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Abstract 
In this study, a computation-aware scheme for motion 
estimation (ME) in H.264 is proposed. The objective 
of the proposed scheme is to properly distribute the 
available ME computations of the H.264 encoder. 
Here, the temporal motion vector prediction technique 
is used to get the predicted motion vector (PMV) of 
each macroblock (MB). The sum of absolute 
components of the PMVs of all the MBs in a video 
frame is used as the measure to allocate the target 
computation to a video frame. The proposed scheme 
contains four phases: 1) frame-level computation 
allocation, 2) MB-level computation allocation, 3) 
mode-level computation allocation, and 4) pixel-level 
computation allocation. As compared with the 
comparison scheme, the proposed computation-aware 
schemes for motion estimation in H.264 usually have 
the better performance (average PSNR improvement 
and bit rate increment) in most simulation cases. 

Keywords: H.264 video coding, computation-aware 
video coding, motion estimation.  

1. Introduction 
In general, the computational complexity of the 

H.264 encoder is higher than that of the H.264 decoder 
and the most time-consuming portion of the H.264 
encoder is ME (motion estimation) [1]. Because fast 
search ME operations may consume over 80% of the 
computational power of the H.264 encoder, 
conventional fast ME algorithms [2-4] usually focus 
on reducing computations, i.e., reducing the number of 
checking points required for each MB or reducing the 
computation complexity of a checking point. However, 
if the total computations are not sufficient to finish the 
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whole video coding (or ME) procedure, the encoding 
process may be forced to terminate suddenly. 

Tai, et al. [5] proposed a computation-aware 
scheme, which contains two phases: (1) frame-level 
computation allocation and (2) block-level 
computation allocation. Within the frame-level phase, 
two parameters, i

BPC and i
FPC , stand for backward 

prediction and forward prediction, respectively, when 
the ith frame is handling. i

BPC  is the average of 
remaining computation power given to the (n-i+1) 
frames that are not coded, whereas i

FPC  is got from 
the relationship between the amount of computation 
power which has been used and the mean square error 
(MSE) gained by using a block matching algorithm 
(BMA). Based on the two parameters, i

BPC and i
FPC , a 

smooth section will be decided to give an acceptable 
range of computation power of the ith frame. Within 
the block-level phase, a so-called predicted 
computation-distortion benefit (PCDB) list is 
established, according to the order of initial mean 
square error (MSE) values at mv(0, 0) of all blocks in 
the current video frame. Once the PCDB list is 
initialized, their approach greedily allocates the 
computation power (in unit of checking points) to the 
first block on the PCDB list in order to perform the 
next step. The PCDB list is updated by the returned 
MSE value, which corresponds to the new motion 
vector found in the search step. This process is 
repeated until the target computation is exhausted.  

In the frame level, the initial MSE of a frame 
should be calculated before the ME process can start. 
In the block level, all initial MSEs of all blocks in a 
frame should be got first to establish the PCDB list, 
and at each PCDB list updating, one more MSE value 
will be calculated and if the order of the PCDB list 
changes, the unfinished ME of the current block will 
be forced to stop its ME process. The initial MSE 
calculations of all blocks in a frame and switching the 
ME process due to changing of the PCDB list are 
some kind of redundancy. To overcome the 
weaknesses of the existing approach, in this study, a 



computation-aware scheme for motion estimation (ME) 
in H.264 is proposed. 

2. Proposed scheme 
2.1. Overview 

The proposed computation-aware scheme for ME 
in H.264 is shown in Fig. 1. For a video sequence 
containing n frames, let Ctotal be the total computation 
allocated to the n frames, fi be the ith frame, and MBj 
be the jth MB. In this study, there are four phases: (1) 
frame-level computation allocation, (2) MB-level 
computation allocation, (3) mode-level computation 
allocation, and (4) pixel-level computation allocation. 
Frame-level computation allocation determines the 
target computation (CFi) for fi, MB-level computation 
allocation determines the target computation (CMBj) 
for MBj of fi, mode-level computation allocation 
distributes CMBj to two different ME modes (MB and 
block), and pixel-level computation allocation 
distributes each mode to two different pixel ME 
modes. In the frame and MB levels, the remaining 
computations are fed backward to update the available 
computations for the remaining frames and MBs, 
respectively.  

In general [2], the number of checking points is 
treated as the measurement unit of computation power. 
In H.264, the SAD (sum of absolute differences) 
calculation is performed in a row-by-row manner and 
each partial SAD value containing a new row will be 
compared with the minimal SAD value, SADmin, at that 
time. Based on the row-based partial SAD computation, 
SAD computations of different search positions may 
be different so that computation allocation in terms of 
the number of checking points is not adequate. 
Therefore, in this study, computation allocation is in 
terms of the row-based partial SAD (SADR). To unify 
two different block sizes, i.e., 8×8 and 16×16, in 
H.264, the one-row partial SAD computation of 8×8 
blocks, SADR8, is used as the computation measure. 

In this study, temporal motion vector (MV) 
prediction [6] is employed to allocate total (available) 
computation (Ctotal) at the frame and MB levels. 
Temporal MV projection tracks the motion vector of a 
moving object from one frame to the next frame. For 
an MB in frame fi, the corresponding temporally 
neighboring MVs in the previous frame fi-1 whose 
“motion-projected” MBs in the current frame will 
overlap the MB in frame fi. Here, if an MB in frame fi 
has no temporally motion-projected overlapping MBs, 
the predicted MV (PMV) of such an MB is set to (0,0). 
If an MB in frame fi has only one temporally motion-
projected overlapping MB, the PMV of such an MB is 
set to the corresponding MV of the temporally motion-

projected overlapping MB in frame fi-1. If an MB in 
frame fi has two or more temporally motion-projected 
overlapping MBs, the PMV of the MB is set to the 
corresponding MV of the temporally motion-projected 
overlapping MB which has the longest  MVSAC value. 
Here if the two components of an MV is (MVx, MVy), 
the sum of absolute components (SAC) of the MV is 
defined as 

yxSAC MVMV +=MV  (1)

and the total sum of absolute components of all the K 
MVs in frame fi is given by 
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where MVSAC,k is the MVSAC value of the kth MV in fi. 

2.2. Frame-level computation 
For frame fi, let CBPi, CFPi, and CRi be the 

backward PMV computation, forward PMV 
computation, and real MV computation for all MBs 
within frame fi, respectively. The average computation 
cost (in terms of SADR8) per MVSAC for the pervious i-
1 frames is defined as 
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If the predicted TMVSAC,i value for frame fi is denoted 
as PTMVSAC,i, the forward PMV computation for 
frame fi can be given by 

ii PTMVCFP ,SACave ×= μ . (4)
Because the related information for the “remaining” 
frames is not available for frame fi, the backward 
PMV computation for frame fi is set to the remaining 
computations divided by the number (n-i+1) of 
remaining frames within the video sequence, i.e., 
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To avoid over-use of the available computation, it 
is claimed [2] that CFPi smaller than or equal to CBPi 
implies that insufficient computations are allocated to 
the previous i-1 frames and thus more computation 
can be allocated to frame fi. On the contrary, CFPi 
larger than CBPi indicates that too much computation 
is allocated to the previous i-1 frames and the average 
computation allocated to each of the remaining n-i+1 
frames should be gradually decreased. In this study, 
the target computation CFi for frame fi is given by 
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where α is a parameter for the backward PMV 
computation (CBPi), which is defined as 
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After the MV search processes of all the MBs in 
frame fi are finished, the remaining computation of 
CFi will be fed backward to the next frame fi+1 using 
Eq. (5) to adjust the target computation CFi+1 for the 
next frame fi+1. 

2.3. MB-level computation 
After the target computation CFi for frame fi has 

been determined, if there are P×Q MBs in frame fi, let 
the current macroblock of frame fi be MB(p,q), 
PMVSAC,(p,q) be the predicted MVSAC of MB(p,q) and 
PTMVSAC,i be the predicted TMVSAC,i value for frame fi. 
The target computation for MB(p,q), CMB(p,q), can be 
allocated in compliance with the PMVSAC,(p,q) 
proportion taken in PTMVSAC,i, which is given by 

iSAC

qpSAC
iqp PTMV

PMV
CFCMB

,

),(,
),( ×= . (8)

To avoid the situation that PMVSAC,(p,q)= 0 would 
make CMB(p,q)=0, a basic value is added to PMVSAC,(p,q) 
when storing PMVSAC to each MB in fi. In this study, 
the basic value is 1. Moreover, to prevent another 
situation that the allocated computation for MB(p,q) has 
not been exhausted, the remaining computations of 
MB(p,q) would be fed backward to update CMB(p,q+1). 

2.4. Mode-level computation 
Table 1 shows the percentage of blocks whose 

number of search positions for finding the best MV in 
each Inter-mode of the QCIF “Akiyo,” “Silent,” and 
“Foreman” sequences. We can find that over 75% of 
blocks of the four prior modes (Inter16×16, Inter16×8, 
Inter8×16, and Inter8×8) search less than 30 positions, 
and 20% of blocks search over 110 positions. In 
Inter8×4 and Inter4×8 modes, the percentage of blocks 
searching less than 20 positions is 55%, and 40% of 
blocks search over 110 positions. 99% of the blocks of 
the last mode (Inter4×4) search less than 20 positions. 
Based on this observation, in this study, after the target 
computation CMB for an MB is allocated for the first-
grade mode, the remaining computations will be 
allocated for the second-grade mode until CMB is 
exhausted. 
 

2.5. Pixel-level computation 
In H.264 JM96, motion estimation (ME) is 

conducted into integer-pixel ME and then fractional-
pixel ME around the position obtained by the integer-
pixel ME. For integer-pixel ME, motion vector 
prediction is used to select a start search position for 
ME search in H.264. The distance between the best 
MV (BMV) determined by the fast search strategy in 
H.264 and the predicted motion vector (PMV) in 
H.264 is defined as MVD: 

yyxx PMVBMVPMVBMVMVD −+−= . (9)

As shown in Table 2, about 90% of MVD is smaller 
than 1, i.e., the predicted MV is very close to the best 
MV. 

Because fractional-pixel ME can provide 
significantly better compression performance than 
integer-pixel ME, in this study, the fractional-pixel 
ME has the higher priority to the integer-pixel ME. 

3. Simulation Results 
Six QCIF video sequences, “Akiyo,” “Salesman,” 

“News,” “Silent,” “Foreman,” and “Stefan,” are used 
to evaluate the performance of the proposed scheme. 
Each sequence consists of 100 frames, in which the 
first video frame is an I-frame, followed by 99 P-
frames. The search range is set to 16 and quantization 
parameter (QP) is set to 28. Four performance 
measures are employed in this study. They are: (1) the 
average PSNR improvement (dB) with respective to 
JM_FME, (2) the average bit rate per second (kbps), 
(3) the total number of search positions, and (4) the 
total encoding time (s). 

Here, one existing fast search algorithm and three 
comparison computation-aware schemes are 
implemented. They are: (1) JM_FME, which is the 
fast search algorithm in H.264 JM96, (2) CA_FME [5], 
which is the computation-aware scheme for software-
based ME with JM_FME, (3) PRO FME, which is the 
proposed computation-aware scheme with JM_FME, 
(4) PRO DC, which is the proposed computation-
aware scheme with adaptive dual-cross search 
algorithm. Some simulation results are listed in Table 
3. 

4. Concluding remarks 
Based on the simulation results obtained in this 

study, given different available motion estimation 
computations (MECs), both the average PSNR and bit 
rate increment of the two proposed schemes are better 
than that of the comparison scheme CA_FME. 
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Fig. 1. The proposed computation-aware scheme. 
 

Table 1. The relationship between the number of search 
positions (SP) and percentages of modes chosen after ME. 
 
Mode Sequence SP≤20 

21< 
SP 
≤30 

31< 
SP 
≤40 

41< 
SP 
≤110 

111< 
SP 
≤120 

SP>120

Akiyo 90.12 2.49 0.00 0.00 0.00 7.39 
Silent 81.11 9.42 0.07 0.06 0.32 9.02 Inter 

16×16
Foreman 43.59 30.22 0.04 0.01 6.11 20.03 

Akiyo 61.36 13.64 0.00 0.00 0.57 24.43 
Silent 43.52 36.27 1.81 1.30 5.96 11.14 Inter 

16×8 
Foreman 32.50 38.77 0.98 0.34 8.30 19.11 

Akiyo 60.65 11.54 0.00 0.00 0.30 27.51 
Silent 45.79 27.59 0.77 1.52 3.64 20.69 Inter 

8×16 
Foreman 38.10 40.42 0.27 0.10 5.36 15.75 

Akiyo 72.85 0.38 0.00 1.01 25.76 0.00 
Silent 70.47 2.34 0.52 5.12 21.27 0.28 Inter 

8×8 
Foreman 71.81 1.01 0.10 6.64 20.39 0.05 

Akiyo 57.13 0.43 0.00 1.15 41.29 0.00 
Silent 53.52 2.97 0.39 8.88 33.75 0.49 Inter 

8×4 
Foreman 50.35 1.43 0.02 15.04 33.01 0.15 

Akiyo 54.52 0.33 0.00 1.80 43.35 0.00 
Silent 52.93 2.50 0.52 10.79 32.74 0.52 Inter 

4×8 
Foreman 50.72 1.39 0.07 13.87 33.90 0.05 

Akiyo 92.91 7.09 0.00 0.00 0.00 0.00 
Silent 78.60 20.52 0.88 0.00 0.00 0.00 Inter 

4×4 
Foreman 92.56 7.27 0.17 0.00 0.00 0.00 

 
 
 
Table 2. Percentages of different MVDs. 
 
Sequence 0 1 2 3 4 5 6 7 >8 
Akiyo 93.77 5.69 0.49 0.04 0.01 0.00 0.00 0.00 0.00
Salesman 85.59 11.29 2.38 0.39 0.19 0.05 0.03 0.02 0.06
News 81.59 13.88 2.88 0.83 0.27 0.15 0.04 0.07 0.29
Silent 75.65 15.83 5.02 1.41 0.71 0.44 0.27 0.11 0.55
Foreman 55.96 34.61 7.36 1.21 0.46 0.25 0.04 0.04 0.07
Carphone 59.12 30.56 7.26 1.50 0.58 0.27 0.15 0.17 0.37
Average 75.28 18.65 4.23 0.90 0.37 0.20 0.09 0.07 0.23

 
 
 
Table 3. Simulation results for the “Akiyo” sequence with 
different percentages of available search positions of three 
comparison schemes. 
 

 Average PSNR 
improvement (dB)

Average bit rate 
increment (kbps) 

Average search 
positions per frame 

(k) 
Time speed up 

JM 
FME 38.50 33.70 80.02 

1 
(25.795 s) 

 CA
FME

PRO
FME

PRO
DC

CA 
FME

PRO
FME

PRO 
DC 

CA 
FME 

PRO 
FME 

PRO 
DC 

CA 
FME 

PRO
FME

PRO
DC

90% -0.03 -0.00 +0.01 +0.50 +0.08 -0.16 71.16 71.21 43.14 0.99 1.00 1.17

80% -0.10 -0.00 +0.01 +1.37 +0.08 -0.16 63.26 63.34 43.14 1.01 1.05 1.17

70% -0.15 -0.01 +0.01 +2.83 +0.00 -0.16 55.36 55.46 43.14 1.04 1.09 1.17

60% -0.30 -0.00 +0.01 +4.41 +0.28 -0.16 47.45 47.56 43.08 1.04 1.04 1.17

50% -0.36 -0.03 -0.00 +6.35 +0.17 -0.15 39.54 39.61 39.52 1.05 1.06 1.23

40% -0.44 -0.03 -0.00 +8.06 -0.04 +0.39 31.63 31.69 31.68 1.07 1.10 1.31

30% -0.49 -0.06 -0.08 +9.91 +0.06 -0.16 23.73 23.76 23.75 1.10 1.12 1.23

20% -0.58 -0.06 -0.07 +14.90 -0.10 +0.07 15.82 15.83 15.83 1.17 1.19 1.49

10% -0.63 -0.13 -0.10 +23.92 +0.44 +0.14 7.91 7.91 7.91 1.32 1.35 1.60
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