
A Practical Model for Evaluating the Energy
Efficiency of Software Applications

Georgios Kalaitzoglou
Sociallgreen

Thessaloniki, Greece
gkalaitz@sociallgreen.com

Magiel Bruntink
University of Amsterdam

Amsterdam, the Netherlands
m.bruntink@uva.nl

Joost Visser
Software Improvement Group
Amsterdam, The Netherlands
Radboud University Nijmegen

Nijmegen, the Netherlands
j.visser@sig.eu

Abstract—Evaluating the energy efficiency of software applica-
tions currently is an ad-hoc affair, since no practical and widely
applicable model exists for this purpose. The need for such an
evaluation model is pressing given the sharp increase in energy
demand generated by the ICT industry. In particular, we need
to get in control of our software applications since they play
a key role in driving the consumption of energy. This paper
proposes ME3SA, a Model for Evaluating the Energy Efficiency
of Software Applications. ME3SA provides a practical break-
down of energy efficiency into measurements that can be applied
to software applications in relation to the quantity of work
they deliver. This approach makes it possible to measure and
control energy efficiency similar to other software qualities such
as performance efficiency or maintainability.

Furthermore, we report on a case study in which the model
was applied to an operational software system of the Software
Improvement Group (SIG), a software advisory firm based in
the Netherlands. The case study provides evidence that the
proposed model is able to identify energy consumption hotspots
and efficiency bottlenecks within software applications.

Index Terms—Software measurement, Green software

I. INTRODUCTION

Energy consumption by IT systems is increasing to substan-
tial levels. Overall electrical energy consumption by IT was
estimated between 1.1% and 1.5% in 2010 [1], and in certain
regions data center consumption alone was estimated at 10%
in 2011 [2].

In recent years, awareness has grown that energy optimiza-
tion of IT systems is needed not only at the level of hardware
and data center facilities but also at the level of software [3].
In previous work, one of the authors has developed a small set
of indicators for the energy-efficiency of IT services as exter-
nally observable [4] as well as some more in-depth analysis
techniques for identifying energy-optimization opportunities in
application software [5].

In this paper, we take a further step by developing an
evaluation model for software applications that combines
results from in-depth analysis into an overall rating for energy-
efficiency. The purpose of this model, named ME3SA, is to
allow comparison of energy-efficiency between applications
but also to provide strong clues on which aspects of which
parts can improved.

A. Research challenges and approach

Evaluating the energy efficiency of software applications
is certainly a challenging research topic. We identified the
following core challenges by studying the available literature:

Diversity in software applications. Evaluating energy ef-
ficiency requires a definition of “work”. Before one can speak
of energy efficiency of software, one first needs to agree on
what it is that software needs to be energy efficient at. The
work that software does needs to be defined such that it can be
measured and related to its energy consumption. The challenge
here lies in the diversity of software applications and their
widely different functionalities.

Information hiding. Software energy efficiency essentially
refers to the efficient use of computational resources, i.e.,
hardware. A challenge arises from the prevalent use of design
principles like information hiding and abstraction. From the
viewpoint of software applications, the hardware is typically
hidden under several layers of abstraction, such as middleware,
operating systems and drivers, which were designed to be as
opaque as possible.

Lack of standards. Unlike other quality aspects of soft-
ware, energy efficiency is not covered by international stan-
dards for software quality (e.g. ISO/IEC 25010 [6]). This
means that there is no commonly accepted definition frame-
work to provide the foundation of an evaluation model for
energy efficiency of software.

In the context of these challenges we propose a practical
evaluation model that could serve as a first step towards a stan-
dardized method to evaluate the energy efficiency of software
applications. The model is taking a related software quality,
Performance Efficiency (as defined in ISO/IEC 25010 [6]), as a
starting point, leading to an conceptual break-down into three
aspects: Energy Behavior, Capacity and Utilization. The scope
of the current work is summarized by the measurement goal
we set for the model: identifying energy consumption hotspots
and energy efficiency bottlenecks on a software component
level, with reasonable accuracy and with reasonable effort. The
model should not be specific to a particular application domain
or infrastructure.

The model design follows a Goal-Question-Metric
(GQM [7]) approach in which the high-level measurement

2nd International Conference on ICT for Sustainability (ICT4S 2014) 

© 2014. The authors - Published by Atlantis Press 77



goal is translated into several evaluation questions, followed
by an operationalization of the questions using metrics.
The input data needed for the metrics consist of utilization
information collected on the host hardware, timing and
duration information on units of work performed, and finally
information on (actual or estimated) power usage by hardware
components given a utilization level.

The proposed model is applied in a case study of an
operational software application of the Software Improvement
Group (SIG), a software advisory firm based on Amsterdam,
the Netherlands. The application under study is the so-called
Software Monitor, which underlies several core services of-
fered by the SIG. During the case study a measurement period
of 1 week was used to collect all data, followed by an analysis
and evaluation phase.

B. Contributions and structure

In Section II we discuss research related to our approach.
In the subsequent two sections we provide our main contribu-
tions: the design of ME3SA, a practical model for evaluating
the energy efficiency of software applications (Section III);
and the results of a case study that applied ME3SA to
an operational software application (Section IV). Discussion
and evaluation is provided in Section V. Finally, Section VI
discusses future work and concludes the paper.

II. RELATED WORK

We focus on presenting related work on evaluation methods
and monitoring tools. An overview regarding energy efficiency
optimization approaches targeting the software stack can be
found in previous work of one of the authors [8].

Kern et. al. propose the GREENSOFT model, which is “a
first approach to developing a quality model for green and
sustainable software” [9]. The GREENSOFT model shares
many of the goals as the model we are proposing here, but
still lacks a concrete definition and application of metrics to
make the approach practical. We also follow the GREENSOFT
approach in the sense of taking existing software quality
standards, i.e. ISO 25010 (SQuaRE) [6], as the starting point.

The data center domain has been the cradle of energy
efficiency research since it is has been heavily affected by
energy efficiency related issues. As a result, several met-
rics, frameworks and best-practices have been proposed in
that context with notable contributors being the Green IT
Promotion Council, the Uptime Institute, the Nomura Re-
search institute, the Emerson Corporation, the Green Grid
and the GAMES framework which was incorporated in the
EU Projects Games [10] [11] and CoolEmAll [12]. Other
initiatives a concise presentation of their proposed metrics can
be found in [13].

All of the preceding approaches suffer from various lim-
itations with the most obvious being their confinement to
the data center domain. Consequently, they are unsuitable for
assessing heterogeneous system types as most of their metrics
and the underlying methodology do not produce results that
can be comparable and meaningful across a wide spectrum of

modern computational systems. For instance, the DCeP metric
proposed by the Green Grid, is defined as the ratio between
the work output of a data centre in bytes to the total energy
consumption of the data centre in kWh [10]. Consequently,
it is only applicable and meaningful in that context. Further-
more, some require extensive instrumentation or consist of a
large number of metrics, rendering them less practical. The
approach proposed by Kipp et al. [11] for instance, requires
the calculation of 30 indicators, the collection of performance
and energy data across a wide spectrum of system nodes and
the aggregation and correlation of values across four levels.

In an industrial context, Intel has published extensive docu-
mentation on energy efficiency practices at many levels of the
energy problem stack (data centers, application development
etc.) [14] [15]. They developed the Energy Checker SDK that
can be used to relate energy consumption to useful units of
work. This tool offers an API that can be used for importing
and exporting counters, which can track specific events that
other applications can use to adjust their energy behavior.
Nevertheless this approach requires extensive instrumentation
of the application code.

Microsoft has also been particularly active on the topic
[16] [17] and has produced Joulemeter, a tool that is able
to measure the energy consumption of software applications
running on Windows platforms. This application uses a power
model and performance counters to estimate energy consump-
tion and attribute it to specific processes running on a given
system. Although powerful, this approach is limited to specific
platforms and to non-distributed software systems.

The Software Improvement Group has developed Green
Software Scans [5], which constitute a practical approach in
evaluating the energy efficiency of application software in situ.
This approach so far lacks an underlying evaluation model
with associated rating scheme and depends heavily of expert
opinion and knowledge.

Energy monitoring and profiling has also been a particularly
active field in non-industrial domains, as evidenced by tools
such as Powerscope [18] and pTop [19].

III. DESIGN OF THE ME3SA MODEL

A. Goal and Subgoals

To structure our design of ME3SA, we applied the Goal-
Question-Metric (GQM) approach [7]. This approach defines
a measurement model in three levels. First, GQM starts by
stating a measurement goal. Secondly, at an operational, level
questions are raised that must be answered in order to reach
that goal. Finally, this approach reaches the quantitative level,
by defining suitable metrics that help in answering these
questions. Table I gives a summary of the goals, questions,
and metrics that constitute ME3SA.

The overall goal for ME3SA is to provide a practical model
for fact-based evaluation and discovery of improvement op-
portunities for the energy efficiency of software applications.
The viewpoint taken for the model is that of application
owners or third-party investigators, both with an interest to
know recommended areas of focus. In that sense, the aim of

78



TABLE I
SUMMARY OF THE GOAL-QUESTION-METRIC DESIGN OF ME3SA. THE QUESTIONS AND METRICS ARE STRUCTURED BY THE SUBGOALS OF THE

MODEL: ENERGY BEHAVIOR, CAPACITY, AND RESOURCE UTILIZATION. EACH QUESTION IS LINKED TO ONE METRIC AS INDICATED BY THE NUMBERED
ACRONYMS STARTING WITH Q, E.G., Q1 IS ANSWERED BY THE ACC METRIC, Q2 BY RIC , ETC.

Goal Purpose Provide a practical model for evaluation and discovery of improvement opportunities
Issue for the energy efficiency
Object of software applications
Viewpoint from the viewpoint of an application owner or third-party investigator.

Energy Behavior The degree to which the energy consumed by an application meets requirements.
Questions Q1 What is the energy consumption of each application component? Answering this question will reveal the biggest

energy consumers from a software perspective. This enables evaluators to focus on those software parts where
optimizations will potentially have the greatest impact.

Q2 How much energy is wasted by an application in the idle state? Since idle consumption is energy which is by
definition wasted [20], an answer to this question will provide additional insight as to where to target optimizations.

Q3 How much energy is consumed per unit of work? By answering this question, evaluators are able to form a perception
about the energy consumption of application components in accordance to the work each one begets. This permits them
to judge if this cost is reasonable and focus on components that consume disproportionally more energy than expected.

Metrics Q1: ACC Annual Component Consumption: The annual energy consumption per application component measured in kWh.
Q2: RIC Relative Idle Consumption: The percentage of annual idle energy consumption to total per application component.
Q3: CCUW Component Consumption per Unit of Work: The average energy consumption (in kWh) of each software component

per unit of work delivered.

Capacity The degree to which the maximum energy consumption limits of an application meet requirements.
Questions Q4 How much power does the application require during peak workload? The answer to this question will show the

difference between power requirements and the actual provisioning capability of hardware during peak workload. This
enables evaluators to identify spots in the system where power is over- or under-provisioned.

Q5 How much of the theoretical maximum energy budget does the application use? The answer to this question will
enable evaluators to identify the extent to which the average workload of the system utilizes the available energy budget.

Metrics Q4: PGR Peak Growth: A percentage of the actual power demand of application components to the maximum power that
hardware can provide during peak workload.

Q5: PRO Provisioning: A percentage of the energy usage of application components to the maximum energy budget of the
hardware.

Resource Utilization The degree to which the utilization of resources used by an application meets requirements.
Questions Q6 How does energy consumption scale with an increasing workload? The answer to this question can show one of the

most notable causes for energy waste: applications do not reduce energy consumption when workload and utilization are
low.

Q7 How power efficient are the host resources with respect to the average workload of the application? By examining
the difference between power usage by host resources and the ideal power usage during average load, evaluators can
determine the impact on the energy budget that average workload and hardware choices have.

Q8 How much of the total energy consumption of the infrastructure is attributed to the application? The answer to
this question will reveal how much energy is ‘lost’ in excess by the host resources in order to sustain the operations of
the application.

Metrics Q6: CNS Consumption Near Sweet-spot: A percentage that shows the efficiency of the application with respect to its optimal
efficiency when delivering work units [4].

Q7: PG Proportionality Gap: Difference between ideal power provisioning and actual provisioning during average application
utilization [21].

Q8: OPO Operational Overhead: A percentage that denotes the energy overhead required by the infrastructure to process
application component workloads.

ME3SA is to be a supplement to software product quality
characteristics such as the ones defined by ISO/IEC 25010 [6].

In fact, one of the eight main software quality characteristic
defined in this standard, namely performance efficiency, is
used as a starting point for the definition of our model.
Energy efficiency and performance efficiency are similar on
the conceptual level, where each concerns the efficient use
of a resource: energy and time, respectively. Adapting from
the performance efficiency definition we characterize energy
efficiency globally as: Energy consumed relative to the amount
of resources used under stated conditions. By substituting
energy for time in the break-down of performance efficiency
provided by ISO/IEC 25010, we obtain the following three
high-level issues for evaluation:

• Energy Behavior. The degree to which the energy con-

sumed by an application meets requirements.
• Capacity. The degree to which the maximum energy

consumption limits of an application meet requirements.
• Resource Utilization. The degree to which the utilization

of resources used by an application meets requirements.
These three evaluation issues constitute the subgoals of our
measurement model, for which separate questions and metrics
will be defined in the next section.

B. Questions and Metrics

In Table I we raise evaluation questions for each of the three
subgoals Energy Behavior, Capacity and Resource Utilization.
For space reasons we provide a combined presentation of
questions and metrics. In the definitions of metrics, we will
consider an application to be composed of a set C of compo-

79



nents c. In the case where co-allocated components exist, there
are some necessary corrective actions that should be taken per
metric which are presented in [22].

Energy Behavior

Q1. What is the energy consumption of each application
component?: Answering this question will reveal the biggest
energy consumers from a software perspective. This enables
evaluators to focus on those software parts where optimiza-
tions will potentially have the greatest impact.

The energy consumption of a component sampled over a
period of time can be calculated as the weighted sum over
samples of hardware utilization attributed to a component,
weighted by the power drawn at each sample. Formally,
we define the ACC (Annual Component Consumption) as
follows:

ACC(c) :=
∑
s∈S

Uc(s)× P (Uc(s)), (1)

where S is the set of samples in the measurement period,
Uc(s) is the CPU utilization attributed to c at sample s, and
P (U) is the power consumption in watts at U% of utilization.
Obviously, a sufficiently small unit of time (e.g., seconds) is
needed to obtain accurate results, which may not feasible on an
annual timescale. To estimate annual consumption we multiply
the results of a weekly measurement period by 52.

The hardware utilization attribution function U(s) can be
implemented using OS-reported CPU utilization numbers. This
approach is also being taken by Kansal and Zhao [17], and
Noureddine et al. [23], among others.

Q2. How much energy is wasted by an application in the
idle state?: In the context of this model, we consider that
application components have two major states: running or
idle. When a component is actively using hardware resources
(i.e., utilization is above 0%) and it is producing units of
work (for some definition) then the component is said to be
running. Otherwise, it is idle, and energy used by hardware
is essentially wasted from the perspective of the component-
under-study [20]. Of course the cause of energy consumption
in one application’s idle state could be the running of other
application (components), OS maintenance processes, or oth-
erwise.

The Relative Idle Consumption (RIC) metric indicates the
level of energy inefficiency due to idle consumption. It is
defined as follows:

RIC(c) :=
AIC(c)

ACC(c)
, (2)

ACC(c) refers to the annual consumption for component c (as
defined above in Equation 1) and AIC(c) refers to the Annual
Idle Consumption for component c. Values for RIC closer to
0% indicate less ‘waste’ due to idle consumption. AIC(c) can
be obtained by sampling in a similar way as for ACC, but
summing the power usage levels only for those samples where
the utilization is 0%. More formally:

AIC(c) :=
∑
{P (Uc(s))|s ∈ S,Uc(s) = 0%} (3)

Similar to ACC, we estimate annual idle consumption by
multiplying weekly measurement results by 52.

Q3. How much energy is consumed per unit of work?: By
answering this question, evaluators are able to judge if energy
cost is reasonable and focus on components that consume
disproportionally more energy than justified by the amount of
work delivered. The difficulty of this question is quantifying
the notion of units of work. A universal definition is not
feasible. Our model leaves the task of defining an appropriate
unit of work per application component to the model users
(consisting of evaluators and stakeholders of the application).

We define the metric Component Consumption per Unit of
Work (CCUW) as follows:

CCUW (c) :=
ACC(c)

AUW (c)
, (4)

where the AUW (c) function maps a component to the annual
number of units of work delivered.
CCUW is a consumption-based metric [24] that is ex-

pressed in kWh / unit of work. Consequently, CCUW can be
used to gain insight in the relation between energy consump-
tion and work production. Furthermore, expressing energy
costs as business-relevant workloads enables an organization
to plan and make more accurate administrative decisions.

Capacity

Q4. How much power does the application require during
peak workload?: The answer to this question shows the differ-
ence between power requirements and the actual provisioning
capability of hardware during peak workload. This enables
evaluators to identify spots in the system where power is over-
or under-provisioned.

To quantify this aspect, we define the Peak Growth (PGR)
metric as follows:

PGR(c) :=
|P (UM

c )− P100%|
P100%

× 100%, (5)

where UM
c refers to the maximum (peak) utilization that

component c reaches during the measurement period, P100%

denotes the theoretical maximum power that the hosting hard-
ware can provide.

The PGR metric is comparable between applications of
different types and functional complexity and scales from 0%
to 100%. For the purpose of the model we consider very low or
high values undesirable from an energy efficiency perspective.
PGR can also be used for estimating the sustainable growth
of workload of an application given its currently provisioned
resources.

Q5. How much of the theoretical maximum energy budget
does the application use?: The answer to this question will
enable evaluators to identify the extent to which the average
workload of the system utilizes the available energy budget.

The use of this metric is justified by the normal practice of
provisioning hardware to match (or exceed) the peak workload
generated by software applications. At the same time, the
power consumption in the average case is responsible for

80



determining the larger portion of overall energy consump-
tion [25].

We define the Provisioning (PRO) metric as follows:

PRO(c) :=
ACC(c)−AIC(c)

|S| × P100%
, (6)

where S refers to the number of samples (seconds) done
during the measurement period. The nominator term reflects
that energy consumption when the application is considering
performing useful work. The denominator is the maximum
theoretical power provided during the measurement period.

PRO values range from 0% to 100% and are comparable
between applications, since workload and system types are
factored out. On one hand, low percentages point to hardware
that is rarely used by application components for production
and is probably under-utilized or idle for a significant amount
of time. Therefore, consolidating those hardware resources and
virtualizing the application components might be a beneficial
optimization. On the other hand, very high percentages point
to software that is close to violating its energy consumption
limits (as defined by current hardware provisioning).

Resource Utilization

Q6. How does energy consumption scale with an increasing
workload?: The answer to this question can show one of
the most notable causes for energy waste: applications do
not reduce energy consumption when workload and utilization
are low. The term energy proportionality was first coined by
Barosso and Holtze [26] and has been used to describe the
ability of software systems to scale energy consumption based
on the variability of the workload.

Ideally, the energy efficiency of applications is proportional
to the level of workload. This implies that applications con-
sume zero energy when idle, and linearly scale up energy
consumption with the workload. Unfortunately, in realistic
systems this is hardly ever the case [26].

In our model, the Consumption Near Sweet-Spot (CNS)
metric aims at quantifying inefficiencies caused by dispropor-
tional energy behavior. It is defined as follows:

CNS(c) :=
CCUW ∗(c)

CCUW (c)
, (7)

where CCUW ∗(c) is obtained by identifying the minimum
observed energy consumption per work unit throughout the
measurement period (typically at a peak workload moment).

CNS ranges from 0% to 100%, where values close to 0%
indicate that on average, a component consumes significantly
more energy compared to its optimum. Conversely, 100%
indicates a fully energy proportional component. Furthermore,
since CCUW factors the definition of units of work, this
metric is system type independent and can be used for making
direct comparisons between applications.

Q7. How power efficient are the host resources with respect
to the average workload of the application?: By examining
the difference between power usage by host resources and the

ideal power usage during average load, evaluators can deter-
mine the impact on the energy budget that current hardware
choices have.

To quantify this, Wong et al. [21] propose the Proportion-
ality Gap (PG) metric. This metrics expresses the difference
between the ideal power consumption and the actual one, at
distinct hardware utilization levels. We slightly differentiate
from the actual metric and define PG as follows:

PG(c) :=
P (U c)− P ∗(U c)

P100%
, (8)

where U c denotes the average utilization of application com-
ponent c during the measurement period. P is the power that
this component actually draws on average utilization while P ∗

is the power that hardware should ideally provide at this point
if it was fully proportional (i.e., no consumption in the idle
state). Finally P100% represents the power that host hardware
can provision at 100% utilization.

Since PG denotes the extent at which the component
deviates from the optimal power consumption case, ideally we
would want it to be 0% or as close to zero as possible. This can
happen only in cases where the system is fully proportional
and thus draws the ideal amount of power regardless of the
workload.

As is clear from Equation 8, PG factors out workload
definitions and is therefore useful for comparison between
application (components) with different functionality.

Q8: How much of the total energy consumption of the
infrastructure is attributed to the application?: The answer
to this question will reveal how much energy is wasted in
excess by the host resources in order to sustain the operations
of the application.

The Operational Overhead (OPO) quantifies this aspect as
follows:

OPO(c) :=
ACC(c)

ASC
, (9)

where ASC is the total annual energy consumption by
the host resources on which an application component c is
deployed. OPO ranges from 0% to 100%, and the higher
this value is the less energy is consumed by hardware for
operations that are external to the application (component).
An OPO value of 90% for instance, would denote that for
every watt that is consumed by hardware, 0.9W is used for
sustaining an application component, while 0.1W is lost in
excess. Nevertheless, OPO can never be 100% as a portion
of energy will inevitably be used by infrastructure such as
operation systems, middleware, etc.

Similar to Power Usage Effectiveness (PUE), OPO factors
out workload as well as application type and therefore it can
be used for direct comparisons between applications.

IV. CASE STUDY

In the previous section we defined ME3SA, a practical
model for the evaluation of energy efficiency of software
applications. In this section we report on a case study, which

81



was performed in July 2013, that applied ME3SA to an appli-
cation of the Software Improvement Group (SIG), a software
consultancy based in Amsterdam, the Netherlands. The case
study was supported by the Software Energy Footprint Lab
(SEFlab)1, which is a research facility to study the impact of
software on energy consumption, founded jointly by SIG and
Amsterdam University of Applied Science.

A. Goal and Case Study Expectations

The goal of ME3SA is to be able to identify energy
consumption hotspots and energy efficiency bottlenecks on
a software component level, with reasonable accuracy and
within a reasonable timeframe. In this case study, the goal
was to apply ME3SA in a realistic context for a measurement
period limited to one week (7 days, from July 10th to July
16th). This would allow us to evaluate the feasibility to
applying ME3SA in a reasonable timeframe. Furthermore,
ME3SA should not be specific to a particular application
domain or infrastructure. As the case study considered only
one application, it does not allow us to evaluate the general
applicability of the model.

B. The Application-Under-Study

One of the main applications of SIG is the Software
Monitor. This application takes as input frequent source code
snapshots of other applications, analyzes them by applying
source code-level metrics, and presents the results on a web-
site. SIG uses this application in consultancy services such as
software risk assessments and software risk monitoring.

Software Architecture: Figure 1 provides an overview of the
Software Monitor application and its components. On a high-
level there are two sub-systems with the Software Monitor.
First, the SAT, or Software Analysis Toolkit, provides the core
metric functionality by means of two components: Monitor
Admin and SAT (MA+SAT) and Acceptance Database (AD).
MA+SAT consists of an administration interface, source code
metrics calculation, and code logistics functionality. AD is a
database that stores the output of the MA component. The
second sub-system, the Monitor, consist of two front-end
components, respectively for use by clients and internal use:
the Production Monitor (PM) and Acceptance Monitor (AM).
Finally, the Production Database (PD) component serves (val-
idated) data to the PM front-end.

Hardware Deployment: Each of the five components is
deployed on a dedicated, virtualized, Linux server.

Units of Work: The Software Monitor performs two types
of units of work, corresponding to the subsystems described
earlier.

1) Application analysis. For the components MA+SAT and
AD, one unit of work consists of the analysis of one
snapshot of source code and the subsequent storage of
the results.

2) User session. For the components PM, PD and AM, one
unit of work consists of a user session on the PM front-
end.

1http://www.seflab.com

Fig. 1. Software architecture of the Software Monitor.

Power Modelling: In this case study, it was not feasible to
measure the power consumption (the P (U) function of our
model) on the hardware resource themselves. The hardware
was located off-site in a data centre, which was not accessible
for power measurement within the timespan of the study. The
study therefore used the following (linear) power model for
each hardware resource:

P (U) := (P100% − P0%)× U + P0%, (10)

where U is a utilization percentage. In accordance to SEFLab
measurements, P100% was set to 220W and P0% was set to
160W, reflecting the maximum and idle power consumption of
a hardware resource. These settings are conservative choices
based on measurements done on servers at the SEFLab [27].
Compared to power numbers reported by Meisner et al. [28],
our power model is on the conservative side, using less power
in both maximum or idle states.

C. Data Collection and Analysis

Figure 2 provides an overview of the data collection process
that we followed during the case study. During the measure-
ment period of 7 days, scripts installed on each hardware
resource collected data given two sources:

Log files: The components of the Software Monitor log the
start and completion of units of work. The script monitors the
log files and extracts the number of units of work and their
start and completion times.

Process data: Every second, the script polls the CPU uti-
lization data of each process known to belong to a component
of the Software Monitor, using the OS-provided tools (on
Linux, the /proc/<PID>/stat file).

The consolidation script combines the data on utilizations
and units of work to obtain utilization information per Unit of
Work. This step is needed for the CCUW ∗ component (the
ideal consumption per Unit of Work) of the CNS metric.
Finally, the metric calculation script calculates all metric of
the model using the utilization data, the units of work data,
and the power model provided by Equation 10.

82



Fig. 2. Overview of the Data Collection and Analysis Process.

D. Results and Observations

Table II presents results obtained for the measurement
period July 10th – July 16th (|S| = 604,800 seconds). Here
we will briefly discuss the results per metric, while full details
can be found in [22]. As the measurement period of the case
study spans only 1 week, the results where scaled to an annual
timespan by multiplying by 52.

TABLE II
RESULTS FOR THE PERIOD JULY 10TH – JULY 16TH, 2013, FOR THE

COMPONENTS MONITOR ADMIN AND SAT (MA+SAT), ACCEPTANCE
DATABASE (AD), ACCEPTANCE MONITOR (AM), PRODUCTION

DATABASE (PD), AND PRODUCTION MONITOR (PM).

Metric MA+SAT AD AM PD PM
ACC(kWh) 1,422 1,399 1,398 1,399 1,400
RIC 0% 65% 48% 86% 65%
CCUW (kWh/unit) 0.105 0.103 0.099 0.099 0.099
PGR 1% 21% 3% 23% 7%
PRO 76% 25% 38% 10% 25%
CNS 30% 21% 13% 13% 13%
PG 64% 72% 73% 73% 72%
OPO 94% 99% 99% 99% 99%

ACC: At first glance, the results for ACC point out that
the MA+SAT component the biggest energy consumer of the
application, but by only a small margin of 22 kWh different
to the runner up (the PM component). The relatively uniform
consumption among the components can be partially attributed
to our use of the linear power model, in particular its relatively
small dynamic range (220W peak power, 160W idle power,
dynamic range 60W). Nevertheless, since MA+SAT arguably
exhibits the highest functional complexity, being the analysis
of source code snapshots, its consumption being the highest
was expected.

RIC: Except for the MA+SAT component (which has
a RIC of 0% and thus hardly ever idles), all components
exhibit significant RIC values, pointing to energy waste due
to components idling. In particular, the energy consumption of
the PD component consists for 86% of energy wasted while
idling. In Table III, which shows the units of work delivered
on a daily basis, it can be observed that the PD, PM, and
AM components deliver relatively small amounts of work on
the weekend-days. Since the unit of work defined for those
components represents a user session performed by clients of
SIG, this result is not surprising.

It could be worthwhile to focus optimizations effort on
reducing the idle consumption of the PD, PM and AM compo-

nents, in particular during the weekends. Feasible optimization
paths in that case would be to host the production database to
hardware that has physical components with lower-power idle
states or to schedule its workload in a way that creates certain
timeframes during which the resource can be powered down.
CCUW : The CCUW results in Table II show very similar

energy consumptions per unit of work: around 0.1 kWh per
unit of work, representing a unit cost of a little less than a
Euro-cent2. The uniformity is surprising given different defini-
tions of the units of work, and different software components
(however, the similar values obtained for ACC and AUW
obviously indicate the uniformity observed for CCUW ).

Table III shows the units of work delivered during the
measurement period, and the scaled annual number used for
the AUW metric. Again, we observe that the components of
the Monitor subsystem (AM, PD, PM) perform significantly
less work (consisting of user sessions) on weekend days. Ob-
viously, this has a consequence for the CCUW if calculated
for a daily timespan. Figure 3 shows the daily CCUW for the
PM component. On Sunday, July 14th, the CCUW reaches
its highest value; 3,500 kJ or around 1 kWh per user session.
The unit cost for the PM component on a Sunday is around 8
Euro-cents, or around 8 times higher than average.

Fig. 3. CCUW for the Production Monitor during the measurement period.

It is interesting to consider the results for CCUW together
with RIC. For the MA+SAT component, close to all of its
energy cost per unit is coming from actual utilization, i.e.,
computation, while for the Monitor components, the unit costs
are dominated by idle consumption.
PGR: The first observation that can be made regarding

PGR metric is that the MA+SAT component reaches the
maximum power provisioning capacity of its hardware, by
sometimes operating at near 100% utilization. Optimization
efforts therefore could examine the performance impact of
these peak utilization moments, in order to determine if
additional latency and thus energy consumption are imposed.

A second observation that can be made is that both
databases (AD and PD) operate far from the maximum power
provisioning capability of their hardware. This denotes that
they are under-utilized and thus less energy efficient even
during peak load. Consequently, a feasible optimization in
order to improve their energy footprint would be to virtualize

2According to Eurostat energy price statistics for industrial consumers in
the Netherlands in 2013 (Eur 0.0789 per kWh).

83



TABLE III
UNITS OF WORK DELIVERED BY COMPONENTS.

Wednesday, Thursday, Friday, Saturday, Sunday, Monday, Tuesday, Total Scaled annually (AUW )
Component July 10th July 11th July 12th July 13th July 14th July 15th July 16th
MA+SAT 19 15 38 52 49 58 29 260 13,520
AD 19 15 38 52 49 58 29 260 13,520
AM 46 40 40 6 4 63 72 271 14,092
PD 46 40 40 6 4 63 72 271 14,092
PM 46 40 40 6 4 63 72 271 14,092

TABLE IV
DAILY AND TOTAL AVERAGE UTILIZATION % PER COMPONENT (Uc).

Wednesday, Thursday, Friday, Saturday, Sunday, Monday, Tuesday, Overall
Component July 10th July 11th July 12th July 13th July 14th July 15th July 16th
MA+SAT 9.37% 11.54% 14.60% 11.84% 11.66% 12.57% 11.33% 11.84%
AD 0.23% 0.32% 0.47% 0.33% 0.34% 0.54% 0.55% 0.40%
AM 0.13% 0.15% 0.15% 0.12% 0.11% 0.17% 0.16% 0.14%
PD 0.10% 0.14% 0.12% 0.09% 0.23% 0.40% 0.24% 0.18%
PM 0.39% 0.38% 0.41% 0.39% 0.40% 0.42% 0.46% 0.41%

both components and host them on the same hardware, if their
peak load occurs in different time-frames.

A final observation is that even though the AM component
presents a low PGR, by inspecting its daily results (not shown
here for space reasons, see Figure 18 in [22]) we find that
its peak load only occupied a very small time frame on a
daily basis leaving the component under-utilized for the rest
of the day. This type of information can be used to guide
virtualization efforts.

PRO: The results in Table II clearly show the MA+SAT
component uses its hardware extensively, whereas the other
components do not. Since PRO is calculated based on active
consumption, the low values of the other components are
explained by their higher idle consumption (also pointed out
by RIC) Consequently, optimizations with respect to PRO
should first focus on PD. Feasible optimizations would be
to co-host this component with AD since, at least for the
measurement period, they do not present a significant energy
demand.

CNS: A CNS value of 30% for MA+SAT indicates that
the most efficient code analysis was performed at 30% of the
energy consumption of the average code analysis. The monitor
and database components have even lower values for CNS.
There can be two causes for these results:

1) Low utilizations,
2) Variability in the running-time of the units of work.
Table IV shows that components have low average utiliza-

tions. Furthermore, it is probable that the units of work, code
analyses and user session, are not uniform. Code analyses
could be analysing different software systems from different
clients, and durations of user sessions are highly dependent
on user behavior.

A possible optimization to increase CNS of those com-
ponents would be an approach proposed by [29] and [30],
consisting of virtualization, software driven workload alloca-
tion, virtual machine migration, and suspensions of hardware
during low workload periods.

PG: PG represents the gap between actual and optimal
proportionality of energy consumption given the average uti-
lization. Referring to the actual power model in Equation 10,
the ideal power model is obtained by setting P0% to 0W. The
values for PG in Table II show that for all components a
significant gap exist, that could in theory be reduced by using
hardware with better scaling capabilities.

Table IV shows the average utilizations per day for the
components. It is obvious that all operated at highly inefficient
utilization regions. This can be attributed to both the significant
idle time frames that exist and to the low intensity of the
workload.
OPO: The OPO results shown in Table II are unsurprising

for dedicated servers. The energy consumption of infrastruc-
ture software, such as the OS, is marginal.

V. DISCUSSION

The goal of ME3SA was stated as follows: “identifying
energy consumption hotspots and energy efficiency bottlenecks
on a software component level, with reasonable accuracy and
within a reasonable timeframe. The model should not be
specific to a particular application domain or infrastructure.”
In this section we discuss some high-level outcomes of the
case study, we evaluate to what extent ME3SA has met our
goals, and we discuss directions for future work.

A. Outcomes

The high-level outcomes of the case study can be summa-
rized as follows:
• The overall utilization of the hardware resources is rather

low for all of the studied software components (see
Table IV).

• For all except one component (MA+SAT), the low uti-
lization appears to be caused mainly by a large amount
of idle time (see results for RIC in Table II).

• The energy cost per unit of work (code analysis or user
session) is in the approximate range of 0.1 to 1.0 kWh
per unit.

84



An interesting question is: How much energy could po-
tentially be saved by implementing optimizations? Referring
back to Table II, the ACC metric shows how much energy
a component uses in total. Of that total, RIC measures the
percentage of energy consumption while idle (i.e., not pro-
ducing units of work). Clearly, the components AD, AM, PD
and PM are consuming a major part of their energy while idle
(with RIC values of 65%, 48%, 86%, and 65%, respectively).
Theoretically, given that energy consumption could be reduced
to zero if a component is idle, a sum of approximately 3,700
kWh could be saved from those components on a yearly basis.

The PG metric also allows us to estimate potential savings.
Given proportionally scaling hardware (i.e., hardware having
a power model starting from zero and scaling linearly with
utilization), the value of PG represents the percentage of
ACC that could be saved. For all components together, this
amounts to a savings potential of 5,000 kWh on a yearly basis.
This number obviously subsumes the previous result of 3,700
kWh since proportionally scaling hardware will by definition
consume no energy while idling.

Zooming in further, as we did for the CCUW metric
(see Figure 3), we can get more insight as to implementing
optimizations. For the components AD, PD and PM, it is
clear the weekends constitute mostly idle time. Implementing
a policy of scaling down hardware during weekends could
therefore already result in substantial savings.

B. Validity Threats

In this section we evaluate our study with respect to
potential validity threats (as defined in [31]).

1) Construct validity: Construct validity refers to the ques-
tion whether the employed measures capture the phenomenon
of interest. In our study, the measurement model was directly
derived from research questions as outlined in Table I. Fur-
thermore, the used measures were (partly) based on related
literature.

2) Internal validity: Internal validity regards the (causal)
relations between factors of the study. Our study does not
consider causality, however there still may be factors that
influence the results. The accuracy of the results is determined
by the following three inputs to the model:
• The power model (P function),
• The utilizations per component (Uc function),
• The logging of start and completion of units of work.
In the case study, the utilizations and units of work were

automatically measured on a scale of seconds, which is accu-
rate enough for the purpose of the model. However, the power
model used (see Equation 10) is an over-simplification of the
behavior of real hardware resources. Evidently, the results have
been influenced by the power model, and should therefore
be considered indicate at best. In the ideal case, the power
function is validated by measurement of the actual power
consumption by the relevant hardware.

3) External validity: External validity regards the question
to what extent the results could be generalized and applied to

other cases. There are two main threats to external validity in
our study:

Duration. The case study lasted for only 7 days. On the one
hand, this short timespan argues in favor of the model, since
we still identified some bottlenecks in the energy consumption
profile of the Software Monitor application. On the other hand,
a short duration raises the issues of representativeness. What
is the chance that in another week, the energy consumption
profile would be completely different? There may be factors
such as project scheduling, infrastructure changes, seasonal
effects, or otherwise, influencing the results. In the context
of this study, this issue cannot be evaluated further, as the
necessary data is not available. As a result, every application
of the model will need to re-evaluate the representativeness of
the measurement period.

One subject study. Our study (by design) considered only
one application. It is therefore not possible to empirically
validate the generizability of the model to other applications
or application domains. Referring back to the model design
(Section III) however, we can observe that as long as the
three inputs (P and Uc functions, unit of work logging)
can be provided, the metrics of the model could be applied.
On a more technical level, there are obvious dependencies
on the infrastructure and application domain. First, obtaining
the P and Uc functions will require infrastructure-specific
measurement tooling or instrumentation. Second, the definition
of the ‘unit of work’ remains application domain-specific,
hence the model itself cannot provide this definition.

4) Reliability: Finally, reliability considers the extent to
which the results depend on the researchers that executed
the study. There is mostly a dependency on the operational
behavior of the underlying application during a measurement
period, as measurement itself is a (semi-)automated process.
The data collection and processing steps that were followed
by the researchers are described in detail in [22].

C. Future work

We foresee several directions for future work. First, as
this paper provides only the first application of the ME3SA
model, an essential next step is to apply the model to different
applications, in different domains, for diverse infrastructures,
in order to further validate its usefulness.

Supporting future applications, we envision a suite of auto-
mated tools that assist in generating the model’s inputs. For
utilization data, platform-specific scripting could be developed
to collect utilization information on several standard platforms
such as Unix/Linux and Windows Server. For the identification
of units of work, generic tooling is probably out of reach
given the diversity of work done by software. However, some
formalized guidelines for identification of work units could be
provided. Finally, for power models, a very useful tool would
be a database of power models for common hardware config-
urations. Given such a database, hardware power consumption
would not need to be measured for every application of the
model.

85



Given a growing number of documented applications of
ME3SA, a further step would be to develop a benchmark
for the energy efficiency of software applications. A similar
benchmark has been developed for the maintenance costs of
software applications [32]. Such a benchmark allows applica-
tions to be rated and compared to each other quantitatively,
improving decision-making. In [22], an initial version of such
a benchmark and rating scheme has been developed.

Last, the current model assesses the energy efficiency of
applications that are operational. An interesting extension
would be to include the energy consumption of the complete
life cycle of a software application. In particular, how much
energy is used while designing, developing, testing, deploying,
and supporting the application? Such an extension would be
necessary to truly compare the energy efficiency of software
compared to other solutions.

VI. CONCLUSION

In this paper we have presented ME3SA, a practical model
that defines a set of measurements for evaluating the en-
ergy efficiency of software applications (Section III). The
model consists of a GQM-based design including an overall
goal, evaluation questions, and metrics. In total 8 metrics
are defined, quantifying the Energy Behavior, Capacity, and
Resource Utilization aspects of a software application.

To provide an initial validation of ME3SA, we presented a
case study in which the model was applied to an operational
software application (Section IV). For 7 consecutive days,
the application’s utilizations and produced units of work were
measured. The results indicate that this application could in
theory perform the same work using up to 5,000 kWh (71%)
less energy annually on fully proportional hardware. It should
be noted that due to the usage of a simplified (linear) power
model, the results of the case study have to be considered only
an indication. Finally, the case study showed that the metrics
used in the model allow for zooming in on finer-grained time
periods to identify opportunities to implement savings.

ACKNOWLEDGMENTS

The authors would like to thank Miguel A. Ferreira (at the
time at Software Improvement Group, now at Schuberg Philis)
for his guidance and critical commenting on the research, and
the SEFLab for their collaboration on measuring the energy
consumption of software.

REFERENCES

[1] J. Koomey, “Growth in data center electricity use 2005 to 2010,” 2011.
[2] P. Teunissen and E. Lambregts, “Energiebesparing bij datacenters,” 2012.
[3] A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of energy

measurement approaches,” ACM SIGOPS Operating Systems Review,
vol. 47, no. 3, pp. 42–49, 2013.

[4] J. Arnoldus, J. Gresnigt, K. Grosskop, and J. Visser, “Energy-efficiency
indicators for e-services,” in Green and Sustainable Software (GREENS),
2013 2nd International Workshop on, pp. 24–29, IEEE, 2013.

[5] K. Grosskop and J. Visser, “Identification of Application-level Energy
Optimizations,” Proceedings of the First International Conference on
Information and Communication for Sustainability (ICT4S), pp. 101–
107, 2013.

[6] ISO/IEC, “ISO/IEC 25010 - Systems and software Quality Requirements
and Evaluation (SQuaRE) - System and software quality models,” tech.
rep., 2010.

[7] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric
approach,” in Encyclopedia of Software Engineering, Wiley, 1994.

[8] K. Grosskop and J. Visser, “Chapter 5- energy efficiency optimization
of application software,” Advances in Computers, vol. 88, pp. 199–241,
2013.

[9] E. Kern, M. Dick, S. Naumann, A. Guldner, and T. Johann, “Green Soft-
ware and Green Software Engineering–Definitions, Measurements, and
Quality Aspects,” in Proceedings of the First International Conference
on Information and Communication for Sustainability, p. 87, 2013.

[10] M. Bertoncini, B. Pernici, I. Salomie, and S. Wesner, “Games: Green
active management of energy in IT service centres,” in Information
systems evolution, pp. 238–252, Springer, 2011.

[11] A. Kipp, T. Jiang, M. Fugini, and I. Salomie, “Layered green perfor-
mance indicators,” Future Generation Computer Systems, vol. 28, no. 2,
pp. 478 – 489, 2012.

[12] L. Siso, J. Salom, M. Jarus, A. Oleksiak, and T. Zilio, “Energy and Heat-
Aware Metrics for Data Centers: Metrics Analysis in the Framework of
CoolEmAll Project,” in 2013 International Conference on Cloud and
Green Computing (CGC), pp. 428–434, IEEE, 2013.

[13] N. B. Morteza Jamalzadeh, “An exhaustive framework for better data
centers’ energy efficiency and greenness by using metrics,” Indian
Journal of Computer Science and Engineering, vol. 2, no. 6, pp. 813–
822, 2012.

[14] B. Steigerwald and A. Agrawal, “Developing green software,” tech. rep.,
Intel Software Solutions Group, 2011.

[15] P. Larsson, “Energy-efficient software guidelines,” White Paper, 2012.
[16] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual

machine power metering and provisioning,” in Proceedings of the 1st
ACM symposium on Cloud computing, pp. 39–50, ACM, 2010.

[17] A. Kansal and F. Zhao, “Fine-grained energy profiling for power-aware
application design,” SIGMETRICS Perform. Eval. Rev., vol. 36, no. 2,
pp. 26–31, 2008.

[18] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling the
energy usage of mobile applications,” in Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and Applications, WMCSA ’99,
pp. 2–, IEEE Computer Society, 1999.

[19] T. Do, S. Rawshdeh, and W. Shi, “pTop: A Process-level Power Profiling
Tool,” in HotPower ’09: Proceedings of the Workshop on Power Aware
Computing and Systems, ACM, Oct. 2009.

[20] M. R. Stan and K. Skadron, “Guest editors’ introduction: Power-aware
computing,” Computer, vol. 36, no. 12, pp. 35–38, 2003.

[21] D. Wong and M. Annavaram, “Knightshift: Scaling the energy propor-
tionality wall through server-level heterogeneity,” in Microarchitecture
(MICRO), 2012 45th Annual IEEE/ACM International Symposium on,
pp. 119–130, 2012.

[22] G. Kalaitzoglou, “Evaluating the energy efficiency of a software system
– a practical model,” Master’s thesis, University of Amsterdam, 2013.

[23] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A pre-
liminary study of the impact of software engineering on GreenIT,” in
GREENS, pp. 21–27, IEEE, 2012.

[24] R. P. Larrick and K. W. Cameron, “Consumption-based metrics: From
Autos to IT.,” Computer, vol. 44, no. 7, pp. 97–99, 2011.

[25] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” SIGARCH Comput. Archit. News, vol. 35,
pp. 13–23, June 2007.

[26] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, pp. 33–37, Dec. 2007.

[27] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, and J. Visser,
“SEFLab: A lab for measuring software energy footprints,” in Green
and Sustainable Software (GREENS), 2013 2nd International Workshop
on, pp. 30–37, IEEE, 2013.

[28] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” in Proceedings of the 14th international conference
on Architectural support for programming languages and operating
systems, ASPLOS XIV, pp. 205–216, ACM, 2009.

[29] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely, “Dynamic
resource allocation and power management in virtualized data centers.,”
in NOMS, pp. 479–486, IEEE, 2010.

[30] I. Goiri, F. Julia, R. Nou, J. L. Berral, J. Guitart, and J. Torres, “Energy-
aware scheduling in virtualized datacenters,” in Proceedings of the 2010
IEEE International Conference on Cluster Computing, CLUSTER ’10,
pp. 58–67, IEEE Computer Society, 2010.

[31] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, pp. 131–164, Dec. 2008.

[32] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code
quality benchmarking for improving software maintainability,” Software
Quality Journal, vol. 20, no. 2, pp. 287–307, 2012.

86




