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Abstract 
 
This paper compares the forecasting performance of 
the conditional autoregressive range (CARR) model 
with the commonly adopted GARCH model. Two 
major stock indices, FTSE 100 and Nikkei 225, are 
studies using the daily range data and daily close 
price data over the period 1990 to 2000. Our results 
suggest that improvements of the overall estimation 
are achieved when the CARR models are used.  
Moreover, we find that the CARR model gives better 
volatility forecasts than GARCH, as it can catch the 
extra informational contents of the intra-daily price 
variations. Finally, we also find that the inclusion of 
the lagged return and the lagged trading volume can 
significantly improve the forecasting ability of the 
CARR models. Our empirical results also 
significantly suggest the existence of a leverage 
effect in the U.K. and Japanese stock markets.  
 
Keywords: CARR, GARCH, Range, Volatility, 
Leverage Effect. 
 
1. Introduction 
 
Volatilities play a very important role in finance. 
Accurate forecasting of volatilities is key to risk 
management and derivatives pricing. The empirical 
finance literature reflects well that concern, nesting 
many different tools for volatility estimation and 
forecasting purposes. It is well known that many 
financial time series exhibit volatility clustering 
whereby volatility is likely to be high when it has 
recently been high and volatility is likely to be low 
when it has recently been low. These findings have 
been uncovered in three ways: By estimating 
parametric time series models like GARCH and 
Stochastic Volatility, from option price implied 
volatilities, and from direct measures, such as the 
realized volatility. Among them, The GARCH model 
is most-adopted for modeling the time-varying 
conditional volatility. GARCH models the time 
varying variance as a function of lagged squared 
residuals and lagged conditional variance. The 
strength of the GARCH model lies in its flexible 
adaptation of the dynamics of volatilities and its ease 
of estimation when compared to the other models. 

Essentially, the GARCH model is return-based 
model, which is constructed with the data of closing 

prices. Hence, though the GARCH model is a useful 
tool to model changing variance in time series, and 
provides acceptable forecasting performance, it 
might neglect the important intraday information of 
the price movement. For example, when today’s 
closing price equals to last day’s closing price, the 
price return will be zero, but the price variation 
during the today might be turbulent. However, the 
return-based GARCH model cannot catch it. Using 
the intra-day GARCH, some studies try to remedy 
the limit of the traditional GARCH. An alternative 
way to model the intra-day price variation is adopting 
the price range data instead. The price range, the 
difference between the daily high and daily low of 
log-prices, has been used in the academic literature to 
measure volatility. Financial economists have long 
known that the daily range of the log price series 
contains extra information about the course of 
volatility over the day. Despite the elegant theory and 
the support of simulation results, the price range as a 
proxy of volatility has performed poorly in empirical 
studies. Chou (2005) conjectures that the 
fundamental reason for the poor empirical 
performance of price range is that it cannot well 
capture the dynamics of volatilities. By properly 
modeling the dynamic process, price range would 
retain its superiority in forecasting volatility. 
Therefore, Chou (2005) proposes an alternative 
range-based volatility model, the Conditional 
Autoregressive Range model (CARR) to forecast 
volatilities. The CARR model is very different from 
Alizadeh, Brandt, and Diebold's (2002) Range-based 
Stochastic Volatility model in several aspects. First, 
The CARR model involves the range data instead of 
the log-range data. Second, the CARR model 
describes the dynamics of the conditional mean of 
the range, while Range-based Stochastic Volatility 
model describes the dynamics of the conditional 
return volatility. Finally, Range-based Stochastic 
Volatility model focuses on estimation and in-sample 
fitting, whereas the CARR model’s interest lies 
primarily in model specification and out-of-sample 
forecasting.  

By applying to the weekly S&P 500 index data, 
Chou (2005) shows that the CARR model does 
provide sharper volatility estimates compared with a 
standard GARCH model. Application of CARR to 
other frequency of range intervals, say every day, 
will provide further understanding of the usefulness 
and limitation of the range model. Analyses using 



 
 

more stock index data will also be helpful. In order to 
induce a more general conclusion of CARR’s 
superiority in forecasting the volatilities of stock 
markets, in this paper the CARR model is applied to 
the daily datasets of two major stock indices: the 
FTSE 100 and the Nikkei 225. Several performance 
measurements are employed to compare the results. 
Besides, several stylized features of stock markets, 
such as the “leverage effect” in the volatility-return 
relation and the positive volatility-volume relation 
have recently become the focus of detailed empirical 
study. Therefore, in the present paper we indicate a 
way of extending the CARR model to reflect these 
features. We examine whether the inclusion of 
lagged return and lagged trading volume can 
significantly improve the forecasting ability of the 
CARR model. Firstly, by incorporating the lagged 
return, we can catch the “leverage effect” in the stock 
markets. The leverage effect or volatility asymmetry 
is negative return sequences are associated with 
increases in the volatility of stock returns. The 
leverage effect was studied in some early work by 
Black (1976), while it motivated the introduction of 
the EGARCH model of Nelson (1991) and the 
threshold ARCH model of Glosten, Jagannathan, and 
Runkle (1993). An economic theory behind such 
effects is discussed by Campbell and Kyle (1993). 
Secondly, by incorporating the lagged trading 
volume into the CARR model, we re-examine the 
relationship between volatility and trading volume in 
the stock markets. Karpoff (1987) provides a detailed 
survey and concludes that volume is positively 
related to the volatility in equity markets.  

The structure of this paper is as follows. 
Section 2 describes the sampling datasets. Section 3 
presents the specification of the CARR model. 
Section 4 discusses the empirical results. Section 5 
concludes this article. 
 
2. Data  
 
We analyze the daily data on the FTSE 100 (London) 
and Nikkei 225 (Tokyo). It covers eleven years 
period, from January 1990 to December 2000. The 
estimation process is run using eight years of data 
(1990-2000) while the remaining 3 years are used for 
forecasting. The data are available from CRSP. The 
daily closing prices are transformed into 
continuously compounded rates of returns as 
followed. 

[ ]1100 ln( / )t t tr P P−=                        (1) 

where tP  is the closing stock index on day t and the 
sample size runs from 1 to T. These returns will be 
used to construct a GARCH model for the 
comparison purpose. The range of the log-prices is 
defined as the difference between the daily log high 
stock index and the daily log low stock index. 

100(ln ln )H L
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where H
tP  and H

tP respectively are the highest and 
lowest stock index on day t.  

As is typical with financial time series, both 
daily returns and daily ranges of FTSE 100 and 
Nikkei 225 exhibit excess kurtosis. As a consequence, 
the Jarque-Bera test results in a rejection of normality 
at the 1% significance level for both indices. Besides, 
compared with the return, the price range catches 
higher variation of intraday price movement on 
average; but the standard deviation of the price range 
is approximately only one-fourth the standard 
deviation of the return. Hence, the superior efficiency 
of the price range measure, relative to the return, 
emerges clearly. 

Augmented Dickey and Fuller (1979) (ADF) 
and Phillips and Perron (1988) (PP) unit root tests for 
non-stationarity in the price-range data of FTSE 100 
and Nikkei 225 both indicate no evidence of non-
stationarity. Each of the unit-root test statistics is 
calculated with an intercept in the test regression. For 
each of these tests, the null hypothesis is a non-
stationary time series and the alternative hypothesis 
is a stationary time series. The lag length for the 
ADF test regression is set using the Schwarz 
information criteria, and the bandwidth for the PP 
test regression is set using a Bartlett kernel. As a 
basis of comparison, recall that the autocorrelations 
for a randomly distributed variable should be less 
than two standard errors. The first ten 
autocorrelations for the range of financial series 
report that the large and slowly decaying 
autocorrelations of the range of both series show 
strong volatility persistence.  
 
3. Model 
 
This section provides a brief overview of the CARR 
model used to forecast range-based volatility. With 
the time series data of daily price range tR , Chou 
(2005) presents the CARR model of order (p,q), or 
CARR (p,q) is shown as 

tttR ελ=                                      (3) 
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where tλ is the conditional mean of the range based 
on all information up to time t, and the distribution of 
the disturbance term tε , or the normalized range, is 

assumed to have a density function (.)f  with a unit 

mean. Since tε  is positively valued given that both 

the price range tR  and its expected value tλ  are 
positively valued, a natural choice for the distribution 
is the exponential distribution. Assuming that the 
distribution follows an exponential distribution with 



 
 

unit mean, Chou (2005) shows that the log likelihood 
function can be written as 
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Chou (2005) also shows that the unconditional long-
term mean of range ω  can be calculated as 
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and for the model to be stationary and to ensure the 
nonnegative range, the coefficients ω , iα  and iβ  
must meet the following conditions: 
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One of the important properties for the CARR 
model is the ease of estimation. Specifically, the 
Quasi-Maximum Likelihood Estimation (QMLE) of 
the parameters in the CARR model can be obtained 
by estimating a GARCH model with a particular 
specification: specifying a GARCH model for the 
square root of range without a constant term in the 
conditional mean equation. The intuition behind this 
property is that with some simple adjustments on the 
specification of the conditional mean, the likelihood 
function in the CARR model with an exponential 
density function is identical to the GARCH model 
with a normal density function. Furthermore, all 
asymptotic properties of the GARCH model are 
applicable to the CARR model. Given that the CARR 
model is a model for the conditional mean; its 
regularity conditions are less stringent than the 
GARCH model. The details of this and other related 
issues are beyond the scope of this paper, and the 
interested readers can be referred to Chou (2005). 

 
4. Results 
 
To estimate and forecast the volatility of these 
indices, we first compare various CARR model 
specifications to determine the best form of the 
model for the price-range data of FTSE 100 and 
Nikkei 225. Specifically, we consider three forms of 
the CARR model: CARR(1,1), CARR(1,2) and 
CARR(2,1). Using the case of FTSE 100 as an 
example, the p-value indicates that both the 2α  

coefficient in the CARR(2,1) model and the 2β  
coefficient in the CARR(1,2) model are not 
significant at the 5% level. The value of the log 
likelihood function (LLF) further indicates that the 
CARR(1,1) model outperforms both the CARR(1,2) 
model and the CARR(2,1) model and the CARR(1,1) 
model is sufficient for both financial time series. This 
results consist with Chou (2005), which also finds 
that the CARR(1,1) model appears to work quite well 
in practice as a general-purpose model. On the other 
hand, among GARCH model specifications 

GARCH(1,1) is the best form of the model for the 
return data of FTSE 100 and the Nikkei 225. The 
range-based volatility models clearly outperform the 
return-based models, since the LLF strongly 
increases to 2.44 and 2.98 with CARR(1,1) versus 
2.38 and 2.84 with GARCH(1,1), for the FTSE 100 
and the Nikkei 225 respectively.  

Based on the appropriate model specification 
for CARR and GARCH, we then perform out-of-
sample forecasts to assess the forecasting ability of 
these two volatility models. No matter for FTSE 100 
and Nikkei 225, both the RMSE and MAE measures 
indicate that the forecasting error of the CARR (1,1) 
model is lower than that of the GARCH (1,1). This 
means that CARR (1,1) model outperforms the 
GARCH (1,1) model. In other words, both measures 
provide support for Chou’s (2005) proposition that 
the range contain more information than the return 
and, as a result, the CARR (1,1) model can provide 
sharper volatility forecasts than the standard GARCH 
(1,1) model. Upon closer examination of the numbers 
across the forecast horizon h , we also find that as 
the forecast horizon h  increases, the forecasting 
ability of the model deteriorates. This finding is 
consistent with West and Cho (1995) and 
Christoffersen and Diebold (2000). According to the 
MDM test, for the time series of FTSE 100 and 
Nikkei 225, the CARR(1,1) model outperforms the 
GARCH(1,1) model. This is encouraging because it 
means that the benchmark GARCH(1,1) is 
consistently beaten by the CARR(1,1) model. The 
results of the Mincer-Zarnowitz regression test are 
consistent with the methods using RMSE, MAE and 
MDM. The dominance of CARR over the GARCH 
model is clear. Once the CARR-predicted-volatility 
is included, the GARCH-predicted-volatility often 
becomes insignificant or with wrong signs.  

The CARR model of order (p,q), or CARR 
(p,q), can be easily extended to incorporate 
exogenous variables itX −  by modifying the 

conditional mean of the range tλ : 
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This model is denoted by CARRX (p,q). In this 
article, we add two exogenous variables, the lagged 
return and trading volume, into the CARR model to 
catch the stylized futures of stock markets, and also 
to investigate whether the forecasting ability of the 
CARR model can be significantly improved.   

By incorporating exogenous variables, the 
lagged return and trading volume, we consider two 
forms of the CARRX(1,1) model: CARRX(1,1)-a 
and CARRX(1,1)-b. The CARRX(1,1)-a model 
incorporates only the lagged return 1tY − , and the 
CARRX(1,1)-b model incorporates only the trading 
volume 1tV − . The p-value indicates that the 1γ  



 
 

coefficient for the lagged return 1tY −  and the 2γ  

coefficient for the lagged trading volume 1tV −  are 

both significant at the 5% level. The 1γ  coefficient 
suggests a negative relation between lagged return 

1tY − and volatility: as lagged return 1tY − decreases, 

volatility would increase. The 2γ  coefficient 
suggests a positive relation between the lagged 
trading volume 1tV −  and volatility: As the lagged 

trading volume 1tV −  decreases, price volatility would 

also decrease. The 1γ  coefficient suggests the 
existence of a leverage effect, such that bad news 
would have a greater impact on future volatility than 
good news. Meanwhile, the 2γ  coefficient also 
suggests the positive volatility-volume relation, 
which means price volatility steadily declines with 
less trading volume. 

Note the reduction of the Ljung-Box Q 
statistics of the CARRX (1,1) model when compared 
to the original CARR (1,1) model. The reduction of 
the Ljung-Box Q statistics indicates that the CARRX 
(1,1) model has better forecasting ability than the 
CARR (1,1) model. The increasing value of the log 
likelihood function also further indicates such. 
 
5. Conclusions 
 
This paper examines the empirical performance of 
the CARR model by analyzing daily data on the 
FTSE 100 and Nikkei 225 over the period 1990 to 
2000. We find that the CARR model produces 
sharper volatility forecasts than the commonly 
adopted GARCH model. Furthermore, we find that 
the inclusion of the lagged return and trading volume 
can significantly improve the forecasting ability of 
the CARR model. Our empirical results also suggest 
the existence of a leverage effect in the U.K. and 
Japanese stock markets.  

The CARR model provides a simple, yet 
effective framework for forecasting the volatility 
dynamics. It would be interesting to explore whether 
alternative choices of the range, such as the monthly 
and quarterly range, fit the class of the CARR models. 
Generally, the empirical results of this article provide 
strong support for the application of the CARR 
model in the stock markets that will be of great 
interest to academics and practitioners, particularly 
those involved in making international risk 
management decisions. 
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