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Abstract

A major failure of rational models (cognitive science,
game theory) of organizations is the use of static
concepts of interdependence to predict dynamic
behavior. A quantum model of organizations
transforms the traditional model with its dynamic
interdependence of uncertainty. We consider field
and laboratory data and models.

1.0. Overview:

Global economic shocks such as the rapid
wntroduction of new technology inte a mix of
interdependent societies competing under various
degrees of stability can produce uncertainties and
risks that affect the ability of organizations to
respond and adapt. In our interpretation of May
(2001}, as environmental volatility increases (e.g., the
average volatility or VIX index on stock markets was
over 30 during the recession of 2002; see
www.choe.com/micro/vix), competition and social
evolution decrease n a tradeoff as dynamic stability
between organizations increases; e.g., the instability
among weaker U.S. commercial airlines immediately
after 9/11. However, as environmental volatility
reduces (e.g., the historic lows in the VIX index in
2005 with its close near 12), social evolution driven
by competition increases from dynamic nstability
between organizations struggling to survive; e.g., the
performance n small capitalization stocks in the U.S.
stock market over large caps in 2004-05.

From a traditional perspective, change
creates disruptive uncertainties; however, from our
perspective, mergers in a market under threat attempt
to increase efficiency (Andrade et al., 2001); e.g., the
increased telephone market share by wireless
communications led to a decrease in telephone lines
in the TU.5., causing mergers among
telecommunication firms like that between SBC and
AT&T in 2005,

Alternatively, there may be limits to static
knowledge as Campbell (1996) warned for analyses
based on convergence processes in the study of
humans, or as Macy (2004) warned for analyses
derived from invalid MAS models. But if these
limitations can be controlled, the ability to anticipate
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the complex consequences of change may lead to a
better understanding of organizational dynamics. We
know that some orgamzations are better at managing
change—e.g., Southwest versus Delta Airlines n
2005—but we do not know why. We first suspected
from Luce & Raiffa (1967) that game theory is
unable to distinguish between an organization’s
members and an aggregate of individuals. Now we
know that simply summing the contributions of the
agents in an organization does not tell us what an
organization will do (Levine & Moreland, 1998).

Our past studies indicate that democracies
and autocracies handle large-scale transformations
differently. Democracies are more likely to use
majority rules (MR) m their responses (Flaig, 2004),
a more competitive process that generates and
processes information. In contrast, organizations,
coalition governments, and command economies tend
to use consensus rules (CR), a more cooperative
process better aimed at interpreting events to fit a
single worldview such as that used by authoritarian
regimes to marginalize critics; e.g., Krushchev’s
marginalization after criticizing Stalin (Taubman,
2004). Earlier we found that the more politically
competitive was a society, the more quickly it applied
its knowledge in responding to natural disasters
(Lawless et al., 2006a); e.g., according to the World
Bank (www.worldbank. org), China has become a
financial superpower, but its autocratic government 1s
responsible for 16 of the 20 most dirty cities around
the globe, over 5,000 deaths annually in coal mining
accidents, and a rural health care in collapse.

The central problem remains the lack of a
mathematical theory of dynamic interdependence for
social situations as when forming a dyad between
two agents alters the cognitions of both. This problem
was recognized early on when Von Neuwmann and
Morgenstern (1953) acknowledged that game theory
was static; while they believed that their mathematics
of interdependence was a step forward, Bohr’s (1955)
criticism of the lack of dynamic interdependence in
game theory led them to conclude that if Bohr was
correct, a rational theory of behavior was
“inconceivable” (p. 148).

If the factors of action and observation are
interdependent and complementary, mformation can




be collected from one factor but not both
simultaneously, the flaw in presenting static game
theory matrices to subjects that bedeviled Kelley
(1992) and in social convergence methods that
caused the great Campbell (1996) to reject his
methodology which remains the mainstay of modern
social science.

Shafir and LeBoeuf (2002) provide a
devastating critique of the rational model’s
assumptions underlying traditional individual and
organizational preferences, utility, choice, judgment,
and decision-making. The long-held assumption in
traditional cognitive science that manipulating an
equivalent rational statement into one with
conjunctives or disjunctives, construed with
differently valenced emotions, reframed equivalently
as a loss or gain, and other manipulations of the
context are supposedly irrelevant to rationality have
instead disabled it. In response, rationalists devised a
dual cognitive systems model with intuition for
everyday decisions and formal analyses for expert
decisions. But Shafir & LeBoeuf found no evidence
that experts are immune to violations of rationality;
e.g., we criticized agent-based models of electricity
markets (Conzelmann et al., 2004) based on the
advice of subject matter experts as insufficient to
establish validity (Lawless et al., 2006a).

Dynamic interdependence means that an
agent’s strategy in an interaction event shifts over the
available choices over time, changing its perceptions
of the risks and uncertainties. Game theory attempts
to bracket expected outcomes, but it often overlooks
the reactions of society and the costs of a strategy. To
ask agents to justify their decisions causes them to
construct answers on the fly that are independent of
their decisions (Shafir & LeBoeuf, 2002). Dynamic
interdependence relies on a random exploration of
possible histories until the “right” one is found
(stochastic resonance; Nicolis & Prigogine, 1989). To
an organization provided with a dynamic
interdependent metric (real-time profit and losses),
such a solution often is characterized by an
unexpected increase in sales (an increasing number of
fourier elements to imply resolution; May, 2001). In
recounting an interaction, we are left with language
to provide a static description of it, or “story”. But
conjugate interdependence means that a “story” is
unable to reconstitute the interaction.

Although complex in its ramification for
mathematical or ABM models or to control, the
central idea is easy to grasp with common examples:
when you listen to someone else, or when you are
angry and another person is not, both of you lose
information about each other’s states. Moreover, for
our purposes, when you and another person are
expressing incommensurable views to which both of

you are committed for whatever reason, then the two
of you become drivers on that topic in any discussion
for the purpose of reaching a decision (e.g., an
avowed Christian and a Muslim; a GM and a Toyota
worker; and an oil executive and an environmental
activist). Should other participants in this discussion
and decision process be less knowledgeable than the
two drivers of the discussion, they become more
neutral to the discussion on technical issues.

1.1. From field research a hypotheses.

The mathematical physics of uncertainty is
based on the assumption from Bohr that social reality
is bistable, with multiple sources of information
mostly inaccessible due to interdependent
uncertainties, making social categories arbitrary. To
uncover interdependent uncertain information about
an organization requires that it be disturbed to
generate feedback, a notion alien to rational models.
A common perturbation is a hostile merger offer
between competing organizations, e.g., Oracle and
PeopleSoft. A common perturbation from our
research of Citizen Advisory Boards (CABs)
advising the Department of Energy (DOE) on
environmental cleanup is the conflict caused by
incommensurable beliefs, a necessary condition to
attract neutrals to observe a process and determine its
outcome.

One such perturbation began when Assistant
DOE Secretary Roberson called for an acceleration of
the cleanup in 2002, including transuranic (tru)
wastes destined for WIPP (Fig. 1). In response, DOE
scientists and engineers developed 13
recommendations to accelerate the disposal of Tru
wastes submitted to Boards for approval; e.g., one of
these recommendations was: “DOE, in consultation
with stakeholders and regulators, reexamine the
categorization of TRU waste using a risk-based
approach” (for the list, see Lawless et al., 2005). This
meant a tradeoff between leaving more dangerous tru
wastes at a site, increasing risks to future
stakeholders, and shipping more of it to WIPP,
increasing health risk to workers and financial risks
to institutions (see Fig. 1).
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Fig. 1: The measurement problem for DOE’s waste
and environmental cleanup (here “¢™ is a constant)
(Lawless et al., 2005). In response to DOE Assistant
Secretary Roberson call in 2002 to accelerate DOE’s
cleanup, Strategy: Would DOE’s Citizen Advisory
Boards understand DOE’s plan? Execution: Would
the CAB’s push DOE to execute its plan to accelerate
cleanup? Energy: Would the CAB’s support be
sufficient to make DOE effective? Time: Would the

support by the CABR’s be timely or opportunistic?

From the perspective of DOE scientists and
engineers, Figure 1 illustrates mathematically the
effects of interdependence on uncertainty. In Figure
1, we formalized Bohr’s ideas about the measurement
problem as a series of interrelated tradeoffs between
two sets of interdependent factors. The central idea 1s
that as convergence 1s constructed in order to reduce
uncertainty in one factor, say planning, the nonlinear
uncertainty in the other factor is tracked
mathematically. The uncertainty relations for social
interaction are represented by complementarity
between strategy, plans, or knowledge uncertainty,
AK (where K = function of social and geographical
location, x) and uncertainty in the rate of change in
knowledge, or its execution, as Av = A (AK/AD.
Similarly, complementarity also exists in uncertainty
in the energy expenditure committed to enact
knowledge, AE, and by uncertainty in the time to
enact knowledge, Af. Bi-sided conjugate factors
preclude a simultaneous knowledge of either set.

The model in Fig. 1 remained untested until
the post hoe discovery that all of the Citizen Boards
focused on a single problem in early 2003--
accelerating tru wastes to the WIPP repository
(www.wipp.carlsbad.nm.us). DOE allows its Boards
to determine their own decision-making process, with
five choosing majority rule (MR) and four consensus
rule (CR), producing a retrospective field experiment.
The result is that four of five MR and one of four CR
Boards adopted the recommendations of DOE
scientists, the MR boards taking about 30 minutes to
decide versus 2 hours for CR boards. We have since
replicated these findings m the laboratory and begun
a full experiment (Lawless et al., 2006b).

1.2. Conflict and Galois lattices.

We have been building agent-based, systems
and Galois lattice (GL) models of organizations of
our field and laboratory findings. In this paper, we
review GL models. A GL model may provide a logic
structure to capture uncertainty. With humans,
conflict and competition generate information and
uncertainty and hold the attention of neutral
observers who serve as judges. But with logic,
building differential operators in symbolic models

requires negation or ortho-complements that are
difficult to locate n non-modular lattices (Chaudron
et al., 2003). Indeed, we proved that conjunctions of
first order logic literals define a non-modular lattice
(the cube model). Thus, the 1dea 1s to go back to
elementary properties provided by negations,
considered as a GL. We intend to upgrade such
structures to enrich their capabilities to capture
predicate logic properties including a conflict-
adapted negation operator. If problem solving is
cooperative, negation locates uncertainty at the point
of least cooperation between opposing agents.

As a simple first step, let us consider a GL that
represents two strong participants (A,B) in an
argument along the horizontal axis at two of its
vertices (forming a horizontal couple). Between these
two horizontal vertices, locate the infimum and
supremuin along the vertical axis, with the nfimum
at the lowest vertex and supremum at the highest, the
infimum being the greatest area of agreement and
lowest level of energy between participants, and the
supremum the least totality of the arguments in play
and highest level of energy. In this model, conflict is
proportional to the energy necessary to achieve
agreement on the information in play, the information
missing and the size of the space containing all of the
arguments; convergence occurs as the argument
moves closer to one side at the expense of the other;
but as convergence in the argument to one side
occurs, uncertainty increases correspondingly mn the
other side of the argument. A solution is located n
the space created by arguments between the two
participants. However, the solution becomes unstable
unless accepted by both participants.

As an example of a static GL, given two agents
A and B strongly opposed to the following: A 1s
opposed to the “aim” and “reasons™ for a topic; B 1s
opposed to its “reason” and “means”. A context can
be defined as a GL of the conflict: A verifies: “aim”
and “reas”; and B verifies “reas” and “means”. At the
top of the lattice, the two agents both disagree on
“reas”, but at the bottom, it 13 proved that neither A
nor B ceonflict about “aim”, “reas” and “means”™
simultaneously, permitting conflict to be explored.

Now suppose there are three other agents C,
D, and E and that if any of the agents in this society
state a rejection set about a given project, it 18
characterized by this revised set of properties: aims,
reasons, means, past, present, and future (the usual
cues in a series of possible arguments related to a
given project, such as: “I protest about the way thus
project has been conducted in the past"). Given: A
aim rea pre; B rea pre mea; C aim mea fut; D rea pre
pas; and E rea pre mea fut (see the picture below).

The higher we rise in the lattice, the more
properties are collected (but the fewer the number of



agents). In the picture, the selected red node is
constituted (see upper right hand side) of agents A B
D E (all but C) who all disagree on two properties of
the project: "rea" and "pre" (thus, C is “neutral” to
any arguments on “rea” and “pre”, making C a judge
in any decision on “rea” and “pre”, a crucial link to
our field research).
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To extend this work and make GL’s dynamic,
we will investigate Heisenberg inequalities in GL’s.
Lattice logic requires that relations are logically
commutative but uncertainty relations are not.
However, if the GL node for an individual agent of
possible conflict properties is its vector of negative
preferences, and if the lattice of the social group is a
conflict matrix, then one lattice matrix times
another—say planning and execution—will not be
commutative.

1.3. Computational coupled agent models.

For the GLA model and systems models, we
believe that feedback converts a conjugate model into
a limit cycle like the interdependent model of
predator-prey. For a coupled model of an industrial
organization, we see a 3D model with two drivers of
polar opposite views fighting to persuade neutrals to
adopt their interpretation of events. We follow May’s
(2001) suggestion that as a landscape of potential
solution space is randomly explored, increasing
Fourier elements represent an increasing N (number)
of supporters as the solution is discovered by
stochastic resonance (e.g., Nicolis & Prigogine,
1989); e.g., Yahoo’s market success since
restructuring in 2001 from 44 to 4 business units
(reducing AK) has centered around executing search
and web technology (increasing Av), advertisement to

free users, and communities of information exchange,
recapturing its market leadership with about 40% of
registered global web users.
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