
An Efficient CORDIC-Based Vector Interpolator in
Power-Aware 3-D Graphics Rendering
Tze-Yun Sung1 Chun-Wang Yu1 Yaw-Shih Shieh1 Hsi-Chin Hsin2

1Department of Microelectronics Engineering, Chung Hua University, Hsinchu, Taiwan 300-12
2Department of Computer Science and Information Engineering, Formosa University, Hu-Wei, Taiwan 632-08

Abstract
High performance architectures for the data intensive
and latency restrained applications can be achieved by
maximizing both parallelism and pipelining. In this
paper, the CORDIC based hardware primitives of 3-D
rotation with high throughput 3-D vector interpolation
are presented. The proposed architecture for 3-D
vector interpolator, which is based on the redundant
CORDIC arithmetic, has been implemented by VLSI.

Keywords: Redundant CORDIC arithmetic, CORDIC
algorithm, 3-D vector interpolation, high-throughput.

1. Introduction
Flexible hardware along with precision control is
much desirable for the power-aware 3-D graphics
rendering applications. In [1], 3-D vector interpolation
is required. The 3-D vector interpolator of Euh et al.
provides multiple precisions for the design of power-
aware systems [2].

The well known CORDIC algorithm, which has
been applied with a great success to the hardware
implementations of many signal processing tasks, e.g.
sine and cosine generation, vector rotation, coordinate
transformation, and linear system solving, is suitable
for the implementation of 3-D vector interpolation [3]-
[4]. In CORDIC, only simple shifters and adders are
needed, which can be realized by the use of
reconfigurable hardware platforms, especially by
FPGA [5]. Thus, the CORDIC-based 3-D vector
interpolator is more flexible for the interpolation task.

In this paper, the architecture of 3-D vector
interpolator based on the CORDIC algorithm is
proposed. It is suitable for VLSI implementation in
terms of the computational complexity.

The remainder of the paper is organized as follows.
In section 2, the conventional CORDIC algorithm is
reviewed. In section 3, the 3-D CORDIC algorithm is
given. The proposed VLSI architecture of 3-D vector
interpolator based on the CORDIC rotation algorithm
is presented in section 4. Its analysis is given in
section 5, and the conclusion an be found in section 6.

2. The CORDIC Algorithm
CORDIC (COordinate Rotation DIgital Computer) is an
algorithm performing a sequence of iteration computations
by the use of coordinate rotation [3] [4]. It can be used to
generate important elementary functions by using only
simple adders and shifters. The basic CORDIC iteration
equations are given by

i
ims

iii ymxx),(
1 2−
+ −= σ (1)

i
ims

iii xyy),(
1 2−
+ += σ (2)

imiii zz ,1 ασ−=+ (3)
where m denotes the circular (m=1), linear (m=0) or
hyperbolic (m=-1) coordinate system, i=0, 1,2,…., n-1,

1,....,5,4,4,3,2,1
0,....,6,5,4,3,2,1
1,....,5,4,3,2,1,0

),(
−=

=
=

⎪
⎩

⎪
⎨

⎧
=

m
m
m

ims , and

]2[tan),(12/1
,

ims
im mm −−−=α (4)

The rotation)(ii zsign=σ for the rotation mode
)0(→nz ;)()(iii ysignxsign ⋅−=σ for the vectoring mode

)0(→ny . The scale factor),(22
, 21 ims

iim mk −+= σ in the
i-th iteration. After n iterations, the product of all the
scale factors is as follows.

∏∏∏
=

−

=

−

=

+=+==
n

i

ims
n

i

ims
i

n

i
imm mmkK

0

),(2

0

),(22

0
, 2121 σ (5)

where the rotation direction is defined by }1,1{ +−=iσ .

3. 3-D CORDIC Algorithm
Figure 1 shows a vector R in the 3-D space. Its
respective Cartesian and spherical coordinates are

),,(iii ZYX and),,(iiiR φθ . R can be rotated and then
becomes a new vector denoted by S with Cartesian
coordinates),,(111 +++ iii ZYX and spherical coordinates

),,(iiiiiR βφαθ ++ . The relationship between the
Cartesian coordinates and spherical coordinates of R
and S are given by

iiii RX φθ sincos= (6)

iiii RY φθ sinsin= (7)

iii RZ φcos= (8)

)sin()cos(1 iiiiii RX βφαθ ++=+ (9)
)sin()sin(1 iiiiii RY βφαθ ++=+ (10)

)cos(1 iiii RZ βφ +=+ (11)
Equations (9), (10) and (11) can be rewritten by

)sincoscos)(sinsinsincos(cos1 iiiiiiiiii RX βφβφαθαθ +−=+
iiiiiiiiii RR βαφθβαφθ sincoscoscoscoscossincos +=

iiiiiiiiii RR βαφθβαφθ sinsincossincossinsinsin −−

iiiiiiiiiiii VYUX βαβαβαβα sinsincossinsincoscoscos −−+= (12)

iiiiiiiiiiiii UXVYY βαβαβαβα sinsincossinsincoscoscos1 +++=+ (13)

iiiii WZZ ββ sincos1 −=+ (14)
where iU , iV and iW are defined as follows.

iiii RU φθ coscos= (15)

iiii RV φθ cossin= (16)

iii RW φsin= (17)
It is noted that 1+iU , 1+iV and 1+iW can be written by

iiiiiiiiiiiii YVXUU βαβαβαβα sinsincossinsincoscoscos1 +−−=+ (18)

iiiiiiiiiiiii XUYVV βαβαβαβα sinsincossinsincoscoscos1 −+−=+ (19)

iiiii ZWW ββ sincos1 +=+ (20)
Based on equations (6), (7) and (8), equations (12), (13),
(14), (18), (19) and (20) can be computed by using the
following set of CORDIC rotations.

)222(1 2
21

i
iii

i
ii

i
iii

i
i YVXU

k
U −−−

+ +−−= ρδδρ (21)

)222(1 2
21

i
iii

i
ii

i
iii

i
i XUYV

k
V −−−

+ −+−= ρδδρ (22)

)2(1
1

i
iii

i
i ZW

k
W −

+ += ρ (23)

)222(1 2
21

i
iii

i
ii

i
iii

i
i VYUX

k
X −−−

+ −−+= ρδδρ (24)

)222(1 2
21

i
iii

i
ii

i
iii

i
i UXVY

k
Y −−−

+ +++= ρδδρ (25)

)2(1
1

i
iii

i
i WZ

k
Z −

+ −= ρ (26)

where

ii 221

1cos
−+

=α (27)

i

i
i

i 221

2sin
−

−

+
=

δα (28)

ii 221

1cos
−+

=β (29)

i

i
i

i 221

2sin
−

−

+
=

ρβ (30)

i
ik 221 −+= (31)

In the 2-D CORDIC rotation, i
ii

−−= 2tan 1δα ,
i

ii
−−= 2tan 1ρβ , and iδ and iρ are { }1,1−∈ .

Equations (21) and (22) can be expressed in the matrix
form, which is given by

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
−

−

−

+

+

i

i
i

i

i
ii

i
i

i
i

i

i
i

ii

i

Y
X

V
U

kV
U

12
21

2
12
211

2
1

1

δ
δ

ρ
δ

δ (32)

Similarly, equations (24) and (25) can be rewritten by

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
−

−

−

+

+

i

i
i

i

i
ii

i
i

i
i

i

i
i

ii

i

V
U

Y
X

kY
X

12
21

2
12
211

2
1

1

δ
δ

ρ
δ

δ (33)

It is noted that there are four 2-D CORDIC
rotations involved in the 3-D rotation of a vector. In
addition, the scale factor of 1+iZ and 1+iW is different
from that of 1+iU , 1+iV , 1+iX and 1+iY . They can be
compensated via the pre-scale of inputs or post-scale
of outputs with their respective constants K and 2K ,
which are given by

∏
−

=

=
1

0

n

i
ikK (34)

∏
−

=

=
1

0

22
n

i
ikK (35)

4. VLSI Architecture for 3-D
Vector Interpolator with CORDIC
Algorithm

Vector interpolation can be obtained by using
algorithms based on spherical interpolation, linear
interpolation or CORDIC interpolation. The spherical
interpolation involves complex computations. The
linear interpolation requires post normalization, which
is also complex. The proposed CORDIC-based 3-D
interpolator, which is performed on polar components,
is efficient and more flexible in terms of the hardware
implementations. Figure 2 shows the architecture of
the proposed 3-D vector interpolator by using the
circular CORDIC algorithm with rotation mode. In
which, the generators of),(11 ++ ii VU and),(11 ++ ii YX
consist of two 2-D CORDIC processors, two hardwire
shifters, and two adders/sub-tractors. The generators of

1+iW and 1+iZ consist of half 2-D CORDIC Processor.
The initial coordinates (0U , 0V , 0W) are obtained

by using the auxiliary generator (0U , 0V , 0W) [6],
which is shown in Fig. 3. Thus, the proposed
architecture is composed of the auxiliary generator
(0U , 0V , 0W), the redundant CORDIC arithmetic (for
the computation of 3-D vector interpolation), and
dual-memory banks (for storing the coordinates
(iii ZYX ,,) and (iii WVU ,,), respectively).

The hardware code of the proposed system is
written in Verilog-hardware description Language
(HDL) [7]. The system diagram is shown in Figure 4.
The chip is synthesized by TSMC 0.18 mµ 1P6M
CMOS cell libraries [8]. The layout view of the 16-bit
3-D vector interpolator is shown in Figure 5. The gate
count is reported by the Synopsys® design analyzer.

The power consumption is reported by PrimPower®.
The core size is mm µµ 16201620 × , and the power
dissipation is 56.5mW with the clock rate of 50 MHz
at 1.8V. The critical path is 5.4 ns . All control signals
are generated internally on-chip. This chip offers a
high throughput with low gate counts by using a
parallel-pipelined architecture. The layout view of the
16-bit Auxiliary Coordinate Generator (000 ,, WVU) is
shown in Figure 6. The core size is mm µµ 18411841 × ,
and the power dissipation is 51.4mW with the clock
rate of 50 MHz at 1.8V. The critical path is 4.6 ns .

5. Advantages of New Architectures
and Algorithms

The Euler angle method takes a sequence of three
rotations [2], [9], each of which rotates with respect to
one of the three orthogonal axes. This method can be
represented by the Euler angles corresponding to the
sequence of rotations with respect to the coordinate
axes. In [2], the 3-D rotation is implemented by
cascading two 2-D CORDIC processors. Lang and
Antelo developed a method to replace the two 2-D
CORDIC processors by one 3-D CORDIC processor
[7]. The sequence of rotations is composed of one 2-D
CORDIC rotation followed by one 3-D CORDIC
rotation. Both of the aforementioned methods require
more than two 2-D CORDIC computations. In the
proposed 3-D rotation algorithm, the architecture
based on the conventional CORDIC processor requires
one 2-D CORDIC computation in parallel. The
auxiliary generator of coordinate (0U , 0V , 0W) and the
redundant arithmetic CORDIC for 3-D rotation can
perform in parallel.

6. Conclusions
High-throughput architecture for the 3-D vector
interpolation task based on the CORDIC algorithm is
presented. It takes only one conventional CORDIC
computation time.

The proposed architecture by the use of CORDIC
processor is simple, regular and therefore suitable for
VLSI implementation. In power-aware 3-D graphics
rendering, the performance of 3-D vector interpolation
can be improved by using the proposed algorithm and
architecture. Table 1 shows the comparison of this
work with Eberly [10] and Lang and Antelo [9].

References
[1] B. Phong, “Illumination for Computer Generated

Pictures,” Communications of the ACM, June 1975,
pp.311-317.

[2] J. Euh, J. Chittamuru, W. Burson, “CORDIC
Based Interporator for 3-D Graphics,” IEEE

Workshop on Signal Processing Systems, 2002,
pp.240-245.

[3] J. E. Volder, “The CORDIC Trigonometric
Computing Technique,” IRE Transactions on
Electronic Computers, Vol. EC-8, 1959, pp. 330-
334.

[4] J. S. Walther, “A Unified Algorithm for
Elementary Functions,” Spring Joint Computer
Conference Proceedings, Vol.38, 1971, pp.379-
385.

[5] O. Mencer, L. Semeria, M. Morf, J. Delosme,
“Application of Reconfigurable CORDIC
Architecture,” The Journal of VLSI Signal
Processing, Special Issue on Reconfigurable
Computing, March 2000.

[6] T. Y. Sung, Y. H. Hu, H. J. Yu, “Doubly Pipelined
CORDIC Array for Digital Signal Processing,”
Int’l Conf. on Acoustic, Speech and Signal
Processing, Tokyo, Japan , 1986, pp. 1169-1172.

[7] D. E. Thomas, P. H. Moorby, The Verilog
Hardware Description Language, Fifth Edition,
Kluwer Academic Pub. 2002.

[8] Synopsys FPGA Express, http://www. synopsys.
com/products.

[9] T. Lang, E. Antelo, “High-Throughput CORDIC-
Based Geometry Operations for 3D Computer
Graphics,” IEEE Transactions on Computers, Vol.
54. No. 3, March 2005, pp.347-361.

[10] D. H. Eberly, 3-D Game Engine Design-A
Practical Approach to Real-Time Computer
Graphics, Morgan Kaufmann Pub., 2001.

3-D Graphics Rendering Eberly [10] Lang &
Antelo [9]

This
work

Coordinate system Cartesian Cartesian Polar
No. of 2-D CORDIC

processor
1 3 5

No. of memory bank 1 1 2

 CORDIC computation(s) 3 2 1

Auxiliary coordinate
generator

No. No. Yes

z

iφ
iθ

iR

y

Fig.1. Vector R in the 3-D space

Table 1 The Comparison with Eberly, Lang & Antelo and this
work

iU iV iX iY iαiδ

2-D
CORDIC

2-D CORDIC

Shifter i−2 Shifter i−2 1+iα
1+iδ

ADD/SUB ADD/SUB iρ
iρ

1+iU 1+iV

1+iW

Shifter i−2

ADD/SUB

iW iZ

iρ

1+iZ

Shifter i−2

ADD/SUB

iZ iW

iρ

ADD/SUB

i−− 2tan 1
iβ

1+iρ

iρ

1+iβ

iX iY iU iV iαiδ

2-D
CORDIC

2-D CORDIC

Shifter i−2 Shifter i−2 1+iα
1+iδ

ADD/SUB ADD/SUB iρ
iρ

1+iX 1+iY

Fig. 2. The architecture of the 3-D vector interpolator

Fig. 3. The auxiliary coordinate (000 ,, WVU) generator

Fig. 4. The system diagram of 3-D vector interpolator

Fig. 5. The chip layout of 16-bit 3-D vector interpolator
(Left)

Fig.6. The chip layout of 16-bit auxiliary coordinate
generator (000 ,, WVU) (Right)

Auxiliary
Memory

(iii WVU ,,)

Auxiliary
Coordinate
Generator

(000 ,, WVU)

Graphic Memory
(iii ZYX ,,)

3-D Vector
Interpolator

(iii ZYX ,,)

(iii WVU ,,)

Control Unit

m=1
Rotation Mode

m=1
Rotation Mode

m=0
Vectoring Mode

m=0
Vectoring Mode

m=0
Vectoring Mode

m=1
Rotation Mode

m=1
Rotation Mode

0X

0Y

0Z

1

0

0

0

0

0

0

0

0

0

0

0sinφ

0sinφ

0cosφ

000 cotφXU =

000 cotφYV =

000 tanφZW =

00 sinφX

00 cosφX

00 sinφY

00 cosφY

00 cosφZ

00 sinφZ

0cosφ

0sinφ

0sinφ

00 cosφX

0sinφ

00 cosφY

0cosφ

00 sinφZ

m=1
Vectoring Mode0Z

2
0

2
0 YX +

0
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

2
0

2
0

01tan
YX

Z

0

2
0

2
0

2
0 ZYX ++

iδ

iδ

iδ

iδ

m=1
Vectoring Mode

0X

0Y

0

2
0

2
0 YX +

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

0

01tan
X
Y

