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Abstract

In this paper we propose a linear-time algorithm
to solve the problem of finding an Induced
interval graph with a maximum number of
vertices In a distance hereditary graph.
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1 Introduction

A graph & = (V| E) is an interval graph if there
exists a one-to-one correspondence between V
and a family I of intervals of the real line such
that two vertices in V are adjacent if and only
if their corresponding intervals in F' overlap. F
is called the inderval model of G. The mazimum
interval graph problem (MIGP for short) on 4 is
to find a maximum induced interval subgraph of
G by deleting the minimum number of vertices
of G. A more generalized problem is called the
node-deletion problem [4, 5, 8. The node-deletion
problem for a graph property 7 on a graph G is
to find a vertex set of minimum cardinality whose
deletion {along with all the incident edges} from
G leaves a subgraph satisfying the property .
Thus, MIGP is the node-deletion problem with =
equaling to “interval graph.”

MIGP has an application to physical mapping
of a target DNA molecule [1, 2, 3]. Suppose
that we are given a set of fragments, where each
fragment corresponds to a substring of the tar-
get, DNA. Then the alm of the physical map-
ping problem is to reconstruct the relative po-
sition of these fragments along the target DNA
based on the information of their pairwise over-
laps. From the graph viewpoint, we can built a
graph & = (V| E) according to the fragments and
thelr pairwise overlaps as follows. Each fragment
is represented by a vertex and two vertices are
adjacent if and only if their corresponding frag-
ments overlap. If the fragments are accurate and
cover the whole target DNA, then the physical
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mapping problem becomes the one of recognizing
whether 7 1s an interval graph and constructing
its interval model if so. In laboratories, however,
some bilological techniques may occasionally pro-
duce some new and bad fragments such that &
is not interval any more. Therefore, we want to
find and remove such bad fragments from & such
that & becomes an interval graph.

In this paper, we solve MIGP in linear time for
distance hereditary graphs.

2 Preliminaries

We denote the number of vertices of a graph
& = (V, £ by n and the number of edges by m.
An independent set in a graph is a set of pairwise
nonadjacent vertices. For a graph G = (V, F)
and W C V, G[W] denotes the subgraph of G
induced by the vertex set W. If any two distinct
vertices in an induced subgraph &' of G are ad-
jacent, then G’ is called a clique. For a vertex
rof G=(V,E), Nz) ={y € V|(z,y) € E} is
the neighborhood of x and N[z| = N(z) U {z} is
the closed neighborhood of x. Let G = (V, E) and
H = (W, F) be two graphs. We denote the union
of Gand H by GUH = (VUW, EUF) and the in-
tersection of G and H by GNH = (VnW, ENE).
Welet G—H=(V-W E-F).

Three vertices in a graph G form an asteroidal
triple (AT for short) if every pair of them is con-
nected by a path which does not pass through
the neighborhood of the third. A graph is AT-
free if no three vertices of G form an AT. Notice
that an AT is independent. In a cycle, a chord is
an edge joining two non-consecutive vertices. A
graph G 1s chordal if every cycle in G of length
greater than three has a chord.

Theorem 1. [7] A graph & is an interval graph
if and only if 7 is chordal and contains no AT.

Given a graph &, the distance between vertices
u and v of &G, denoted by dg(u,v), is the number
of edges of a shortest path from u to v. A graph
is distance hereditary if any two distinct vertices
have the same distance in every connected in-
duced subgraph containing them. Chang et al.
showed that every distance hereditary (DH for
short) graph has a graceful characteristic [6] that
comes from the concept of twin sets (which are



vertex subsets). We use 7'5(5) to denote a twin
set of the DH graph G.

Deefinition 1. [6] DH graphs can be defined re-
cursively as follows:

1. A graph consisting of only one vertex is DH,
and its twin set 1s the vertex liself.

2. If Gy and G5 are disjoint DH graphs, then
the union & of them is also DH, and
T85(G) = TS(G) UTS(Ge). G is said to
be obtained from G and &5 by a false twin
operation and denoted by G = G1 & Gs.

3. If G1 and G5 are disjoint DH graphs, then
the graph G obtained by connecting every
vertex of TS(G1) to all vertices of T5(Ga)
is also DH, and T'5(G) = TS(G1) UTS(Gs).
(7 1s sald to be obtained from &y and Gz by
a true twin operation and denoted by G =

G & Gs.

4. If Gy and G5 are disjoint DH graphs, then
the graph G obtained by connecting every
vertex of T'5(G1) to all vertices of T'S(Gs)
is also DH, and T'S(G) = 1T'S(G). G is sald
to be formed from &7 and Gs by a pendant

vertex operation and denoted by G = G @
Ga.

By the definition above, for any DH graph,
a binary ordered decomposition tree can be ob-
tained in O(n + m) time [6]. In this decompo-
sition tree, each leaf node denotes a vertex and
each Internal node represents one of the three op-
erations: pendant vertex operation (4), true twin
operation (®), and false twin operation ().

Throughout the paper, we assume that a de-
composition tree of a DH graph is given. In the
following, we shall show that the maximum in-
duced interval graph problem on DH graphs can
be solved in O(n 4 m) time using the dynamic
programming technique.

3 A linear-time algorithm

Let G = (V,E) be a DH graph. Let MI{G) de
note a maximum induced interval graph of G.
Let MI,(G) dencte an induced interval graph of
G of maximum vertices such that it contains a
vertex in T'S(G) and let M1, (G) denote an in-
duced interval graph of G of maximum vertices
such that it contains no vertex in T'S(GF). As
sume that S is a family of induced subgraphs
of G. Let max S dencte an induced subgraph
of & of maximum vertices. Clearly, MI{(G) =
max{ M L,{(&), MI, (G)}.

For simplicity, we assume that a DH graph &
is formed from two disjoint. DH graphs G and
Gy if G conslsts of more than one vertex.

Definition 2. Let I7 and f> be Induced Interval
graphs of DH graphs Hy and Hs, respectively.
Let [; = I3 denote the graph obtained by con-
necting every vertex of Iy N A [TS(H1)] to all
vertices of Iy M Ha[T'S(Hy)].

Definition 3. We use @ to denote an empty
graph and use ® to denote a graph with vertices

—co, Welet HU® =P and H P = P for any
graph H.

The following three lemmas can be easily veri-

fied.

Lemma 1. If G consists of only one vertez, then
MIL(G) =G and MI,{(G) =10.

Lemma 2. Suppose that G = G1 @ Ga. Then

(1) MI,(G) = M1y (G1) UMIy(Ga).
MI,(G1) UM (Ga),
MI,(Gy) U MI(Gs),
MI(G1) UMIL(Gs)

(2) MI(G) = max

Lemma 3. The following statements are true.

(1) Suppose that G = G1&Gs. Then M1y (G) =
MIy(G1) UMIy(Gs).

(2) Suppose that G = G1@8Gs. Then M1y (G) =
MI(G1) UMI(Gs).

Lemmas 4-8 are concerned with the computa-

tion of MI,(G) for G = G1®Go or G = G1 B G,

Lemma 4. Suppose that & = (G @ Gy or
G = Gl o) GQ. Let Il = Mft(G) mn Gl and
I = MI(GYNGa. If I contains a vertex in
TS(G1) and Is contains a vertex in T'S(Gz), then
I N GL[TS(G1)] is o cligue or 1o N Go[T'S(G)]

is a cliqgue.

Definition 4. Let G be a DH graph and [ be
an induced interval subgraph of G. An AT-free
set A ={z,y,z} in [ is a weak AT-free set if the

following conditions are satisfied.

(1) Vertex x is in T'5(&7) and vertices vy and z
are not in 1'5(G),

(2) there is an x,y-path avoiding Ng(2),

(8) there is an x, z-path avoiding Nz (y), and

(4) all , z-paths pass through a vertex of Ng (z).

If A= {z,vy, 2} is a weak AT-Iree set and there is
a y, z-path avoiding all vertices in Ng[z]NT'5(G),
then A is called a #-weak AT-free set.

Definition 5. Let &G be a DH graph. Let I be
an induced interval graph of & and {7, [) =
I NnGTS(GE)]. We use Fi(G,I) to the denote
the union of all connected components of I in
which every component has a vertex in 1'S{).
We define the following terms.



1 [,(G) = {I] I.{G,I) is a clique} and
I (G) = {I|1L(G, ) # 0, I,{(G,I) is not
a clique, and any two nonadjacent vertices
of Li{G,I) have no common neighbor in

2. I,o(G) = {III € I,(G) and I(G,I) =
FA(G D}

3. Ig,l(G) ={I|I € I,(G), I,(G,I) C F4(G,I),
and [ has no t-weak AT-free set}.

4. I;,l(G) ={I|I € 1,(G), (G, I) C F,(, 1),
and I has no weak AT-free set}.

5. Igo(G) = {I|I € 14(G) and I(G,I) =
FA(G, D}

6. Ig,,l(G) = {I|I e I,(G), L(GI) C
F(G, 1), and I has no t-weak AT-free set}.

T f;;’l(G) = {III e I;(G), L(GI) C
£(G, 1), and [ has no weak AT-free set].

Notice that It(G Iy © F(GI), I;,(G) <
I31(G), and Iy, ((G) € I 1(G). Let MIQD(G)
MIJ L (G), MIls (&), MT, /’O(G) IY 1(G), and
MI;,’l(G) denote the maximum induced inter-
val graphs of I, 4(G), Ig’l(G), I;,l(G), Iy 0(G),
Ig,,l(G), and I;,’l(G), respectively.

Lemma 5. Suppose that G = G1 @ Gy or G =
G1® Ga. Assume that M I (G) contains o vertez
in T'S(G1) and a vertex in T'S(G2). Let [} =
MLG) NGy and fa = MEL{(G) N Ge. LetTy =
Il n Gl[TS(Gl)] and Fl = Ft(GLIl)' Let TQ =
I n GQ[TS(GQ)] and Fy, = Ft(GQ,IQ). Let i
{1,2}. The following statements are true.

(1) Any two nonadjacent vertices of T; have no
cormmon netghbor in I; — T;.

(2) If F; =T, then Is_; has no t-weak AT-free
set.

(3) IfIhy C Ky andTs C By, then [y and 1o have
ne weak AT-free set.

Lemma 6. Assume that G = (G1 @ Gy or G =
G1® Gy, Forie {1,2}, let I, € I,(Gy), I, €
I(Gsy), end I, € Iy (Gs_;). Then I, pal, and
I, = I, are chordal graphs.

Lemma 7. Suppose that G = G1 @ Go. Let
ie {1,2}. MIL(G) is one of the following can-
didates, whichever has mazimum number of ver-
tices:

(1) MI,(Gs) UM, (Gs_s).
MIQ',O (GS—?:)’
quf’D(Ggfi),
MI®,(Gay),
MIE | (Gs_y)

@) MI3,(G pemax | sl |

(2) MIq,O(Gi) =] max

(4) MIL (Gy) deax{ p1(G-s) }

Mﬁ (Ga )

Lemma 8. Assume that G = G1 ® G, Let
i € {1,2}. MIL(G) is one of the following can-
didates, whichever has mazimum number of ver-
tices.

(1Y ML(G1) UMIL/(G3).

M1, 0(Gas),
My o0(Gs_s),
ML (Cs),
MIS (Gs )

@ arrgae somes { 3055 |-

(4) MI 1(G)wmax{ Mﬁ,ll((%s :)) }

(2) MIq,O(Gi) ] max

Lemmas 9-12 are concerned with the com-
putations of MI,o(G), MIJ (@), MI],(G),
MIy o(G), MIg,’l(G), and Mfl,’l(G)

Lemma 9. Suppose that G consists only one
verter. MI,o(G) = G. MID 1(&), Mfé,l(G),

M1, o(G3), MIO, 1(G), and MI 7.1(G) do not ex-
ist and are denoted by ®.

Lemma 10. Suppose that G = G, @ Ga. Then

(1) Mlgo(G) =

C)Q

{ M1, 0(G1) U MIy (Gy), }
MO ML (G1) UMIo(Gy) [
(2) MIZ,(G) =
MI2, (G 1)UML:/( 2);
m‘“{ MIﬂ(Gl)uM 1(G2) }
(3) MIg,(G) =
MI}(G1) UMI(Ga),
m‘“{ MI(G1) UMIL (Ga) }
(4) MIyo(G) = max A, where A=

ie{1,2}
MGy ),
Mqu’o(Gi) U max MIq,O(G3—i)a s
MI, o(Gs_;)

MI,0(Gs) UM o(Gs_y)
(5) MID (G) = max A, where A =

i€{1,2}
M, (Gs_s),
M1, o0(Gs_s),
MIS,’I(GZ-) Umax ¢ My o(Gs_s), »,
MIO,l(Gg_i),
qu;’l(Gg_i)
MI,0(Gss),
MIg’l(Gz) U max Mqu’o(Gg_;.;), ,
MID (Gsg)
(6) qu, 1(G) = ZQ%}A where A =




M (Gs_y),
M1, 0(Gas),
My o(Gs_s),
MIL,(Gs_s),
MIL (Gs_)
MI,0(Gs_s),
M1y o(Gs_;),
MIL(Gs_y)

MI;,’l(Gi) U max

MI;,l(Gi) U max {

Lemma 11. Assume that G1 @ Go. Then

(1) MI0(G) =
{ MI,0(G1) UMIL (Ga), }
max MI;/(Gl) U MIqso(Gg),
M1y 0(Gr) ba My o(Gs)
(2) MI2,(G) =
MID,(G1)UMIy(Gy),
M,/ (Gh) UMIL ,(G),
MIS,]_(GI) [ MIq’O(GQ),

MIq’O(Gl) [ MID,]_(GQ)7
MTL | (Gr) ba MT) | (Gs)
(G) =
MIL, (Gr) UM (Ga),
M1, (Gy) UMIL, (G),
MIql,l(Gl) [ MIq’O(GQ),
MIq’O(Gl) [ MIl,l(GQ),
MTL | (G1)ba MT) | (Ga)
(4) My o(G) =
MI, o(G1) U MI, (Ga),
MI,(Gy) UMIyo(Ga),
M1y o(G1) U MIo(Ga),
MI,o(G1)) UM, o(Ga)

(5) Mg ,(G) =

max

(8) MI,

max

max

MI%’I(GZ') UMIiy(Gsy),
MID (G pa MG 0(Gs_s),
max i 1
seqrzy | M1y 1 (Ge) v MI;(Gsg),

MIS (G ba M1y (G )
(6) MI},(G) =

MI%,l(Gi) UMIy(Gs_d),
Mf,i,,l(Gi) B ML{,O (Gs_s),
MIL (Gi) o MIL,(Gsy),

)

MIL L (Gy) ba MIyo(Gs_s),

max
ic{l,2}

Lemma 12. Assume that G1 P Gs. Then

(1) MI,o(G)=MI,o(G1) JMIy(Ga).
(2) Let A =max{MI, (G2), MI;J(GQ),
quf,D(GQ),MI;},l(GQ)}. Then
Mfg’l(G) = max B, where B =
Mfg’l(Gl) UM (Gs),

MIg,l(GﬂUmax{ M1,0(Ge), }7

MI,0(Ga)
MIQ',O(Gl)a
m‘”‘{ MIL (G [V
(3) Let A = max{MI, ((Gs2), MI;’I(GQ)’
My 0(Gz), Mféf’l(GQ)}. Then,

|

?

(4)
(5)
(6)

MI},(G) = max B, where B =
Mfé’l(Gl) UM (G2),
M, o(Gs)
1 4,0 2/
MIq,l(Gl) Umax{ MT, o(Ga) } ,
MG, |
’ |
m{ MIg;(Gy)
MIy o(G) = Miyo(G1) U MIy(Gs)
Mfg;,l(G) = Mfg/,l(Gl) U MT (Gs).
MI;}’]_(G) - MI;';’]_(G]_) U Mft/ (GQ)

Recall that every DH graph (¢ can be defined
by a rooted decomposition tree 7. According
to Lemmas 1-12, we can compute the maximum
interval graph of & by using 7 from leaves to
root. It is not hard to check that the total time
of the computation is linear. Therefore, we have
the following theorem.

Theorem 2. The mazimum interval graph prob-
lem can be solved in linear time for DH graphs.
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