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Abstract 
High performance architectures for the data intensive 
and latency restrained applications can be achieved by 
maximizing both parallelism and pipelining. In this 
paper, the CORDIC based hardware primitives of 3-D 
rotation with high throughput 3-D vector interpolation 
are presented. The proposed architecture for 3-D 
vector interpolator, which is based on the redundant 
CORDIC arithmetic, has been implemented by VLSI. 
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algorithm, 3-D vector interpolation, high-throughput. 

1. Introduction 
Flexible hardware along with precision control is 
much desirable for the power-aware 3-D graphics 
rendering applications. In [1], 3-D vector interpolation 
is required. The 3-D vector interpolator of Euh et al. 
provides multiple precisions for the design of power-
aware systems [2]. 

The well known CORDIC algorithm, which has 
been applied with a great success to the hardware 
implementations of many signal processing tasks, e.g. 
sine and cosine generation, vector rotation, coordinate 
transformation, and linear system solving, is suitable 
for the implementation of 3-D vector interpolation [3]-
[4]. In CORDIC, only simple shifters and adders are 
needed, which can be realized by the use of 
reconfigurable hardware platforms, especially by 
FPGA [5]. Thus, the CORDIC-based 3-D vector 
interpolator is more flexible for the interpolation task. 

In this paper, the architecture of 3-D vector 
interpolator based on the CORDIC algorithm is 
proposed. It is suitable for VLSI implementation in 
terms of the computational complexity. 

The remainder of the paper is organized as follows. 
In section 2, the conventional CORDIC algorithm is 
reviewed. In section 3, the 3-D CORDIC algorithm is 
given. The proposed VLSI architecture of 3-D vector 
interpolator based on the CORDIC rotation algorithm 
is presented in section 4. Its analysis is given in 
section 5, and the conclusion  an be found in section 6. 

2. The CORDIC Algorithm 
CORDIC (COordinate Rotation DIgital Computer) is an 
algorithm performing a sequence of iteration computations 
by the use of coordinate rotation [3] [4]. It can be used to 
generate important elementary functions by using only 
simple adders and shifters. The basic CORDIC iteration 
equations are given by 
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where m denotes the circular (m=1), linear (m=0) or 
hyperbolic (m=-1) coordinate system, i=0, 1,2,…., n-1, 
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The rotation )( ii zsign=σ for the rotation mode  
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i-th iteration. After n iterations, the product of all the 
scale factors is as follows. 
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where the rotation direction is defined by }1,1{ +−=iσ . 

3. 3-D CORDIC Algorithm 
Figure 1 shows a vector R in the 3-D space. Its 
respective Cartesian and spherical coordinates are  

),,( iii ZYX  and ),,( iiiR φθ . R can be rotated and then 
becomes a new vector denoted by S  with Cartesian 
coordinates ),,( 111 +++ iii ZYX and spherical coordinates 

),,( iiiiiR βφαθ ++ . The relationship between the 
Cartesian coordinates and spherical coordinates of R  
and S are given by 
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Equations (9), (10) and (11) can be rewritten by 
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where iU , iV  and iW are defined as follows. 

iiii RU φθ coscos=                (15) 
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It is noted that 1+iU , 1+iV  and 1+iW  can be written by 

iiiiiiiiiiiii YVXUU βαβαβαβα sinsincossinsincoscoscos1 +−−=+  (18) 
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Based on equations (6), (7) and (8), equations (12), (13), 
(14), (18), (19) and (20) can be computed by using the 
following set of CORDIC rotations. 
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In the 2-D CORDIC rotation, i
ii

−−= 2tan 1δα , 
i

ii
−−= 2tan 1ρβ , and iδ  and iρ  are { }1,1−∈ . 

Equations (21) and (22) can be expressed in the matrix 
form, which is given by 
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Similarly, equations (24) and (25) can be rewritten by 
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It is noted that there are four 2-D CORDIC 
rotations involved in the 3-D rotation of a vector. In 
addition, the scale factor of 1+iZ  and  1+iW  is different 
from that of 1+iU , 1+iV , 1+iX and 1+iY . They can be 
compensated via the pre-scale of inputs or post-scale 
of outputs with their respective constants K  and 2K , 
which are given by 
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4. VLSI Architecture for 3-D 
Vector Interpolator with CORDIC 
Algorithm 

Vector interpolation can be obtained by using 
algorithms based on spherical interpolation, linear 
interpolation or CORDIC interpolation. The spherical 
interpolation involves complex computations. The 
linear interpolation requires post normalization, which 
is also complex. The proposed CORDIC-based 3-D 
interpolator, which is performed on polar components, 
is efficient and more flexible in terms of the hardware 
implementations. Figure 2 shows the architecture of 
the proposed 3-D vector interpolator by using the 
circular CORDIC algorithm with rotation mode. In 
which, the generators of ),( 11 ++ ii VU  and ),( 11 ++ ii YX  
consist of two 2-D CORDIC processors, two hardwire 
shifters, and two adders/sub-tractors. The generators of 

1+iW  and 1+iZ  consist of half 2-D CORDIC Processor.  
The initial coordinates ( 0U , 0V , 0W ) are obtained 

by using the auxiliary generator ( 0U , 0V , 0W ) [6], 
which is shown in Fig. 3. Thus, the proposed 
architecture is composed of the auxiliary generator 
( 0U , 0V , 0W ), the redundant CORDIC arithmetic (for 
the computation of 3-D vector interpolation), and 
dual-memory banks (for storing the coordinates 
( iii ZYX ,, ) and ( iii WVU ,, ), respectively). 

The hardware code of the proposed system is 
written in Verilog-hardware description Language 
(HDL) [7]. The system diagram is shown in Figure 4. 
The chip is synthesized by TSMC 0.18 mµ 1P6M 
CMOS cell libraries [8]. The layout view of the 16-bit 
3-D vector interpolator is shown in Figure 5. The gate 
count is reported by the Synopsys® design analyzer. 



The power consumption is reported by PrimPower®. 
The core size is mm µµ 16201620 × , and the power 
dissipation is 56.5mW with the clock rate of 50 MHz 
at 1.8V. The critical path is 5.4 ns . All control signals 
are generated internally on-chip. This chip offers a 
high throughput with low gate counts by using a 
parallel-pipelined architecture. The layout view of the 
16-bit Auxiliary Coordinate Generator ( 000 ,, WVU ) is 
shown in Figure 6. The core size is mm µµ 18411841 × , 
and the power dissipation is 51.4mW with the clock 
rate of 50 MHz at 1.8V. The critical path is 4.6 ns . 

5. Advantages of New Architectures 
and Algorithms 

The Euler angle method takes a sequence of three 
rotations [2], [9], each of which rotates with respect to 
one of the three orthogonal axes. This method can be 
represented by the Euler angles corresponding to the 
sequence of rotations with respect to the coordinate 
axes. In [2], the 3-D rotation is implemented by 
cascading two 2-D CORDIC processors. Lang and 
Antelo developed a method to replace the two 2-D 
CORDIC processors by one 3-D CORDIC processor 
[7]. The sequence of rotations is composed of one 2-D 
CORDIC rotation followed by one 3-D CORDIC 
rotation. Both of the aforementioned methods require 
more than two 2-D CORDIC computations. In the 
proposed 3-D rotation algorithm, the architecture 
based on the conventional CORDIC processor requires 
one 2-D CORDIC computation in parallel. The 
auxiliary generator of coordinate ( 0U , 0V , 0W )  and the 
redundant arithmetic CORDIC for 3-D rotation can 
perform in parallel. 

6. Conclusions 
High-throughput architecture for the 3-D vector 
interpolation task based on the CORDIC algorithm is 
presented. It takes only one conventional CORDIC 
computation time. 

The proposed architecture by the use of CORDIC 
processor is simple, regular and therefore suitable for 
VLSI implementation. In power-aware 3-D graphics 
rendering, the performance of 3-D vector interpolation 
can be improved by using the proposed algorithm and 
architecture. Table 1 shows the comparison of this 
work with Eberly [10] and Lang and Antelo [9]. 
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Fig.1. Vector R in the 3-D space 

Table 1 The Comparison with Eberly, Lang & Antelo and this 
work 
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Fig. 2. The architecture of the 3-D vector interpolator

Fig. 3. The auxiliary coordinate ( 000 ,, WVU ) generator 

Fig. 4. The system diagram of 3-D vector interpolator

Fig. 5. The chip layout of 16-bit 3-D vector interpolator 
(Left)

Fig.6. The chip layout of 16-bit auxiliary coordinate 
generator ( 000 ,, WVU ) (Right) 
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