
Generalizing Precisiated Natural Language: A
Formal Logic as a Precisiation Language

Takehiko Nakama1 Enrique Muñoz1 Enrique Ruspini1

1European Center for Soft Computing

Abstract

We generalize precisiated natrual language by es-
tablishing a formal logic as a generalized precisia-
tion language. In this formal logic, each proposi-
tion has a form that reflects a syntactic structure
observed in natural language. Various syntactic
structures are incorporated in the formal logic so
that it precisiates not only perceptual propositions
but also action-related propositions. The syntax of
the formal logic allows us to create infinitely many
precisiated propositions while ensuring that every
proposition in it is precisiated. We discuss how our
formal logic can effectively mediate human-robot in-
teraction.

Keywords: Precisiated natural language, precisi-
ation language, formal logic, propositional logic,
predicate logic, quantificational logic, computa-
tional theory of perceptions, human-robot interac-
tion

1. Introduction and summary

A precisiated natural language (PNL), introduced
by Zadeh (e.g., [1], [2], [3]), is a subset of a natural
language that consists of propositions that can be
precisiated through translation into a precisiation
language, which is considered a set of elements that
can serve as objects of computation and deduction.
The propositions in PNL are supposed to represent
human perceptions, and PNL is an integral part of
the computational theory of perceptions ([1], [3]).
This theory enables artificial intelligence to oper-
ate on and reason with perception-based informa-
tion, which is intrinsically imprecise, uncertain, or
vague. In Zadeh’s framework, the primary function
of natural language is characterized as describing
perceptions, and each precisiable perceptual propo-
sition drawn from a natural language is precisiated
by translating it into a generalized-constraint lan-
guage, which is a precisiation language. Each ele-
ment in a generalized-constraint language is a gen-
eralized constraint on a variable, which has the form

X isr R, (1)

where X denotes the constrained variable, R de-
notes the constraining relation, and r identifies the
modality of the constraint ([1], [3]).

We maintain that it is important, both theoret-
ically and practically, to extend precisiation lan-
guage and PNL to other types of proposition. When
we communicate using a natural language, we de-
scribe not only perceptions but also actions, for in-
stance, and describing each action as a general con-
straint on a variable can be ineffective or inefficient;
the form (1) is suitable for perceptual propositions,
but we claim that there exist syntactic structures
other than (1) that are more suitable for precisiat-
ing propositions that involve actions; see Section 3.

One of the major fields that require the precisi-
ation of action-related propositions in natural lan-
guage is robotics. Recently, many studies have been
conducted to develop robotic systems in which hu-
mans and robots work as true team members, re-
quiring peer-to-peer human robot interaction (e.g.,
[4], [5], [6]). By interacting with humans, robots can
perform a wide range of practical tasks—assistance
to people with disabilities (e.g., [7], [8], [9],[10]),
search and rescue (e.g., [11], [12], [13], [14]), and
space exploration (e.g., [15], [16]), for instance. The
mode and degree of human-robot interaction vary
considerably (see [5] for review). Robot operations
in the teleoperation mode of human-robot commu-
nication require continuous low-level inputs from
humans; as a result, even slight lapses in communi-
cations can degrade performance substantially, and
the workload of the human operator can be unde-
sirably high (e.g., [17], [18]). At the other extreme,
autonomous robots that operate without any hu-
man input often perform complex tasks poorly com-
pared to robots that collaborate with humans in-
teractively (e.g., [19], [20], [21]). The peer-to-peer
mode of human-robot communication has been de-
veloped to overcome the disadvantages of the fully
teleoperational and autonomous approaches. One
of the major challenges of this approach is the in-
creased complexity of the human-robot interactions
(e.g., [5]).

Various schemes for achieving extensive human-
robot interactions have been developed. Many
natural-language-based interaction schemes have
been proposed (e.g., [22], [23], [24]). Although natu-
ral language is clearly a desirable medium for human
communications, it presents several major problems
when used for human-robot communications. De-
scriptions in natural language tend to be notori-
ously underspecified, diverse, vague, or ambiguous,
so they often lead to errors that are hard to over-
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come (e.g., [25], [26], [27], [28], [29]). Restricting
natural language to a small finite set of linguis-
tic expressions mitigates these problems but does
not fully support the extensive human-robot inter-
actions required for complex tasks. Highly math-
ematical or symbolic expressions may be easy for
experts (e.g., mathematicians, logicians, program-
mers, and system administrators) to understand,
but naive users cannot be expected to be able to
understand them; consequently, they are unsuitable
for the variety of situations in which robotic systems
need to interact with naive users as well as experts.
Low-level sensory and motor signals and executable
code are easy for robots to interpret, but they are
cumbersome for humans and thus cannot, on their
own, create an effective human-robot interface.

We claim that PNL can effectively mediate
the peer-to-peer mode of human-robot interaction.
Consider describing tasks that require peer-to-peer
human-robot interaction. Those task descriptions
must be easily interpretable for both humans and
robots. If the tasks are described in PNL, then
the task descriptions can be easily understood by
humans because they are propositions in natural
language. At the same time, each PNL proposi-
tion is precisiable, so each task description can be
unambiguously interpreted and executed by robots.
Thus, PNL can serve as a middle ground between
the natural-language-based mode of human com-
munication and the low-level mode of robotic com-
munication. Since task descriptions inherently in-
volve actions, we must extend PNL to action-related
propositions.

In this paper, we generalize PNL by establishing a
formal logic as a precisiation language. Our formal
logic can create infinitely many precisiated propo-
sitions, just as infinitely many propositions can be
created in natural language, while ensuring that ev-
ery proposition in the formal logic is precisiated.
In Section 2, we explain why we want to treat the
precisiation language as a formal language. As de-
scribed by Zadeh, bivalence is not desirable for the
semantics of precisiation language, so our formal
logic is many-valued. We explain the semantics of
our formal logic in Section 8.

Since the precisiation of perceptual propositions
has been examined in detail (e.g., [1], [3]), we fo-
cus on examining how to precisiate action-related
propositions in this paper. To explain our formal
scheme, we will first appeal to ordinary practices
and then move on to formal considerations so that
the reader can understand it intuitively. To gener-
ate examples of ordinary practice, we consider es-
tablishing task descriptions for human-robot inter-
action. As mentioned earlier, task descriptions in-
herently involve actions, so the precisiation of task
descriptions is an important step toward generaliz-
ing PNL.

2. Why formal logic?

As mentioned in Section 1, we establish a formal
logic as a generalized precisiation language. In this
section, we briefly discuss properties of formal logic
that are suitable for precisiation language.

The application of formal logic to natural lan-
guage is a paradigm of logical analysis [26]; it pro-
vides genuine insight into the syntactic structures
of natural-language sentences and the consequential
characters of assertions expressed by them. This
analysis is important for precisiating propositions
in natural language. In order for PNL to have high
expressive power, it is desirable that precisiation
language can generate infinitely many precisiated
propositions while ensuring that every proposition
in it is precisiated. Formal logic achieves these prop-
erties by a recursive definition of its syntax; it can
generate infinitely many well-formed formulas while
ensuring that every formula in it is well-formed.

Our scheme also reflects the theory of descrip-
tions in formal logic, which was introduced by Rus-
sell [30]. He claimed that the reality consists of logi-
cal atoms, which can be considered indecomposable,
self-contained building blocks of all propositions in
formal logic, and that logical analysis ends when we
arrive at logical atoms. In our precisiation language,
precisiation ends when we arrive at logical atoms,
which will be represented by atomic propositions at
the lowest level of a hierarchy of propositions. See
Section 7.

3. Propositions in the formal logic

In this section, we describe propositions that com-
pose our formal logic. As mentioned in Section 1,
we will explain our formal logic using examples of
task description for human-robot interaction, but
our scheme is not limited to precisiating proposi-
tions that describe tasks (nonetheless notice that,
since tasks typically involve actions, we will be ex-
tending PNL to action-related propositions). We
will discuss the generality of our formal logic in Sec-
tion 5. In this formal logic, each proposition has a
syntactic form observed in natural language. Our
formal logic generalizes generalized-constraint lan-
guage by incorporating multiple syntactic forms so
that it can deal not only with perceptual proposi-
tions but also with action-related propositions.

In Section 3.1, we describe the components of
such propositions. In Section 3.2, we describe how
to form an atomic proposition. In Section 3.3, we
describe how to form a compound proposition.

In these sections, we will provide examples of
rather simple task descriptions and explain our
scheme in an intuitive manner. However, our
scheme can be easily applied to robotic systems that
require more intricate task descriptions. See Sec-
tion 5.
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3.1. Components of propositions

First, we define sets whose elements constitute
propositions. These sets will be called component
sets. To provide concrete examples, we consider the
following component sets:

• S denotes the set of all agents that can perform
a task. For instance, we can have

S = {robot1, robot2, robot3, user}. (2)

• V denotes the set of all verbs that characterize
actions required by tasks. For instance, we can
have

V = {call, find, deliver, go,move, press} .
(3)

• O denotes the set of all objects that may receive
an action in V or compose an adverbial phrase
[see (5)]. For example, we can have

O = {box, button, table, room1, room2, building,
robot1, robot2, robot3, user, null} .

(4)

Here the three robots and the user in S are also
in O because they can also receive an action in
V . The element denoted by “null” will be called
the null element. In Section 3.2, we will explain
how it is used in forming a task description.
• A denotes the set of all adverbial phrases that
can be included in task descriptions. For in-
stance, we can have

A = {in γ, from γ, from γ1 to γ2, to γ, null

| γ, γ1, γ2 ∈ O} . (5)

Again, the null element is denoted by “null,”
and its use is explained in Section 3.2.
• C denotes the set of all connectives that can be
used to combine multiple propositions in form-
ing compound propositions (see Section 3.3 for
compound propositions). For instance, we can
have

C = {and, if, or, then, until, whenever}. (6)

The elements in these component sets are com-
bined in a specified manner (see Section 3.2) to form
propositions in our formal logic.

3.2. Atomic propositions

In our formal logic, an atomic proposition is defined
to be a tuple that consists of elements in component
sets. Each admissible tuple structure is specified
in the form of a cartesian product of component
sets. To develop propositions that can be consid-
ered natural-language sentences, we employ tuple
structures that reflect syntactic structures observed
in natural language. For instance, using the com-
ponent sets described in Section 3.1, we can define

each atomic proposition to be an SVOA clause (The
S, V, O, and A in SVOA stand for subject, verb, ob-
ject, and adverbial phrase, respectively) by setting
the admissible tuple structure to S × V × O × A.
The SVOA structure is observed in many languages,
including English, Russian, and Mandarin. Using
the null element in O and A, we can also generate
SVO, SVA, and SV clauses. See the following ex-
amples of atomic propositions, which describe tasks
for a robotic system, resulting from the component
sets (2)–(5):

• robot2
S

find
V

ball
O

null
A .

We will omit instances of the null element
and express it more simply as
robot2

S
find

V
ball
O .

• robot1
S

deliver
V

box
O

from room1 to room2
A .

For humans, these propositions (task descriptions)
are easy to specify and understand. Meanwhile, the
structural and lexical constraints substantially limit
the diversity and flexibility of everyday language,
so we can ensure that the resulting propositions
are unambiguously interpretable for robots (i.e., the
specified tasks can be precisely interpreted and exe-
cuted by robots). As will be explained in Section 7,
we establish a hierarchy of propositions, and at the
lowest level of the hierarchy, each atomic proposi-
tion is directly associated with an indecomposable,
self-contained executable code. Thus, these atomic
propositions can be considered building blocks of all
propositions, and they constitute each proposition
at higher levels of the hierarchy.

There are several ways to deal with the undesir-
able or nonsensical atomic propositions that can be
formed in S × V ×O × A. We can remove all such
propositions from the cartesian product to ensure
that each resulting atomic proposition is a precisi-
ated proposition. (In this case, we abuse the nota-
tion and let S × V × O × A denote the “cleaned”
cartesian product.) Also, we can consider them as
always false so that they will never be executed in
practice (see Section 8).

Notice that the atomic propositions are not ex-
pressed as generalized constraints on variables. We
can precisiate action-related propositions rather
naturally and effectively using the SV, SVO, SVA,
and SVOA structures described in this example, and
other syntactic structures can be incorporated in
our formal logic. See Section 5.

3.3. Compound propositions

A compound proposition consists of multiple atomic
propositions combined by one or more connectives
in the component set C. With the examples (2)–(6)
in Section 3.1, we can form the following compound
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propositions:

•
robot1

S
put
V

ball
O

in box
A

atomic proposition
if

C

user
S

call
V

robot1
O

atomic proposition .

•
robot2

S
go
V

to room1
A

atomic proposition
whenever

C

user
S

press
V

button
O

atomic proposition .

When necessary, we use parentheses to disam-
biguate the manner in which atomic tasks are per-
formed:

•
robot1

S
go
V

to room1
A

atomic proposition
if

C

(
user

S
call
V

robot1
O

atomic proposition

or

C

user
S

press
V

button
O

atomic proposition

)
. (7)

These compound propositions are still quite easy
for humans to specify and understand, and the syn-
tactic structures imposed on the clauses and the
compositions ensure effective interpretation and ex-
ecution by robots.
Note that these compound propositions are pre-

cisiated propositions although they are not ex-
pressed as generalized constraints on variables. In
fact, it can be quite difficult or ineffective to trans-
late them into generalized constraints.

There are many tasks that we can describe us-
ing conditions and imperatives. For instance, con-
sider the compound task (7). In this description,
the clause “user call robot1” or “user press button”
represents a condition that must be checked in de-
termining whether to send the robot to room1, and
the clause “robot go to room1” is an imperative.
Our task descriptions consist of atomic propositions
described in Section 3.2, and each atomic proposi-
tion will be either a condition or an imperative. The
type of each atomic proposition in a compound task
description is unambiguously determined by the log-
ical connective that connects it and by the location
of the atomic proposition relative to the connective.
For instance, an atomic proposition that forms a
subordinate clause immediately following the con-
nective “if” is considered a condition, whereas an
atomic proposition that forms a clause immediately
preceding the connective is considered an impera-
tive. If the proposition is a condition, the robotic
system monitors the described condition. If it is an
imperative, the system executes the described ac-
tion provided that all the required conditions are
satisfied.

4. Well-formed formulas of the formal logic

In this section, we provide the syntax of our for-
mal logic, which allows us to create infinitely many

precisiated propositions while ensuring that each
proposition in the formal logic is precisiated. We
will provide a recursive definition of the syntax us-
ing the framework discussed in Section 3, but it can
be easily generalized; we will address this issue in
Section 5.

Using the component sets S, V , O, A, and C
described in Section 3.1, we can define the syntax
of a propositional logic as follows:

1. Any x ∈ S×V ×O×A is an atomic well-formed
formula.

2. If α and β are well-formed formulas, then α c β,
where c ∈ C, is also a well-formed formula.

3. Nothing else is a well-formed formula.

This recursive definition allows us to generate in-
finitely many well-formed formulas, i.e., precisiated
propositions. With sufficiently rich component sets,
we can describe any task that must be performed by
the robotic system, and, using the syntax, we can
ensure that the robotic system does not operate on
any ill-formed task descriptions (i.e., task descrip-
tions that are not interpretable).

5. Generality of our framework

Although we considered rather simple component
sets and syntactic structures in Sections 3–4 to fa-
cilitate the exposition of our formal logic, we can
easily extend our scheme to more sophisticated com-
ponent sets and syntactic structures so that our for-
mal logic can deal with complex actions and per-
ceptions. Each component set can be made as large
as necessary, and other component sets or clause
structures can be incorporated in the formal logic.
For instance, in addition to the SV, SVO, SVA,
and SVOA structures described and used in Sec-
tions 3–7, we can also use other commonly observed
clause structures (see, for instance, [31]), such as
the SVC, SVOC, and SVOO structures, in forming
atomic propositions. Furthermore, we can extend
the clause structure so that a phrase can be used
as the subject or the object in an atomic propo-
sition. Negation, a unary logical connective, can
certainly be incorporated in the formal logic. For
perceptual propositions, we can incorporate gener-
alized constraints in our formal logic; each general-
ized constraint can be considered an atomic propo-
sition that has the SVC structure, and it can be
combined with other propositions by connectives to
form a compound proposition.

We can also establish a quantificational logic
as a precisiation language. Quantificational logic
fully incorporates quantifiers and predicates in well-
formed formulas. Since propositions that describe
perceptions often include quantifiers (see, for in-
stance, [2, 3]), it is desirable to develop a quantifi-
cational logic as a generalized precisiation language
that covers both actions and perceptions.
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6. Inference and reasoning in the formal
logic

As in other formal logics, we can infer and reason
in our formal logic by adding a deductive appara-
tus to it. Syntactically, a set of inference rules such
as modus ponens and modus tollens can be con-
structed, and axioms can also be established. (The
hierarchy described in Section 7 represents non-
logical, domain-dependent axioms.) Thus, in our
formal logic, we can form a sequent, which consists
of a finite (possibly empty) set of well-formed formu-
las (the premises) and a single well-formed formula
(the conclusion), and examine its provability. As
will be described in Section 8, we can employ fuzzy
relations to establish the semantics of our formal
logic, so we can also investigate the truth condi-
tions and the semantic validity of each proposition.
Space limitations do not allow us to elaborate on
these matters in this paper; we will describe them
fully in our full-length papers.

7. Hierarchy of propositions

In our formal logic, we can establish a hierarchy
of propositions that enhances the expressive power
and the interactivity of the pecisiation language.
This hierarchy also results in domain-dependent ax-
ioms, which can be used for inference and reasoning
in the formal logic. We explain the hierarchy using
the task description scheme described in Sections 3–
4.
A complex task can be described rather concisely,

i.e., it can be expressed by an atomic proposition. In
many cases, naive users will prefer specifying a com-
plex task using an atomic proposition as opposed
to a more lengthy compound proposition. On the
other hand, in order for a robotic system to actu-
ally execute a complex task, the task must be bro-
ken down into simpler subtasks, and the manner in
which the subtasks are performed must be specified.
Consequently, the atomic proposition describing a
complex task can be reexpressed as a compound
proposition that consists of atomic propositions de-
scribing the required subtasks. Some of the sub-
tasks may have to be further decomposed in order
to fully specify how to execute them. Expert users
may want to establish and combine these subtasks
carefully so that the robotic system can perform the
task effectively and efficiently.

Thus, we can precisiate an atomic proposition by
reexpressing it as a compound proposition consist-
ing of atomic propositions that precisiate it. This
process also leads to flexibility in the level of de-
tail. In the task description example, the flexibility
gives naive users an efficient, user-friendly interface
with robots while giving expert users the power to
customize tasks. As a result, the hierarchy allows
human-robot interactions to take place at various
levels of detail, and it also helps determine the ap-

propriate level of detail for each human-robot in-
teraction; the hierarchy determines whether, from
the point of view of a given user, a given task is
“atomic” or “compound.”

To explain this hierarchy, we first explore it in-
formally, appealing to intuitions, and then move on
to formal characterizations. Consider the following
task description:

robot
S

bring
V

box
O

from room1 to room2
A . (8)

This atomic proposition can be reexpressed as a
compound proposition that consists of three atomic
propositions representing subtasks that must be
performed to accomplish the task:

robot
S

find
V

box
O

in room1
A

atomic proposition 1

then

C

robot
S

collect
V

box
O

atomic proposition 2

then

C

robot
S

go
V

to room2
A

atomic proposition 3 . (9)

Atomic propositions 1 and 2 in (9) can also be reex-
pressed as compound propositions that clarify how
they are performed; atomic proposition 1 in (9) can
be defined as

robot
S

go
V

to room1
A

atomic proposition
then

C

robot
S

search
V

box
O

atomic proposition ,

(10)

and atomic proposition 2 in (9) can be defined as

robot
S

go
V

to box
A

atomic proposition
then

C

robot
S

grasp
V

box
O

atomic proposition .

(11)

Therefore, using (10)–(11) and atomic proposition
3 in (9), we can reexpress (8) as

robot
S

go
V

to room1
A

atomic proposition

then

C

robot
S

search
V

box
O

atomic proposition

then

C

robot
S

go
V

to box
A

atomic proposition

then

C

robot
S

grasp
V

box
O

atomic proposition

then

C

robot
S

go
V

to room2
A

atomic proposition . (12)
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Figure 1 visualizes this hierarchy, which consists of
three levels (levels 0, 1, and 2). For simplicity, each
atomic proposition is represented by its verb; for in-
stance, the atomic proposition at the highest level
(level 2), “Robot bring box from room1 to room2,”
is represented by “bring.” The task expressed by the
atomic proposition at level 2 is described in more
detail at the intermediate level (level 1), where the
atomic propositions that involve the verbs “find,”
“collect,” and “go” describe the subtasks that con-
stitute the task. These subtasks are described in
more detail at the lowest level (level 0), where they
are expressed by the atomic propositions that in-
volve the verbs “go,” “search,” and “grasp.”

Grasp

Find Collect Go

GoSearch

BringLevel 2

Level 1

Level 0

Figure 1: Hierarchical task description. At the high-
est level (level 2), the task is expressed as atomic
proposition (8), represented by “bring.” At the in-
termediate level (level 1), the task is expressed as
compound proposition (9), which consists of atomic
propositions represented by “find,” “collect,” and
“go.” At the lowest level (level 0), the task is ex-
pressed as compound proposition (12), which con-
sists of atomic propositions represented by “go,”
“search,” and “grasp.”

The hierarchy clearly shows how atomic proposi-
tion 8 is precisiated. At level 0, we have atomic
propositions that are not decomposable; each of
them is directly associated with a self-contained ex-
ecutable code that is run to perform the correspond-
ing task. Thus, atomic propositions at level 0 can be
considered logical atoms described in Section 2, and
they precisiate each proposition at higher levels.

The suitability of a given proposition depends on
the level of granularity required for it. As regards
the task description scheme, naive users will most
likely prefer describing tasks at level 2, thus prefer-
ring (8). For expert users, there may be situations
where they prefer specifying a given task step by
step or reconfiguring its subtasks according to var-
ious circumstances; in such cases, interacting with
robots at level 1 using (9) or at level 0 using (12)
will be desirable. Thus, the hierarchy allows a vari-
ety of users to interact with robots at various levels
of detail.

The hierarchy of propositions can be character-
ized more formally as follows. Let Si, Vi, Oi, Ai,
and Ci denote the component sets for level i of the
hierarchy (i ≥ 0). The elements in these sets reflect

the degree of detail suitable for level i. Then at
level i, we establish a formal logic with these com-
ponent sets, as described in Sections 3–4. Atomic
propositions in S0 × V0 × O0 × A0 are the logical
atoms and the building blocks of all propositions;
each of them is indecomposable and directly associ-
ated with a self-contained computational unit. We
will call such a computational unit as a computa-
tional atom. For each i ≥ 1, every atomic proposi-
tion in Si × Vi × Oi × Ai can be decomposed into
atomic propositions in Si−1 × Vi−1 ×Oi−1 ×Ai−1.

Computational atoms

Figure 2: Hierarchy of propositions. At level i, the
formal logic described in Sections 3–4 is established
with component sets Si, Vi, Oi, Ai, and Ci. Atomic
propositions in S0 × V0 × O0 × A0 are the logical
atoms and the building blocks of all propositions,
and each of them is directly associated with a com-
putational atom. For each i ≥ 1, every atomic
proposition at level i is connected to atomic propo-
sitions at level i− 1 that precisiate it.

Figure 2 visualizes a typical form of this hierarchy.
For each i and j, p(i)

j denotes an atomic proposition
at level i, and ej denotes a computational atom as-
sociated with p

(0)
j . In the figure, p(0)

j is connected
to ej for each j, and for each i ≥ 1 and j, p(i)

j is con-
nected to atomic propositions at level i−1 that pre-
cisiate p(i)

j . The figure shows that, for instance, p(2)
2

can be expressed as a compound proposition con-
sisting of two atomic propositions (p(1)

1 and p(1)
4 ) at

level 1 and also as a compound proposition consist-
ing of four atomic propositions (p(0)

1 , p(0)
2 , p(0)

3 , and
p

(0)
4 ) at level 0. As regards formal logic, these hi-

erarchies represent non-logical, domain-dependent
axioms.

Different levels of granularity may require differ-
ent component sets, but the same syntactic struc-
ture is enforced at all levels. Using the hierarchy,
we can ensure that all the resulting propositions re-
main precisiated at each level, and we can attain
flexibility in the level of detail.

8. Semantics of the formal logic

The semantics of formal logic specifies how to de-
termine the truth value of each proposition. In two-
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valued logics, for instance, the truth value is either 1
(true) or 0 (false). As described by Zadeh (e.g., [1],
[3]), this bivalence is not suitable for PNL, so we de-
velop a many-valued semantics for our formal logic.
The meaning of the truth value depends on the con-
text. For the task description scheme described in
Sections 3–7, for instance, one can evaluate each
proposition and let its truth value reflect the feasi-
bility of the corresponding task specification; 1 in-
dicates that the task certainly can be carried out
whereas 0 indicates that it certainly cannot be. In
this case, it is more realistic and practical to let the
degree of feasibility take on not only the values 0
and 1 but also other values between 0 and 1. In
real-world problems, it can be highly practical to
evaluate the feasibility of a task description before
any serious attempt is made to execute it. If robotic
systems interact with a variety of users, including
users who have no knowledge of these systems, some
users may describe tasks that are virtually impos-
sible to accomplish. It is more desirable to disre-
gard such highly infeasible tasks immediately than
to waste resources by attempting to realize them.
Also, the user may want to be informed of the de-
gree of feasibility of the task that he specifies before
the system attempts to perform it. When multi-
ple options are available for performing a specified
task, the user may want to compare their degrees of
feasibility before determining which option to take.
To determine the truth value of each proposition

in our formal logic systematically and effectively, we
use a fuzzy relation, which is a generalization of a
classical (“crisp”) relation (see, for instance, [32]).
It is a mapping from a Cartesian product to the set
of real numbers between 0 and 1. While a classical
relation only expresses the presence or absence of
some form of association between the elements of
factors in a Cartesian product, a fuzzy relation can
express various degrees or strengths of association
between them. (Hence a classical relation can be
considered a “crisp” case of a fuzzy relation.) In
our formal logic, each proposition consists of pre-
specified components, so a function that assigns a
degree of feasibility to each proposition can be rep-
resented by a fuzzy relation on a Cartesian product
of the components. Using some of the operations
defined on fuzzy relations, we can systematically
and economically determine the truth value of each
proposition. Space limitations on this paper do not
allow us to fully describe the semantics of our for-
mal logic; we will provide details of the semantics
in our full-length paper.

9. Conclusions

This paper is a first step toward generalizing PNL
(and precisiation language) and establishing a for-
mal logic as a generalized precisiation language.
Various syntactic structures in natural language can
be incorporated in our formal logic so that it pre-

cisiates not only perceptual propositions but also
action-related propositions. The high expressive
power of the formal logic is achieved by its syntax,
which enables us to create infinitely many precisi-
ated propositions while ensuring that every propo-
sition is precisiated. Our generalized precisiation
language can serve as a middle ground between the
natural-language-based mode of human communi-
cation and the low-level mode of robotic communi-
cation.
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