
Neural-Network-based Metamodeling for Financial 
Time Series Forecasting 

Kin Keung Lai 1 2  Lean Yu 2 3  Shouyang Wang 3  Chengxiong Zhou 3 
1 College of Business Administration, Hunan University, Changsha, China 

2 Department of Management Sciences, City University of Hong Kong, Hong Kong 
3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

Abstract 
In the financial time series forecasting field, the 
problem that we often encountered is how to increase 
the predict accuracy as possible using the noisy 
financial data. In this study, we discuss the use of 
supervised neural networks as the metamodeling 
technique to design a financial time series forecasting 
system to solve this problem. First of all, a cross-
validation technique is used to generate different 
training subsets. Based on the different training 
subsets, the different neural predictors with different 
initial conditions or training algorithms is then trained 
to formulate different forecasting models, i.e., base 
models. Finally, a neural-network-based metamodel 
can be produced by learning from all base models so 
as to improve the model accuracy. For verification, 
two real-world financial time series is used for testing. 

Keywords: Metamodeling, neural network, financial 
time series forecasting, cross-validation. 

1. Introduction 
Financial market is a complex evolved dynamic 
market with high volatility. Due to its irregularity, 
financial time series forecasting is regarded as a rather 
challenging task. For traditional statistical methods, it 
is extremely difficult to capture the irregularity. In the 
last decades, many emerging artificial intelligent 
techniques, such as neural networks, were widely used 
in the financial time series forecasting and obtained 
good prediction performance [1]. 

However, neural networks are a kind of unstable 
learning methods, i.e., small changes in the training set 
and/or parameter selection can produce large changes 
in the predicted output. The results of many 
experiments have shown that the generalization of 
single neural network is not unique. In other words, 
the neural network’s results are not stable. Even for 
some simple problems, different structures of neural 
networks (e.g., different number of hidden layers, 
different number of hidden nodes and different initial 

conditions) result in different patterns of network 
generalization. In addition, even the most powerful 
neural network model still cannot cope well when 
dealing with complex data sets containing some 
random errors or noisy data. Thus, the performance for 
these data sets may not be as good as expected [2-3]. 

To overcome the drawback of single neural 
predictor, metalearning-based metamodeling is 
proposed to solve the problem. Metalearning [4], 
which is defined as learning from learned knowledge, 
provides a promising solution to these challenges. The 
basic idea is to use intelligent learning algorithms to 
extract knowledge from some data subsets and then 
use the knowledge from these individual learning 
algorithms to create a unified body of knowledge that 
well represents the entire knowledge about overall 
data set. Therefore metalearning seeks to compute a 
metamodel that integrates in some principled fashion 
the separately learned models to boost overall 
predictive accuracy. Actually, a metamodel is a model 
of a model. It can be viewed as a transformation model 
that converts the output in one world view to another 
world view [5]. In this study, a triple-phase neural-
network-based meta-modeling technique is proposed. 
First of all, a cross-validation technique is used to 
generate different training sets, validation set and 
testing set. Based on the different training sets, the 
different neural network models with different initial 
conditions or different training algorithms is then 
trained to formulate different neural network 
prediction models, i.e., base forecasting models. These 
base models’ training processes do not affect the 
overall execution efficiency of time series forecasting 
system due to its parallel mechanism of metalearning. 
That is, the base model can be formulated in a parallel 
way. In the third phase, a neural-network-based 
metamodel can be produced by learning from all base 
forecasting models. The main reason that neural 
network is selected as a metamodeling tool is their 
ability to approximate any arbitrary function 
arbitrarily well and provide flexible mapping between 
inputs and outputs [6]. 



The main motivation of this study is to take full 
advantage of the flexible mapping capability of neural 
network and inherent parallelism of metalearning to 
design a powerful financial time series forecasting 
system. The rest of this study is organized as follows. 
Section 2 presents a neural-network-based meta-
modeling process in detail. For verification, two real-
world time series is used for testing in Section 3. And 
Section 4 concludes the paper. 

2. Neural Network Metamodeling 
As Section 1 mentioned, metalearning [4], which is 
defined as learning from learned knowledge, is an 
emerging technique recently developed to construct a 
metamodel that deals with the problem of computing a 
metamodel from large databases. Broadly speaking, 
learning is concerned with finding a model f = fa[i] 
from a single training set {TRi}, while metalearning is 
concerned with finding a metamodel f = fa from 
several training sets {TR1, TR2, …, TRn}, each of 
which has an associated model (i.e., base model) f = 
fa[i] (i =1, 2, …, n). The n base models derived from 
the n training sets may be of the same or different 
types. Similarly, the metamodel may be of a different 
type than some or all of the component models. Also, 
the metamodel may use data from a meta-training set 
(MT), which are distinct from the data in the single 
training set TRi. 

Generally, the main process of metamodeling is 
first to generate a number of independent models by 
applying different learning algorithms to a collection 
of data sets in parallel. The models computed by 
learning algorithms are then collected and combined to 
obtain a global model or metamodel. Fig. 1 shows a 
generic metamodeling process, in which a global 
model or a metamodel is obtained on Site Z, starting 
from the original data set DS stored on Site A. 

 
Fig. 1: The generic metalearning process 

As can be seen from Fig. 1, the generic meta-
modeling process consists of three phases, which can 
be described as follows. 

Phase I: on Site A, training sets TR1, TR2, …, TRn, 
validation set VS and testing set TS are extracted from 
DS. Then TR1, TR2, …, TRn, VS and TS are moved 
from Site A to Site 1, Site 2, …, Site n and to Site Z. 

Phase II: on each Site i (i = 1, 2, …, n) the 
different models fi is trained from TRi by the different 
learners Li. Then each fi is moved from Site i to Site Z. 
It is worth noting that the training process of n 
different model can be implemented in parallel. 

Phase III: on Site Z, the f1, f2, …, fn models are 
combined and validated on VS and tested on TS by the 
meta-learner ML to produce a metamodel. 

From the generic metamodeling process, we can 
find that there are still three main problems to be 
further addressed, i.e., (a) how to create n training data 
sets TRi, validation set VS and testing set TS from the 
original data set DS; (b) how to create different base 
models fi with different learners Li for the neural 
network; and (c) how to formulate a metamodel with 
the different results produced by different models fi. 

2.1. Data Set Partition 
In order to create different neural predictors, different 
training subsets should be generated. Common 
methods for different training subsets include bagging 
[7], noise injection [8] and cross-validation [9]. In 
view of the particularity of neural network predictors, 
cross-validation technique is selected. 

Cross-validation [9] is a tool borrowed from 
statistics. For example, the available data set is 
randomly divided into m disjoint subsets. By selecting 
one of these subsets as a testing set, the remainders are 
rejoined as its corresponding training set. For this case, 
m numbers of overlapping training set and m 
independent testing sets are obtained. As each training 
set is different somehow, the errors they generate after 
training are expected to fall in different local error 
minima and thus lead to different results. Model 
performance is measured on the corresponding testing 
set. This approach ideally requires that the number of 
partitions is the same as the number of data exemplars. 
In practice, ten-fold and twenty-fold cross-validations 
are adopted, i.e., m is equal to 10 and 20, respectively. 

2.2. Single Model Creation 
With the work about bias-variance trade-off [10], a 
metamodel consisting of diverse models (i.e., base 
models) with much disagreement is more likely to 
have a good performance. Therefore, how to create the 
diverse model is the key to the creation of an effective 
metamodel. For neural network, there are four 
methods for generating diverse models. 

(1) Initializing different starting weights for each 
neural network models. 

(2) Training neural network models with different 
training subsets. 



(3) Varying the architecture of neural network, 
e.g., changing the different numbers of layers or 
different numbers of nodes in each layer. 

(4) Using different training algorithms, such as 
the back-propagation and Bayesian regression 
algorithms. 

In this study, the individual neural network 
forecasting models with different training subsets 
generated by previous phase are therefore used as base 
learner L1, L2, …, Ln, as illustrated in Fig. 1. Through 
training, base models f1, f2, …, fn can be formulated in 
a parallel way. 

2.3. Metamodel Generation 
As Fig. 1 illustrated, the initial data set is first divided 
into subsets, and then these subsets are input to the 
different individual models which could be executed 
concurrently. These individual models are called “base 
models’. In this phase, the main task is to generate a 
metamodel to assimilate knowledge from different 
base models. Basically, the metamodel generation 
process is described as follows. 

Based upon different training sets, the base 
models can be generated in the previous phase. Using 
the validation set VS and testing set TS, the 
performance of the base models can be assessed. 
Afterwards, the whole validation set VS is applied to 
these base models and corresponding results produced 
by these base models are used as input of another 
individual neural network model. By validation and 
verification, a metamodel can be generated using the 
results generated by the base model as input, 
combined with their targets or expected values. In this 
sense, neural network learning algorithm is used as a 
meta-learner (ML) shown in Fig. 1 for metamodel 
generation. 

In this process of metamodel generation, another 
neural network model used as metal-learner (ML) can 
be viewed as a nonlinear information processing 
system that can be represented as: 

)ˆ,,ˆ,ˆ(ˆ
21 nfffff L=                        (1) 

where )ˆ,,ˆ,ˆ( 21 nfff L is the output of individual 
neural network predictors, f̂  is the output of the 
neural-network-based metamodel by integrating the 
outputs of all individual neural network predictors, f(·) 
is nonlinear function determined by another neural 
network learning algorithm. 

3. Experimental Analysis 
In the experiments, one stock index, S&P 500, and one 
foreign exchange rate, euros against US dollars 
(EUR/USD), are used for testing purpose. The 

historical data are daily and are obtained from 
Wharton Research Data Service (WRDS), provided by 
Wharton School of the University of Pennsylvania. 
The entire data set covers the period from January 1 
2000 to December 31 2004 with a total of 1256 
observations. The data sets are divided into two 
periods: the first period covers January 1 2000 to 
December 31 2003 with 1004 observations, while the 
second period is from January 1 2004 to December 31 
2004 with 252 observations. The first period, which is 
assigned to in-sample estimation, is used for network 
learning, i.e., training set. The second period, which is 
reserved for out-of-sample evaluation, is used for 
validation, i.e., testing set. For space limitation, the 
original data are not listed in this paper, and detailed 
data can be obtained from the WRDS. 

In order to increase model accuracy for financial 
time series forecasting, ten different training subsets 
are generated by cross-validation technique, i.e., m = 
10. Using these different training subsets, different 
neural network base models with different initial 
weights are presented. For neural network base models, 
a three-layer back-propagation neural network with 10 
TANSIG neurons in the hidden layer and one 
PURELIN neuron in the output layer is used. The 
network training function is the TRAINLM. For the 
neural-network-based metamodel, a similar three-layer 
back-propagation neural network with 10 input 
neurons, 8 TANSIG neurons in the hidden layer and 
one PURELIN neuron in the final layer is adopted for 
metamodel generation. Besides, the learning rate and 
momentum rate is set to 0.1 and 0.15. The accepted 
average mean squared error is 0.05 and the training 
epochs are 1600. The above parameters are obtained 
by trial and error. 

To evaluate the performance of the proposed 
neural-network-based metamodel, several typical time 
series forecasting models, random walk (RW) model, 
auto-regression integrated moving average (ARIMA), 
exponential smoothing (ES) model and individual 
back-propagation neural network (BPNN) model, are 
selected as benchmarks. For comparison, the root 
mean squared error (RMSE) and Dstat [1] are used the 
evaluation criteria and corresponding results are 
reported in Table 1. 

 
Table 1 The comparison of prediction results 

S&P 500 EUR/USD Forecasting 
Model RMSE Dstat(%) RMSE Dstat(%)
RW 14.37 54.36 0.0066 58.69 

ARIMA 9.63 63.43 0.0041 68.47 
ES 10.51 65.71 0.0048 66.86 

BPNN 7.56 72.58 0.0052 74.35 
Metamodel 3.14 86.34 0.0038 87.28 



For the S&P 500, the proposed neural network 
metamodel outperforms the other four typical time 
series forecasting models in terms of both RMSE and 
Dstat. Focusing on the RMSE indicator, the proposed 
neural network metamodel performs the best, followed 
by BPNN model, ARIMA model, exponential 
smoothing model and random walk model. Comparing 
with individual BPNN model, the RMSE of the 
proposed neural network metamodel is much smaller. 
From the viewpoint of Dstat, the performance of the 
proposed neural network metamodel is the best of the 
all. Relative to the individual BPNN model, the 
performance improvement arrives at 13.76% (86.34%-
72.58%), implying that the proposed neural network 
metamodel has powerful forecasting capability. 

For the exchange rate of EUR/USD, the 
performance of the proposed neural network 
metamodel is the best, similar to the results of the S&P 
500. Likewise, the proposed neural-network-based 
metamodel has gained much improvement relative to 
the individual BPNN model and other three typical 
linear forecasting models. Interestedly, the RMSE of 
the individual BPNN model is slightly worse than that 
of the ARIMA and ES model, but the directional 
performance (i.e., Dstat) of the individual BPNN model 
is somewhat better than that of the ARIMA and ES 
model. The possible reasons are needed to be further 
addressed later. 

In summary, we can conclude that (1) the 
proposed neural network metamodel performs 
consistently better than other comparable forecasting 
models for both the stock index and foreign exchange 
rate; (2) the evaluation value of the two criteria of the 
proposed metamodel is much better than that of the 
individual BPNN model, indicating that the proposed 
neural network metamodel can effectively capture 
multiple information and significantly improve 
prediction performance. One possible reason for this is 
that the neural network metamodel has nonlinear 
mapping and multiple-source information integration 
capability. 

4. Conclusions 
In this study, a neural-network-based metamodeling 
technique is proposed to predict financial time series. 
Through the practical data experiments, we have 
obtained good prediction results and meantime 
demonstrated that the neural-network-based meta-
model outperforms all the benchmark models listed in 
this study. These advantages imply that the proposed 
neural-network-based metamodel can provide a 
promising solution to financial time series forecasting. 
 
 

Acknowledgements 
This work is partially supported by National Natural 
Science Foundation of China (NSFC No. 70221001); 
Key Laboratory of Management, Decision and 
Information Systems of Chinese Academy of Sciences 
and Strategic Research Grant of City University of 
Hong Kong (SRG No. 7001677). 

References 
[1] L. Yu, S.Y. Wang, K.K. Lai, “A Novel Nonlinear 

Ensemble Forecasting Model Incorporating GLAR 
and ANN for Foreign Exchange Rates,” Computers 
and Operations Research, vol. 32, pp. 2523-2541, 
2005. 

[2] U. Naftaly, N. Intrator, D. Horn, “Optimal Ensemble 
Averaging of Neural Networks,” Network 
Computation in Neural Systems, vol. 8, pp. 283-296, 
1997. 

[3] J. Carney, P. Cunningham, “Tuning Diversity in 
Bagged Ensembles,” International Journal of Neural 
Systems, vol. 10, pp. 267-280, 2000. 

[4] P. Chan, S. Stolfo, “Meta-Learning for Multistrategy 
and Parallel Learning,” Proceedings of the Second 
International Workshop on Multistrategy Learning, pp. 
150–165, 1993. 

[5] A.B.Badiru, D.B. Sieger, “Neural Network as a 
Simulation Metamodel in Economic Analysis of Risky 
Projects,” European Journal of Operational Research, 
vol. 105, pp. 130-142, 1998. 

[6] H. White, “Connectionist Nonparametric Regression: 
Multilayer Feedforward Networks Can Learn 
Arbitrary Mappings,” Neural Networks, vol. 3, pp. 
535-549, 1990. 

[7] L. Breiman, “Bagging Predictors,” Machine Learning, 
vol. 26, pp. 123-140, 1996. 

[8] Y. Raviv, N. Intrator, “Bootstrapping with Noise: An 
Effective Regularization Technique,” Connection 
Science, vol. 8, pp. 355-372, 1996. 

[9] A. Krogh, J. Vedelsby, “Neural Network Ensembles, 
Cross Validation and Active Learning,” Advances in 
Neural Information Processing Systems, vol. 7, pp. 
231-238, 1995. 

[10] L. Yu, K.K. Lai, S.Y. Wang, W. Huang, “A Bias-
Variance-Complexity Trade-off Framework for 
Complex System Modeling,” Lecture Notes in 
Computer Science, vol. 3980, pp. 518-527, 2006. 


