, x′) . (5)

A.3. Probability of “fuzzy events”

In this context, the concept of fuzzy event, as intro-
duced by Zadeh, is an ordinary event of the kind

Eϕ = “You claim that X is ϕ”.

For any finitely additive probability measure p
on the Boolean complete algebra generated by CX ,
the global assessment {µϕ, p} is coherent [7, 6] (see
also [37, 42]) and so coherently extendible to Eϕ.
According to Theorem 3 in [15], the only coherent
value for the probability of Eϕ is

P (Eϕ) =
∫
µϕ(x)dp(x), (6)

which formally coincides with Zadeh’s definition of
probability of a “fuzzy event” [48]. Actually it
generalizes Zadeh’s definition since p is a coherent
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finitely additive (non-necessarily σ-additive) proba-
bility.
Now let E∗ = {E∗ϕ1

, . . . , E∗ϕ1
} be a finite collection

of fuzzy subsets

E∗ϕi
= (Eϕi

, µϕi
)

of CX , i = 1, . . . , n, related to the (possibly coinci-
dent) components Xj of a m-dimensional vector X
(with the events {Eϕi}i=1,...,n logically independent
with respect to the partition generated by X).
For a given Frank’s t-norm T , denote 〈E∗〉T the

closure of E∗ with respect to fuzzy intersection and
union related to T as defined in previous section.
Again the global assessment {µϕi , P}, where P is
related to the complete Boolean algebra spanned
by the random vector (X1, . . . , Xm), is coherent.
Moreover it is easy to prove (see [8]) that for a fixed
Frank’s t-norm T [26], the probability assessment

{PT (Eϕi
), PT (Eϕi

∧ Eϕj
)}

is still coherent, with

PT (Eϕi
) =
∫
µϕi

(xi)dPi(xi),

PT (Eϕi
∧ Eϕj

) =
∫
T (µϕi

(xi), µϕj
(xj))dPij(xij)

(where Pi [Pij ] is the marginal on Xi [(Xi, Xj)]).
So we can extend PT to events Eϕi

∨ Eϕj
: this

extension is univocally determined by coherence as

PT (Eϕi∨Eϕj ) = PT (Eϕi)+PT (Eϕj )−PT (Eϕi∧Eϕi).

Remark 2. The condition of logical independence
of events Eϕi

, Eϕj
with respect to X is crucial for

proving all the above assertions [15]. For instance
the same formula cannot be used for obtaining the
coherent extension of PT to Eϕi |Eϕi which is neces-
sarily 1, independently of the Frank’s t-norm used
for computing intersection and union between the
fuzzy sets related to the family {Eϕi

}i=1,...,n.

The above assessment PT is a coherent condi-
tional probability, so by Theorem 1 it can be fur-
thermore extended to any conditional event A|B
where A,B are events of the Boolean algebra B
generated by {Eϕi

}i=1,...,n ∪ {(X = x)}x∈CX
, with

B 6= ∅. This extension is not unique in general, but
for the events A = Eϕi

and B = Eϕj
, i 6= j, with

PT (Eϕj ) > 0 the only coherent extension is:

PT (Eϕi
|Eϕj

) =
∫
T (µϕi(xi), µϕj (xj))dPij(xij)∫

µϕj
(xj)dPj(xj)

.

We call the above extension of P a coherent T -
extension.
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