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Abstract 
This paper provides the most complete evidence to 
date on the importance of monetary aggregates as a 
policy tool in an inflation forecasting experiment. 
Every possible definition of ‘money’ in the USA is 
being considered for the full data period (1960 – 
2006), in addition to two different approaches to 
constructing the benchmark asset, using the most 
sophisticated non-linear artificial intelligence 
techniques available, namely, recurrent neural 
networks, evolutionary strategies and kernel methods. 
Three top computer scientists in three top UK 
universities (Dr Peter Tino at the University of 
Birmingham, Dr Graham Kendall at the University of 
Nottingham and Dr Jonathan Tepper at Nottingham 
Trent University) are competing to find the best fitting 
US inflation forecasting models using their own 
specialist artificial intelligence techniques. Results 
will be evaluated using standard forecasting evaluation 
criteria and compared to forecasts from traditional 
econometric models produced by Dr Binner. This 
paper therefore addresses not only the most 
controversial questions in monetary economics - 
exactly how to construct monetary aggregates and to 
what level of aggregation, but also addresses the ever 
increasing role of artificial intelligence techniques in 
economics and how these methods can improve upon 
traditional econometric modelling techniques. Lessons 
learned from the experiment will have direct relevance 
for monetary policymakers around the world and 
econometricians/forecasters alike. Given the 
multidisciplinary nature of this work, the results will 
also add value to the existing knowledge of computer 
scientists in particular and more generally speaking, 
any scientist using artificial intelligence techniques. 
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1. Introduction 
If macroeconomists ever agree on anything, it is that a 
relationship exists between the rate of growth of the 
money supply and inflation. According to the Quantity 
Theory tradition of economics, the money stock will 
determine the general level of prices (at least in the 
long term) and according to the monetarists it will 
influence real activity in the short run. This 
relationship has traditionally played an important role 
in macroeconomic policy as governments try to 
control inflation. 
 Measuring money supply is no easy task, however. 
Component assets range from “narrow money,” which 
includes cash, non interest bearing demand deposits 
and sight deposits on which cheques can be drawn, to 
“broader” money, which includes non-checkable 
liquid balances and other liquid financial assets such 
as Certificates of Deposit. In practice, official 
measures have evolved over time according to policy 
needs. Obviously many of these assets yield an interest 
rate and could thus be chosen as a form of savings as 
well as being available for transactions. Financial 
innovation, in particular liberalisation and competition 
in banking, has led to shifts in demand between the 
components of “money” which have undermined 
earlier empirical regularities and made it more difficult 
to distinguish money which is held for transactions 
purposes from money which is held for savings 
purposes [1]. 
 The objective of current monetary policy is to 
identify indicators of macroeconomic conditions that 
will alert policy makers to impending inflationary 
pressures sufficiently early to allow the necessary 
action to be taken to control and remedy the problem. 
Given that traditional monetary aggregates are 
constructed by simple summation, their use as a 
macroeconomic policy tool is highly questionable. 
More specifically, this form of aggregation weights 
equally and linearly assets as different as cash and 
bonds. This form of aggregation involves the explicit 
assumption that the excluded financial assets provide 



no monetary services and the included balances 
provide equal levels of monetary services, whether 
they are cash or ‘checkable’ deposits or liquid savings 
account balances. It is clear that all components of the 
monetary aggregates do not contribute equally to the 
economy’s monetary services flow. Obviously, one 
hundred dollars currency provides greater transactions 
services than the equivalent value in bonds. Thus, this 
form of aggregation is therefore producing a 
theoretically unsatisfactory definition of the 
economy’s monetary flow. From a micro-demand 
perspective it is hard to justify adding together 
component assets having differing yields that vary 
over time, especially since the accepted view allows 
only perfect substitutes to be combined as one 
“commodity”. 
 In the last two decades many countries have 
relegated the role of monetary aggregates from 
macroeconomic policy control tool to indicator 
variables. Barnett [2,3] attributes to a great extent the 
downgrading of monetary aggregates to the use of 
Simple Sum aggregates as they have been unable to 
cope with financial innovation. By drawing on 
statistical index number theory and consumer demand 
theory, Barnett advocates the use of chain-linked index 
numbers as a means of constructing a weighted Divisia 
index number measure of money. The potential 
advantage of the Divisia monetary aggregate is that the 
weights can vary over time in response to financial 
innovation. [3] provides a survey of the relevant 
literature, whilst [4] reviews the construction of 
Divisia indices and associated problems. 
 This paper is the first of its kind to investigate the 
forecasting performance of every definition of the US 
money supply in an inflation forecasting experiment. 
The novelty of this paper lies in the use of the most 
sophisticated artificial intelligence techniques 
available to examine the USA’s recent experience of 
inflation. Our previous experience in inflation 
forecasting using state of the art approaches give us 
confidence to believe that significant advances in 
macroeconomic forecasting and policymaking are 
possible using techniques such as those employed in 
this paper. As in our earlier work, [5], results achieved 
using artificial intelligence techniques are compared 
with those using traditional econometric methods. 

2. Data and Forecasting Model 
Monthly seasonally adjusted CPI data spanning the 
period 1960:01 to 2006:01 were used in this analysis. 
Inflation was constructed from CPI for each month as 
year on year growth rates of prices. Sixteen alternative 
definitions of the US money supply were evaluated in 
terms of their inflation forecasting potential. We 

employed the standard Federal Reserve Bank of St 
Louis simple sum and Divisia MSI formulations at 
four levels of aggregation, namely, M1, M2, MZM 
and M3. These were downloaded directly from the 
FRED database at St Louis. Next, experimental 
Divisia indices were constructed to determine whether 
or not the St Louis Fed constructions could be 
improved upon. Thus our Divisia measures were 
constructed using alternative benchmark rates, namely, 
the BAA interest rate as a benchmark and with an 
upper envelope of assets used as a benchmark. Out of 
the sixteen available measures of money, we restricted 
the choice of monetary aggregate to just one for each 
of our model selections. We also experimented with 
the inflation forecasting potential of interest rates in 
our study, given that short run interest rates are 
commonly used as a tool to control inflation. Thus, a 
short interest rate, (three month treasury bills), a long 
interest rate, (the BAA rate), both a short and long rate 
were added, or finally no interest rates at all were 
added alongside the chosen measure of money defined 
above. Lags of each variable and orders of 
differencing of each variable were permitted and left 
to the discretion of the individual modeller. 

 Each of the three computer scientists were asked 
to find the best inflation forecasting model based on 
their own preferred artificial intelligence models. Of 
the 541 data points available, the first 433 were used 
for training, (January 1960 - February 1997), the next 
50 data points were used for validation, (March 1997 – 
April 2001) and the next 50 data points were used for 
forecasting (May 2001 – June 2005). 
 Individual models compete against one another 
with the top four being selected based on their 
performance on the validation set. The winning 
network models are subsequently evaluated 
individually and as an ensemble to ascertain 
performances across horizons of both six months and a 
year.  

3. Models 

3.1 Evolutionary Neural Networks 
The first approach we will investigate is the use of 
evolutionary neural networks. The other 
methodologies reported in this paper typically require 
the formation of a set of systematic experiments to 
iterate over the various control parameters. By 
utilising evolutionary neural networks we aim to find a 
good set of parameters using evolutionary pressure 
alone. Some of our previous work has shown success 
with this approach (see, for example, [6,7]) but the 
dataset under consideration here is a lot larger and we 
have never compared the results against as many 
methodologies as we are proposing here. 



 Using the evolutionary paradigm we create a 
population of neural networks. Each network uses 
inputs from one of the 16 available measures of money 
along with zero, one or two of the rates of interest. 
Each of these measures is lagged, with the amount of 
lag being subject to evolutionary pressure. We also 
allow the network to be recurrent, so that the values 
which are output from the hidden layer are fed back 
into the input layer. 
 The networks compete with one another for 
survival, with half of the best performing networks 
surviving to the next generation. The worst performing 
networks are killed off, and are replaced by mutated 
versions of the best networks. Mutations are 
performed by changing either the weights within the 
network or its architecture. For example, one mutation 
would simply adjust the weights by normally 
distributed random variables. Another will add/delete 
the number of hidden neurons. Yet another will adjust 
the amount of time lag for the inputs being used. 
 Our previous work [6,7], as well as the work other 
researchers (e.g. [8]), has shown that this approach 
can evolve highly competitive neural networks and our 
preliminary results (not reported here) show promise 
for this dataset. 

3.2 Recurrent Neural Networks 
Recurrent neural networks (RNNs) are typically 
adaptations of the traditional feed-forward multi-
layered perceptron (FF-MLP) trained with the back-
propagation algorithm1 [9]. This particular class of 
RNN extends the FF-MLP architecture to include 
recurrent connections that allow network activations to 
feedback (as internal input at subsequent time steps) to 
units within the same or preceding layer(s). Such 
internal memories enable the RNN to construct 
internal representations of temporal order and 
dependencies which may exist in the data. Also, 
assuming non-linear activation functions are used, the 
universal function approximation properties of FF-
MLPs naturally extends to RNNs. These properties 
have led to wide appeal of RNNs for modelling linear 
time-series data. 
 We build upon our previous successes with RNNs 
[10,11] for modelling financial time-series data and 
assess the efficacy of applying a discrete-time 
recurrent neural network to the problem of forecasting 
US inflation rates. The architecture used employs 
recurrent connections from the output layer back to the 
input layer, as found in Jordan networks [12], and also 
from the hidden layer back to the input layer, as found 
in Elman’s Simple Recurrent Networks (SRNs) [13]. 
An RNN with this type of recurrency can represent 
auto-regressive with moving average (ARMA) 

                                                           
1. From hereon simply referred to as FF-MLP. 

estimators [14]. Research using such networks for 
time-series prediction tasks has so far proven 
encouraging [10,11,15,16,17] and warrants further 
investigation. It is accepted, however, that careful 
selection of appropriate input variables, lag structures, 
and network model is crucial to achieving an RNN 
capable of adequately dealing with the high levels of 
noise, nonstationarity and nonlinearity which may be 
prevalent within the time-series data.  
 The internal input or context layer consists of 
activations fed back via the feedback connections. 
Backpropagation-through-time (BPTT) [9,18,19] is 
then used to train the individual networks. The specific 
lag structure, model structure and size are determined 
through empirical evaluation.  

3.3 Kernel-based Regression 
Techniques 
In addition to the above models, we applied Kernel 
Recursive Least Squares (KRLS)  [20]. TThis is 
basically a kernelized version of the classical  
Recursive least-squares technique. Recursive  
least-squares are performed in the feature space 
defined by the kernel. We used spherical Gaussian 
kernels; kernel width is set on the validation set. 
Regularization parameter controlling the feature space 
collinearity threshold is set on the validation set as 
well.  

We also considered Kernel Partial Least Squares 
(KPLS) [21]. This is a kernelized version of the Partial 
Least Squares technique. Again, spherical Gaussian 
kernels were used. Kernel width as well as the number 
of latent factors were set on the validation set. 

3.4 Naïve Models 
Naïve 1: If the prediction horizon is T months  
(in our case T=6 or T=12), predict that in T months we 
will observe the current inflation rate. In other words, 
if the current inflation rate is R(t), we predict that the 
inflation rate at time t+T will be R(t), i.e. r(t+T) = R(t), 
where R(t) is the actual observed inflation rate at time 
t and r(t) is the inflation rate predicted to occur at time 
t by our model. This model corresponds to the random 
walk hypothesis with moves governed by a 
symmetrical zero-mean density function, and thus 
measures “the degree to which the efficient market 
hypothesis applies”. 

Naïve 2: calculate the mean, Rm, of the inflation 
rates on the training set and then always predict Rm as 
the future inflation rate. This should work well if the 
series is stationary and variance is low. 

 



4. Results  
Results from recurrent neural networks and 
evolutionary strategies will follow in the final paper. 
For the Kernel based regression methods over the 12 
month forecast horizon, the performances of both 
KRLS and KPLS were comparable; hence just results 
for KRLS are reported. The best performing KRLS on 
validation set was a non-linear autoregressive model 
on inflation rates alone. Input data was normalized to 
zero mean and unit standard deviation (the mean and 
variance are determined on the training set alone). The 
input lag was set at 24 months and kernel width was 
1.8. The mean square error of the best performing 
KRLS was 0.000135, compared with 0.000159 for the 
naïve 1, selected as the representative of model  
class “Naïve” of simple, but potentially powerful 
models. This represents an Improvement Over Naïve 
(ION) model of 15.1%. A flat ensemble of the four 
best performing models on the validation set produced 
a mean square error ensemble of 0.000109, with an 
ION of 31.4%.

5. Evaluation 
The “market” is efficient in the sense that it is difficult 
to beat the Naïve 1 model. The ION measure is best 
suited for our purposes, because rather than worrying 
about the precise MSE values, we should be concerned 
about how much we can beat the rather obvious 
strategy Naïve 1 by, based on the Efficient Market 
Hypothesis. We find that the longer the prediction 
horizon, the harder it is to accurately predict the 
inflation rate.  It seems that inclusion of historical 
inflation rates alone works quite well. We may 
speculate that the value of money is implicitly 
represented in the inflation rates and thus their explicit 
inclusion as input variables does not help, rather, it can 
actually make things worse because of the under 
sampling problems.  

Because the validation set is just a sample, we 
cannot rely solely on picking the best model on the 
validation set. Slightly worse models on the validation 
set may be slightly better on the test set. Therefore we 
constructed flat ensembles of several best performing 
models on the validation set. The performance of the 
ensemble on the test set is always better than that of 
the single winner picked on the validation set.  

It is interesting that the ION measures do not 
change drastically with increasing prediction horizon. 
That indicates that for longer prediction horizons, it is 
more difficult to predict the inflation rates, but the 
naive model is less suited as well, so things cancel out. 
Future results on the relative performance of the 
respective Divisia indices will follow in the final 
paper. 
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