
An Architecture and Programming Framework for
Dynamic Reconfigurable Computing Systems

Qiang Wu Wei Xie Wei Wang
College of Computer and Communication, Hunan University, Changsha, China 410082

Abstract
Dynamic reconfigurable computing (DRC) system is
becoming increasingly attractive with its potential to
combine high performance and rich functionality. But
problems exist in practical application of DRC, such
as that designers need to know the architectural and
physical details of reconfigurable device. To address
this issue, a framework with hybrid architecture and
transparent programming model has been proposed in
this paper, which allows designers develop
applications independently of the underlying physical
devices. The hybrid architecture consists of
microprocessors and reconfigurable hardware
accelerators with corresponding control and
management units. Hardware and software functions
are described with function libraries that can be called
in same manner by application designers. Compilation
and synthesis processes are discussed to map the
system description to the hybrid architecture. It is
believed that this framework will be helpful to
increase the development efficiency on reconfigurable
computing platform.

Keywords: dynamic reconfigurable computing, hybrid
reconfigurable architecture, transparent programming
model

1. Introduction
Reconfigurable computing systems provide a third
choice other than microprocessors and dedicated logic
circuits, which has the potential to integrate the high
performance of hardwired circuits and the rich
functionality of programmable microprocessors, hence
gain much research interests in these years[1]. However,
problems still exist in the practical application of
reconfigurable systems. Among them, programming
model is a key issue in our point of view. In traditional
designs, reconfigurable resource generally plays the
role of hardware accelerators that is controlled and
manipulated with specially designed circuits in system.
This requires the knowledge of the architectural and
physical details of the reconfigurable devices, which is
a non-neglectable obstacle for application developers

who have a software development background.
In previous works, many efforts have made to

attack this problem. Representatively, Herbert Walder
used operating system to abstract programmable
device and proposed an operating system framework
to support reconfigurable hardware in [2]. David
Andrews proposed the opinion to adopt hardware
function modules as hardware tasks to the systematic
management level, and describe the embedded system
with a unified multitasking model[3]. But there are
several shortages in their models, such as that they
only support hardware blocks created statically.

Miljan Vuletic studied the seamless hardware-
software integration in reconfigurable computing
systems by adding a system-level virtualization layer
on reconfigurable device to support a transparent
programming model which hides platform details from
designers[4][5]. Whereas it’s regrettable that dynamic
reconfiguration is not included in the proposed model,
while this ability is becoming poplar in currently
released programmable devices.

We attempt to follow the efforts of previous
approaches to provide a transparent programming
model for designers, and take advantage of the
dynamic reconfiguration ability of underlying
programmable devices. Our idea is borrowed from the
parallel computing for multiprocessors. We treat the
hybrid architecture of dynamic reconfigurable system
consisting of microprocessors and hardware
accelerators implemented on reconfigurable resources
as a cluster of heterogeneous processing units with a
virtually shared memory. Designers write application
description in a manner very similar to that on single
processor architecture, while compiler and synthesis
tools map the description to underlying reconfigurable
architecture, hiding the physical details from the
designers. To achieve this, reconfigurable resource
management unit, hardware function library, as well as
other necessary hardware and software components
are considered and integrated in the architecture and
programming framework in this paper.

The rest of the paper is organized as follows:
Section 2 gives the details of the framework. Section 3
briefs the validating case study. Section 4 discusses
the future work and draws the conclusion.

2. Framework

2.1. Outline
As mentioned in the above section, we intend to
provide a transparent programming model similar to
the single processor platform for the designers. For the
reason, it should be noticed that the software
development seems to be more expensive than the
hardware design in nowadays. Chips are getting
cheaper with the technology improvement while
software development costs are rising rapidly.
Furthermore, software developers have a large library
of previously accumulated codes which is not only a
helpful resource but also a heavy burden needing to
maintain. This brings the designers much difficulty to
shift to a novel development environment. Dataflow
programming languages are such an example, which
honestly to say are much suitable for development on
reconfigurable computing platform consisting of both
hardware and software components. However, due to
the lack of the easy porting method for traditional
software codes to newly proposed dataflow languages,
the dataflow computing systems get very limited
applications in real world.

Another important element of our framework is
the architecture model of the dynamic reconfigurable
computing systems. We focus on the hybrid
architecture of dynamic reconfigurable system
consisting of microprocessors and hardware
accelerators implemented on reconfigurable resources.
Actually this is popular in commercial reconfigurable
computing development platforms[6][7]. Typically,
these platforms have one or more soft-core
microprocessors which can be integrated and
implemented with other hardware logic blocks into the
programmable device. The hardware logic blocks
connect with microprocessors through a shared bus or
some specially designed interconnecting network as
the accelerator of specific functions. The
microprocessors and hardware accelerators may use
some of the on-device memory as local caches.
Memory interface circuits are always integrated into
the programmable device to provide access to the off-
device large memory modules such as SDRAM units.
Such architecture resembles the shared memory
MIMD machine in supercomputer industry. So we
take a view of the underlying hardware as a cluster of
heterogeneous processing units with a virtually shared
memory. In addition, since the programmable devices
are capable of dynamic reconfiguration, this cluster of
heterogeneous processing units can be changed
dynamically, which obviously requires corresponding
control and management components to handle

dynamic processing unit adding and deleting, as well
as interconnection reconstruction.

Obviously, there is a gap between the
programming model and the architecture model
mentioned in above. The programming model we want
to provide intends to approach the single processor
model, while the architecture model follows the
multiprocessing manner. To fill the gap, compiler and
synthesis tools are needed to map the application
description to underlying hardware. The ideal
compiler and synthesis tools are expected to do the
mapping fully automatically. However, considering
the experience in automatic parallelization compiler
research, this task is hardly possible. For an easier
translation process, we leave some work to designers
to help the compiler and synthesis tools complete their
jobs. Designers are required to specify the hardware-
software partition of the system functions explicitly in
the application description with the support of a
hardware function library. Function calls to the
hardware function library will be mapped to the
reconfigurable fabric, while others are mapped to
microprocessors. Such a partitioned description takes a
look as same as the normal function calls, which is
believed to be convenient for designers to specify the
system function.

Putting the above altogether, the framework we
proposed has the hierarchy as follows:

• Application layer: Provides an API for
designers to describe the application. This API
contains the functions from software and
hardware function libraries.

• Operating system layer: Provides mechanism
and system calls for process communication,
synchronization and scheduling with the aid of
the nether firmware.

• Firmware layer: Provides basic routines for
control and access to the reconfigurable
resource management unit, on-line synthesis
and placement unit etc.

• Architecture layer: Contains the
microprocessors and reconfigurable fabric as
processing units, as well as reconfigurable
resource controller, on-line synthesis and
placement unit as the supporting units.

• Hardware layer: Specifies the real physical
components in the system, such as the
microprocessor instances, programmable
devices, memory modules, interconnecting
networks and so on.

The upper three layers belong to the
programming model, and the bottom two layers
belong to the architecture model. The details of them
are described in next two subsections.

2.2. Architecture Model
The architecture model of the proposed framework is
shown in Fig. 1.

Fig. 1: Architecture model

In the following, we want to make a concise
introduction on the key components of the model.

• Processing units: These include
microprocessors and hardware accelerators
implemented on the reconfigurable fabric, as
the “uP” and “HW accl” depicted in the figure.

• Memory system: Microprocessors and
hardware accelerators may have on-chip
memory resources as local caches. They can
also access off-chip memories through
memory interface unit. Both the on-chip and
off-chip memories share a uniform linear
address space. Memory interface unit has
circuits to manage accesses between on-chip
and off-chip memories.

• Interconnecting bus: Processing units are
connected with a shared bus. Each component
connected on the bus has a unique address to
identify itself. Bus controller manages the
traffics on the bus. Snoopy logic is included to
support concurrent executing of software and
hardware functions.

• Reconfigurable resource manager: This
component consists of reconfigurable resource
controller (RRC) and on-line synthesis and
placement unit (SPU). They are in charge of
reading bit streams, performing dynamic
synthesis and placement, and pre/configuring
the programmable device.

2.3. Programming Model
We hope to present a familiar interface for application
developers. A set of function libraries is defined to
build an API for designers. Some of the libraries are of
software. Some of them are hardware function
libraries. They have same syntax forms but different
implementation. Software functions are compiled to
instructions as in normal way. Hardware functions
have only encapsulating codes in the library binaries.
These instructions redirect the execution to system
calls of the operating system and/or basic routines of
firmware layers that commands the reconfigurable
resource manager to read, configure and run the bit
streams of the corresponding hardware accelerator on
the programmable device.

To reduce reconfiguration delay, pre-caching and
pre-configuration should be used. This can be realized
in this framework through static scheduling. In
compilation procedure, calls to hardware functions are
recorded. Then an assistant program reads these
records and makes decisions on when to fetch the bit
streams and configure the programmable device. The
scheduling result will be packed with initializing codes
and bit streams into the NVRAM to notify the
reconfigurable resource controller about the time of
pre-caching and pre-configuration.

Another potential performance improvement in
dynamic reconfigurable computing systems is the
parallelization of software and hardware tasks. This is
supported this framework through result snooping. In
traditional programming semantics, caller and callee
functions execute mutually exclusively. In our
programming model, calls to hardware functions
return immediately after feeding the parameters to
hardware accelerators. The microprocessor can
continue to run succeeding instructions until it needs
the result of the hardware accelerator. As mentioned
before, bus controller has snoopy logic to monitor the
accesses to these critical objects, and make sure the
right accessing order is maintained.

Fig. 2 summarizes the above brief description of
the programming model.

Fig. 2: Programming model in brief

3. Case Study
To validate the proposed framework, we plan to use
the AVS[8] (Recently approved standard of video

compression in China) decoder as the experimental
design example. The development board for test is the
Xilinx XUPV2P development board, which has
MicroBlaze soft-core processor built in the Virtex-II
Pro programmable device. The software part of the
resultant design will be run on this processor, while
the hardware part will be fitted into the rest of the
reconfigurable resources.

AVS forum has released a reference design of the
decoder fully in C++ source code. The first step of the
design can begin with the construction of the hardware
function library. We search for or design by our own
the hardware implementation of the software functions
that may be partitioned to programmable devices as
the accelerators. It should be noted that such a library
construction may not be needed every time in designs,
since these hardware implementations may be reused
in future designs.

After the construction of hardware function
library, the application description can be specified
with the functions of both hardware and software
libraries. Then the compiler will translate the codes to
instructions. Calls to hardware functions will generate
instructions communicates with the reconfigurable
resource controller to configure, execute the
corresponding hardware accelerators. Calls to software
functions will generate instructions as in normal cases.
Hardware scheduler can engage in this process to scan
the generated instructions and build the pre-
configuration list on the programmable device for
better performance. In the next, these complied codes
and pre-configuration information, as well as the
configuration bit streams for hardware accelerators
synthesized beforehand in hardware library
construction will be stored in the non-volatile memory
of the system. During the execution of the system, the
operating system and the on-line reconfigurable
resource management unit will cooperate to control
and synchronize the running of hardware and software
functions for a high performance and transparent
implementation of system functionality.

Currently we are constructing the hardware
function library and building the corresponding
configuration bit streams. The whole decoder is
expected to finish soon after this laborious task.

4. Conclusion
In this paper, we presented a framework for dynamic
reconfigurable computing systems, which includes
architecture and programming models. The
architecture model takes a view on the dynamic
reconfigurable computing system as a cluster of

microprocessors and hardware accelerators as
heterogeneous processing units with a shared memory.
Reconfigurable resource controller, on-line synthesis
and placement unit and snoopy logics are included to
support efficient implementations of applications. The
programming model intends to present an interface
similar to normal software development environment
for designers. Hardware accelerators are encapsulated
in hardware function libraries and called as normal
software functions. Static scheduling and result
snooping are employed to improve the performance.

Current work is focused on validating the
proposed framework with a case study on AVS
decoder. Automatic hardware-software partitioning for
dynamic reconfigurable computing systems is also
noticed as one of our research topics in the future.

5. Acknowledgement
The authors would like to thank Xilinx University
Program for the kind donations of the development
boards and software packages.

6. References
[1] Tim J. Todman, George A. Constantinides, etc.

"Reconfigurable Computing: Architectures and
Design Methods". IEE Proceedings on
Computers and Digital Techniques, 152(2),
pp.193-207, 2005.

[2] H. Walder, and M. Platzner, Reconfigurable
"Hardware Operating Systems: From Concepts
to Realizations", Proc. Int'l Conf. Eng. of
Reconfigurable Systems and Algorithms, pp.
284-287, 2003.

[3] David Andrews, Douglas Niehaus.
"Programming Models for Hybrid FPGA-CPU
Computational Components: A Missing Link".
IEEE Micro, 24(4), pp. 42-53, 2004.

[4] M. Vuleti´c, L. Pozzi, "Seamless Hardware
Software Integration in Reconfigurable
Computing Systems", IEEE Design & Test of
Computers, 22(2), pp. 102-113, 2005.

[5] M. Vuleti´c, L. Pozzi, "Virtual Memory Window
for Application-Specific Reconfigurable
Coprocessors”, Proc. of DAC, pp. 948-953, 2004.

[6] Xilinx Inc. “Development boards”,
http://www.xilinx.com. 2006

[7] Altera Inc. “Development kits”,
http://www.altera.com. 2006

[8] AVS Organization. http://www.avs.org.cn. 2006

