
A Computation-Aware Scheme for Motion Estimation
in H.264

Fu-Chieh Chuang and Jin-Jang Leou

Department of Computer Science and Information Engineering
National Chung Cheng University

Chiayi, Taiwan 621, Republic of China
E-mail: jjleou@cs.ccu.edu.tw

Abstract
In this study, a computation-aware scheme for motion
estimation (ME) in H.264 is proposed. The objective
of the proposed scheme is to properly distribute the
available ME computations of the H.264 encoder.
Here, the temporal motion vector prediction technique
is used to get the predicted motion vector (PMV) of
each macroblock (MB). The sum of absolute
components of the PMVs of all the MBs in a video
frame is used as the measure to allocate the target
computation to a video frame. The proposed scheme
contains four phases: 1) frame-level computation
allocation, 2) MB-level computation allocation, 3)
mode-level computation allocation, and 4) pixel-level
computation allocation. As compared with the
comparison scheme, the proposed computation-aware
schemes for motion estimation in H.264 usually have
the better performance (average PSNR improvement
and bit rate increment) in most simulation cases.

Keywords: H.264 video coding, computation-aware
video coding, motion estimation.

1. Introduction
In general, the computational complexity of the

H.264 encoder is higher than that of the H.264 decoder
and the most time-consuming portion of the H.264
encoder is ME (motion estimation) [1]. Because fast
search ME operations may consume over 80% of the
computational power of the H.264 encoder,
conventional fast ME algorithms [2-4] usually focus
on reducing computations, i.e., reducing the number of
checking points required for each MB or reducing the
computation complexity of a checking point. However,
if the total computations are not sufficient to finish the

 + This work was supported in part by National Science
Council and Ministry of Economic Affairs, Taiwan,
Republic of China under Grants NSC 94-2213-E-194-
006 and 94-EC-17-A-02-S1-032.

whole video coding (or ME) procedure, the encoding
process may be forced to terminate suddenly.

Tai, et al. [5] proposed a computation-aware
scheme, which contains two phases: (1) frame-level
computation allocation and (2) block-level
computation allocation. Within the frame-level phase,
two parameters, i

BPC and i
FPC , stand for backward

prediction and forward prediction, respectively, when
the ith frame is handling. i

BPC is the average of
remaining computation power given to the (n-i+1)
frames that are not coded, whereas i

FPC is got from
the relationship between the amount of computation
power which has been used and the mean square error
(MSE) gained by using a block matching algorithm
(BMA). Based on the two parameters, i

BPC and i
FPC , a

smooth section will be decided to give an acceptable
range of computation power of the ith frame. Within
the block-level phase, a so-called predicted
computation-distortion benefit (PCDB) list is
established, according to the order of initial mean
square error (MSE) values at mv(0, 0) of all blocks in
the current video frame. Once the PCDB list is
initialized, their approach greedily allocates the
computation power (in unit of checking points) to the
first block on the PCDB list in order to perform the
next step. The PCDB list is updated by the returned
MSE value, which corresponds to the new motion
vector found in the search step. This process is
repeated until the target computation is exhausted.

In the frame level, the initial MSE of a frame
should be calculated before the ME process can start.
In the block level, all initial MSEs of all blocks in a
frame should be got first to establish the PCDB list,
and at each PCDB list updating, one more MSE value
will be calculated and if the order of the PCDB list
changes, the unfinished ME of the current block will
be forced to stop its ME process. The initial MSE
calculations of all blocks in a frame and switching the
ME process due to changing of the PCDB list are
some kind of redundancy. To overcome the
weaknesses of the existing approach, in this study, a

computation-aware scheme for motion estimation (ME)
in H.264 is proposed.

2. Proposed scheme
2.1. Overview

The proposed computation-aware scheme for ME
in H.264 is shown in Fig. 1. For a video sequence
containing n frames, let Ctotal be the total computation
allocated to the n frames, fi be the ith frame, and MBj
be the jth MB. In this study, there are four phases: (1)
frame-level computation allocation, (2) MB-level
computation allocation, (3) mode-level computation
allocation, and (4) pixel-level computation allocation.
Frame-level computation allocation determines the
target computation (CFi) for fi, MB-level computation
allocation determines the target computation (CMBj)
for MBj of fi, mode-level computation allocation
distributes CMBj to two different ME modes (MB and
block), and pixel-level computation allocation
distributes each mode to two different pixel ME
modes. In the frame and MB levels, the remaining
computations are fed backward to update the available
computations for the remaining frames and MBs,
respectively.

In general [2], the number of checking points is
treated as the measurement unit of computation power.
In H.264, the SAD (sum of absolute differences)
calculation is performed in a row-by-row manner and
each partial SAD value containing a new row will be
compared with the minimal SAD value, SADmin, at that
time. Based on the row-based partial SAD computation,
SAD computations of different search positions may
be different so that computation allocation in terms of
the number of checking points is not adequate.
Therefore, in this study, computation allocation is in
terms of the row-based partial SAD (SADR). To unify
two different block sizes, i.e., 8×8 and 16×16, in
H.264, the one-row partial SAD computation of 8×8
blocks, SADR8, is used as the computation measure.

In this study, temporal motion vector (MV)
prediction [6] is employed to allocate total (available)
computation (Ctotal) at the frame and MB levels.
Temporal MV projection tracks the motion vector of a
moving object from one frame to the next frame. For
an MB in frame fi, the corresponding temporally
neighboring MVs in the previous frame fi-1 whose
“motion-projected” MBs in the current frame will
overlap the MB in frame fi. Here, if an MB in frame fi
has no temporally motion-projected overlapping MBs,
the predicted MV (PMV) of such an MB is set to (0,0).
If an MB in frame fi has only one temporally motion-
projected overlapping MB, the PMV of such an MB is
set to the corresponding MV of the temporally motion-

projected overlapping MB in frame fi-1. If an MB in
frame fi has two or more temporally motion-projected
overlapping MBs, the PMV of the MB is set to the
corresponding MV of the temporally motion-projected
overlapping MB which has the longest MVSAC value.
Here if the two components of an MV is (MVx, MVy),
the sum of absolute components (SAC) of the MV is
defined as

yxSAC MVMV +=MV (1)

and the total sum of absolute components of all the K
MVs in frame fi is given by

∑
=

=
K

k
ki MVTMV

1
,SAC,SAC

, (2)

where MVSAC,k is the MVSAC value of the kth MV in fi.

2.2. Frame-level computation
For frame fi, let CBPi, CFPi, and CRi be the

backward PMV computation, forward PMV
computation, and real MV computation for all MBs
within frame fi, respectively. The average computation
cost (in terms of SADR8) per MVSAC for the pervious i-
1 frames is defined as

∑∑
−

==

=
1

1
,SAC

1

1
ave

i

l
l

i-

l
l TMVCRμ . (3)

If the predicted TMVSAC,i value for frame fi is denoted
as PTMVSAC,i, the forward PMV computation for
frame fi can be given by

ii PTMVCFP ,SACave ×= μ . (4)
Because the related information for the “remaining”
frames is not available for frame fi, the backward
PMV computation for frame fi is set to the remaining
computations divided by the number (n-i+1) of
remaining frames within the video sequence, i.e.,

()1
1

1
total +−⎟

⎠

⎞
⎜
⎝

⎛
−= ∑

−

=

inCRCCBP
i

l
li

. (5)

To avoid over-use of the available computation, it
is claimed [2] that CFPi smaller than or equal to CBPi
implies that insufficient computations are allocated to
the previous i-1 frames and thus more computation
can be allocated to frame fi. On the contrary, CFPi
larger than CBPi indicates that too much computation
is allocated to the previous i-1 frames and the average
computation allocated to each of the remaining n-i+1
frames should be gradually decreased. In this study,
the target computation CFi for frame fi is given by

()⎩
⎨
⎧

×
≤×

=
 ,otherwise ,,min

, if ,

ii

iii
i CFPCBP

CBPCFPCBP
CF

α
α (6)

where α is a parameter for the backward PMV
computation (CBPi), which is defined as

⎪
⎪
⎩

⎪⎪
⎨

⎧
>

−−= ∑∑
−

=

−

=

 otherwise. ,1

,1
)1(

 if ,
)1(

1

1
,

,SAC
1

1
,

,SAC

iTMV

PTMV

iTMV

PTMV
i

l
lSAC

i
i

l
lSAC

i

α (7)

After the MV search processes of all the MBs in
frame fi are finished, the remaining computation of
CFi will be fed backward to the next frame fi+1 using
Eq. (5) to adjust the target computation CFi+1 for the
next frame fi+1.

2.3. MB-level computation
After the target computation CFi for frame fi has

been determined, if there are P×Q MBs in frame fi, let
the current macroblock of frame fi be MB(p,q),
PMVSAC,(p,q) be the predicted MVSAC of MB(p,q) and
PTMVSAC,i be the predicted TMVSAC,i value for frame fi.
The target computation for MB(p,q), CMB(p,q), can be
allocated in compliance with the PMVSAC,(p,q)
proportion taken in PTMVSAC,i, which is given by

iSAC

qpSAC
iqp PTMV

PMV
CFCMB

,

),(,
),(×= . (8)

To avoid the situation that PMVSAC,(p,q)= 0 would
make CMB(p,q)=0, a basic value is added to PMVSAC,(p,q)
when storing PMVSAC to each MB in fi. In this study,
the basic value is 1. Moreover, to prevent another
situation that the allocated computation for MB(p,q) has
not been exhausted, the remaining computations of
MB(p,q) would be fed backward to update CMB(p,q+1).

2.4. Mode-level computation
Table 1 shows the percentage of blocks whose

number of search positions for finding the best MV in
each Inter-mode of the QCIF “Akiyo,” “Silent,” and
“Foreman” sequences. We can find that over 75% of
blocks of the four prior modes (Inter16×16, Inter16×8,
Inter8×16, and Inter8×8) search less than 30 positions,
and 20% of blocks search over 110 positions. In
Inter8×4 and Inter4×8 modes, the percentage of blocks
searching less than 20 positions is 55%, and 40% of
blocks search over 110 positions. 99% of the blocks of
the last mode (Inter4×4) search less than 20 positions.
Based on this observation, in this study, after the target
computation CMB for an MB is allocated for the first-
grade mode, the remaining computations will be
allocated for the second-grade mode until CMB is
exhausted.

2.5. Pixel-level computation
In H.264 JM96, motion estimation (ME) is

conducted into integer-pixel ME and then fractional-
pixel ME around the position obtained by the integer-
pixel ME. For integer-pixel ME, motion vector
prediction is used to select a start search position for
ME search in H.264. The distance between the best
MV (BMV) determined by the fast search strategy in
H.264 and the predicted motion vector (PMV) in
H.264 is defined as MVD:

yyxx PMVBMVPMVBMVMVD −+−= . (9)

As shown in Table 2, about 90% of MVD is smaller
than 1, i.e., the predicted MV is very close to the best
MV.

Because fractional-pixel ME can provide
significantly better compression performance than
integer-pixel ME, in this study, the fractional-pixel
ME has the higher priority to the integer-pixel ME.

3. Simulation Results
Six QCIF video sequences, “Akiyo,” “Salesman,”

“News,” “Silent,” “Foreman,” and “Stefan,” are used
to evaluate the performance of the proposed scheme.
Each sequence consists of 100 frames, in which the
first video frame is an I-frame, followed by 99 P-
frames. The search range is set to 16 and quantization
parameter (QP) is set to 28. Four performance
measures are employed in this study. They are: (1) the
average PSNR improvement (dB) with respective to
JM_FME, (2) the average bit rate per second (kbps),
(3) the total number of search positions, and (4) the
total encoding time (s).

Here, one existing fast search algorithm and three
comparison computation-aware schemes are
implemented. They are: (1) JM_FME, which is the
fast search algorithm in H.264 JM96, (2) CA_FME [5],
which is the computation-aware scheme for software-
based ME with JM_FME, (3) PRO FME, which is the
proposed computation-aware scheme with JM_FME,
(4) PRO DC, which is the proposed computation-
aware scheme with adaptive dual-cross search
algorithm. Some simulation results are listed in Table
3.

4. Concluding remarks
Based on the simulation results obtained in this

study, given different available motion estimation
computations (MECs), both the average PSNR and bit
rate increment of the two proposed schemes are better
than that of the comparison scheme CA_FME.

5. References
[1] ITU-T Recommendation H.264/ISO/IEC 11496-

10, “Advance Video Coding,” Final Committee
Draft, Document JVT-F100, Dec. 2002.

[2] C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based
search pattern for fast block motion estimation,”
IEEE Trans. on Circuits and Systems for Video
Technology, vol. 12, no. 5, pp. 349–355, May
2002.

[3] S. Zhu and K. K. Ma, “A new diamond search
algorithm for fast block-matching motion
estimation,” IEEE Trans. on Image Processing,
vol. 9, no. 2, pp. 287–290, Feb. 2000.

[4] X. Q. Banh and Y. P. Tan, “Adaptive dual-cross
search algorithm for block-matching motion
estimation,” IEEE Trans. on Consumer
Electronics, vol. 50, no. 2, pp. 766–775, May
2004.

[5] P. L. Tai, S. Y. Huang, C. T. Liu, and J. S. Wang
“Computation-aware scheme for software-based
block motion estimation,” IEEE Trans. on
Circuits and Systems for Video Technology, vol.
13, no. 9, pp. 901-913, Sept. 2003.

[6] I. Ismaeil, A. Docef, F. Kossentini, and R. Ward,
“Efficient motion estimation using spatial and
temporal motion vector prediction,” in Proc. of
IEEE Int. Conf. on Image Processing, vol. 1, pp.
70-74, Oct. 1999.

Fig. 1. The proposed computation-aware scheme.

Table 1. The relationship between the number of search
positions (SP) and percentages of modes chosen after ME.

Mode Sequence SP≤20

21<
SP
≤30

31<
SP
≤40

41<
SP
≤110

111<
SP
≤120

SP>120

Akiyo 90.12 2.49 0.00 0.00 0.00 7.39
Silent 81.11 9.42 0.07 0.06 0.32 9.02 Inter

16×16
Foreman 43.59 30.22 0.04 0.01 6.11 20.03

Akiyo 61.36 13.64 0.00 0.00 0.57 24.43
Silent 43.52 36.27 1.81 1.30 5.96 11.14 Inter

16×8
Foreman 32.50 38.77 0.98 0.34 8.30 19.11

Akiyo 60.65 11.54 0.00 0.00 0.30 27.51
Silent 45.79 27.59 0.77 1.52 3.64 20.69 Inter

8×16
Foreman 38.10 40.42 0.27 0.10 5.36 15.75

Akiyo 72.85 0.38 0.00 1.01 25.76 0.00
Silent 70.47 2.34 0.52 5.12 21.27 0.28 Inter

8×8
Foreman 71.81 1.01 0.10 6.64 20.39 0.05

Akiyo 57.13 0.43 0.00 1.15 41.29 0.00
Silent 53.52 2.97 0.39 8.88 33.75 0.49 Inter

8×4
Foreman 50.35 1.43 0.02 15.04 33.01 0.15

Akiyo 54.52 0.33 0.00 1.80 43.35 0.00
Silent 52.93 2.50 0.52 10.79 32.74 0.52 Inter

4×8
Foreman 50.72 1.39 0.07 13.87 33.90 0.05

Akiyo 92.91 7.09 0.00 0.00 0.00 0.00
Silent 78.60 20.52 0.88 0.00 0.00 0.00 Inter

4×4
Foreman 92.56 7.27 0.17 0.00 0.00 0.00

Table 2. Percentages of different MVDs.

Sequence 0 1 2 3 4 5 6 7 >8
Akiyo 93.77 5.69 0.49 0.04 0.01 0.00 0.00 0.00 0.00
Salesman 85.59 11.29 2.38 0.39 0.19 0.05 0.03 0.02 0.06
News 81.59 13.88 2.88 0.83 0.27 0.15 0.04 0.07 0.29
Silent 75.65 15.83 5.02 1.41 0.71 0.44 0.27 0.11 0.55
Foreman 55.96 34.61 7.36 1.21 0.46 0.25 0.04 0.04 0.07
Carphone 59.12 30.56 7.26 1.50 0.58 0.27 0.15 0.17 0.37
Average 75.28 18.65 4.23 0.90 0.37 0.20 0.09 0.07 0.23

Table 3. Simulation results for the “Akiyo” sequence with
different percentages of available search positions of three
comparison schemes.

 Average PSNR
improvement (dB)

Average bit rate
increment (kbps)

Average search
positions per frame

(k)
Time speed up

JM
FME 38.50 33.70 80.02

1
(25.795 s)

 CA
FME

PRO
FME

PRO
DC

CA
FME

PRO
FME

PRO
DC

CA
FME

PRO
FME

PRO
DC

CA
FME

PRO
FME

PRO
DC

90% -0.03 -0.00 +0.01 +0.50 +0.08 -0.16 71.16 71.21 43.14 0.99 1.00 1.17

80% -0.10 -0.00 +0.01 +1.37 +0.08 -0.16 63.26 63.34 43.14 1.01 1.05 1.17

70% -0.15 -0.01 +0.01 +2.83 +0.00 -0.16 55.36 55.46 43.14 1.04 1.09 1.17

60% -0.30 -0.00 +0.01 +4.41 +0.28 -0.16 47.45 47.56 43.08 1.04 1.04 1.17

50% -0.36 -0.03 -0.00 +6.35 +0.17 -0.15 39.54 39.61 39.52 1.05 1.06 1.23

40% -0.44 -0.03 -0.00 +8.06 -0.04 +0.39 31.63 31.69 31.68 1.07 1.10 1.31

30% -0.49 -0.06 -0.08 +9.91 +0.06 -0.16 23.73 23.76 23.75 1.10 1.12 1.23

20% -0.58 -0.06 -0.07 +14.90 -0.10 +0.07 15.82 15.83 15.83 1.17 1.19 1.49

10% -0.63 -0.13 -0.10 +23.92 +0.44 +0.14 7.91 7.91 7.91 1.32 1.35 1.60

Frame level
computation
allocation

Mode level
computation
allocation

MB level
computation
allocation

Other
modes ?

Other
MBs?

More
frames ?

End

Pixel level
computation
allocation

totalC

Yes

Yes

Yes

No

No

No

iCF

j CMB

Perform
Search steps

Remaining
computation

feedback

Remaining
computation

feedback

