
An Elegant Deadline Calculation for SCED
Lain-Chyr Hwang1, Chia-Hsu Kuo2, San-Yuan Wang3

Department of {1Electrical, 3Information} Engineering, I-Shou University, Taiwan
2Dept. of Computer Science and Information Engineering, National Formosa Univ., Taiwan

{1lain, 3wywang}@isu.edu.tw, 2kuoch@nfu.edu.tw

Abstract
The future multimedia Internet needs mechanisms to
provide QoS (Quality of Service) for users. Service
curve (SC) is an effective description of QoS and SCED
(service curve based earliest deadline first policy) is an
efficient scheduling algorithm to guarantee SCs specified
by users. Deadline calculation is the core of SCED. The
unique treatable SC as we know is the concave piecewise
linear SC (CPLSC). This paper re-derives out a more
compact and clearer recursive relation of deadline
calculation than that in the original SCED and also
modifies some defects of the SCED.

Keywords: Concave piecewise linear service curve,
deadline calculation, QoS, SCED.

1. Introduction
The Internet will be full of multimedia flows in the
future. Owing to the various diversities of multimedia
traffic, different flow/class should be treated
differentially to provide different Quality of Service
(QoS) required by users. An effective way to describe
the requirement of QoS is by way of Service Curve (SC)
[1], [2]. The Concave Piecewise Linear SC (CPLSC) [2]
is the most useful SC, because CPLSC can provide time-
variant service rates for users and it possesses treatable
deadline calculation for the scheduler SCED (Service
Curve based Earliest Deadline first policy) [2].

The definition of SC is originated by Cruz [1], and
then extended by Boudec [3], [4]. Before these
definitions, Parekh had proposed the concept of SC [5].
SC is closely linked to network calculus[6]. The above
studies focused on the network calculus if a system/node
can provide the SC. However, no idea is given about
how to provide the SC. Sariowan first developed a
scheduler called SCED to guarantee the SC [2]. In SCED,
the key factor is the deadline of a packet, which should
be found out first to be the base of scheduling. Although
[2] has derived the recursive relation to find the deadline,
it is still a mission impossible to find the deadline for
general SCs. As far as we know, CPLSC is the unique
treatable SC proposed by [2].

This paper puts focus on the deadline calculation of
SCED. Two works are done. One is to re-derive out the

deadline of a packet for CPLSC and to get a clearer and
more compact recursive relation. The other is to modify
some defects of SCED in [2]. After the enhancement, a
precise SCED and an easy approach for the deadline are
obtained. In this way, the Internet can put QoS on
multimedia flows to carry out the multimedia Internet.

The organization of this paper is as follows. Section
2 reviews and refines the SCED. Section 3 re-derives the
recursive relation of deadline calculation for CPLSC and
modifies some defects of SCED. Finally, concluding
remarks are given in Section 4.

2. Reviewing and Refining SCED
Sariowan [2] defined Y(q | u), q ≥ 1, u ≥ 1, which we call
Key Factor of Deadline (KFD), as

 Y(q | u) = min{t: Z(t | u − 1) ≥ A[1, u − 1] + q}, (1)

where Z(t | u − 1) = min{A[1, s] + S(t − s): τ(u − 1) ≤ s ≤
u − 1} [2, (10)], A[1, s] is the Arrival during [1, s], S(t) is
the SC, and τ(t) is the last system reset time before time t.
Then, the deadline of the nth arrival denoted by dn can be
expressed as [2, (19)]

 dn = max{u, Y(q | u)}, (2)

where n = A[1, u − 1] + q means that the nth packet is
also the qth packet arriving during time slot u. If we
define A0 = 0 and Y(q | u0) = 0, the recursive relation of
Y(q | u), [2, (22), (23)], is rewritten as

 Y(q | um) = max{Y(q + Am−1 | um−1), um − 1 + D(q)}, (3)

where um is the mth time slot that has arrivals, Am is the
number of packets arriving during time um, and D(q), we
call Delay Curve (DC), is defined by [2, (20)]

 D(q) = min{m: m ≥ 1 and S(m) ≥ q}. (4)

Besides, another form of KFD is given to more clearly
discern how the KFD is really found out.
Lemma 1: Another form of KFD is given by

Y(q | um) = max{uk − 1 + D(q +∑
−

=

1m

ki
iA): k = 1,…, m}. (5)

Proof: By induction.

The following theorem is a refinement to illustrate
that to take the maximum value of KFD and u in the
deadline equation of [2], i.e., (2) is redundant.
Theorem 1: KFD is deadline, i.e., (2) is actually

 dn = Y(q | u). (6)

Proof: D(q) ≥ 1 is given in (4) for any positive integer q,

then, from (5), Y(q | um) = max{uk − 1 + D(q + ∑
−

=

1m

ki
iR): k

= 1, …, m} ≥ um − 1 + D(q) ≥ um, so (2) becomes dn =
max{u, Y(q | u)} = Y(q | u).

A simple linear SC can provide single service rate. If
users require time-variant service rates, the SC can
consist of several linear line segments, e.g., CPLSC. We
denote a line segment starting from (τ, σ) with slope ρ
by ρ: (τ, σ) and a curve S(t) consisting of L line segments

by ∑
=

L

l
lll

1

),(: στρ , where τi < τj for i < j, then S(t) is

expressed as S(t) = ρl(t − τl) + σl for τl ≤ t < τl+1. As far as
we know, the unique SC that provides time-variant
service rates and has low complexity is CPLSC. Its
complexity of deadline calculation is O(L), where L is
the number of the line segments constructing CPLSC [2].
Definition 1: CPLSC is expressed as [2]

 S(t) = max{0, min{ρlt + θl: l = 1,…, L}}
= max{0, min{ρlt + (σl − ρlτl): l = 1,…, L}}, (7)

where slope of EF-l ρl is positive, ρi > ρj for i < j, and θl
is vertical coordinate of the cross point of EF-l and
vertical axis. The turning corners, defined as the start
points of line segments, are (τl, σl), l = 2,…, L, where τl
is not less than 1 [2, (26)] and τi < τj for i < j.

The original definition did not specify the value of θl.
However, because of concavity, it must be θi < θj for i < j.
τ1 is not specified, either. Of course, it is τ1 = 0 for the
S(t) defined on t ≥ 0. In the original definition, σ1 (= θ1)
is not specified, but σl, l = 2, …, L, are assumed positive.
This definition has ambiguity at t = 0. If θ1 < 0, there is a
horizontal line between 0 and −θ1/ρ1 and the SC is not
concave. If θ1 > 0, S(0) = θ1 conflicts with the definition
of SC with S(0) = 0. The only way is to have θ1 = 0,
which also makes min{ρlt + θl: l = 1,…, L} ≥ 0 for all
nonnegative t. Consequently, the max operator in (7)
becomes redundant, i.e., it is enough to express S(t) as

 S(t) = min{ρlt + θl: l = 1,…, L}. (8)

3. Deadline calculation of CPLSC
We focus on the CPLSC S(t), which is continuous both
in its domain and range. Imitating the expression of DC,
(4), the expression of continuous DC (CDC)
corresponding to S(t) is expressed by

C(q) = inf{t: t ≥ 0, t ∈ R, and S(t) ≥ q}, q ≥ 0, q ∈ R, (9)

Because S(t) is a one-to-one and onto function, it yields
C(q) = S−1(q). This property makes deadline calculation
smoother, because the inverse function of SC can be
directly used in deadline calculation. Note that, DC does
not own this inverse property. It is easy to show that the
relation between DC and CDC is

 D(q) = C(q), for integer q. (10)

Similar to (3), if X(q | u0) = 0 is defined, the Key
Factor of Continuous Deadline (KFCD) denoted by X(q |
um) can be construct recursively from CDC C(q) by

X(q | um) = max{X(q + Am−1 | um−1), C(q) + um − 1}. (11)

The relation between KFD and KFCD is

 Y(q | um) = X(q | um), (12)

which can be inductively proven by (3), (10) and (11).
Similar to Lemma 1, another form of KFCD is

X(q | um) = max{C(q +∑
−

=

1m

ki
iA) + uk−1: k = 1,…, m}. (13)

In general, C(q) is not necessarily linear, so the
complexity to find KFCD X(q | um) is O(m). On the other
hand, if C(q) is linear, the complexity is O(1), see next
lemma. A CPLSC and its inverse (i.e., CDC) consist of
linear functions, so the linear CDC is investigated first.
Lemma 2: If C(q) = ηq + d, then

 X(q | um) = C(q) + Km (14)

where K0 = 0 and

 Km = max{Km−1 + ηAm−1, um−1}. (15)

Proof: By induction.
Lemma 2 reveals if C(q) is linear, the unknown in

deadline calculation is Km only, which can be recursively
obtained by Km−1 and some other known parameters, so
the complexity of deadline calculation is O(1).

3.1. Combinatorial Function
If a function is synthesized by some functions, e.g.,

g(x) = F(f1(x),…, fk(x)), where g(⋅), F(⋅), and fi(⋅), i = 1,…,
k, are some kinds of functions, we call g(x) a
Combinatorial Function (CF) and call its constituents,
fi(x), i = 1,…, k, Element Functions (EFs). If F(⋅) is the
maximum function, i.e., g(x) = max(f1(x),…, fk(x)), we
say the CF possesses Property of Maximum of
Combination (PMC). If all EFs of a CF are linear, we
call the CF a linear CF (LCF).
Theorem 2: CDC C0(q) is a CF that consists of EFs
Cl(q), l = 1,…, L, and possesses PMC, i.e.,

 C0(q) = max{Cl(q): l = 1, …, L}, (16)

and each Cl(q) can recursively create Xl(q | um) by

 Xl(q | um) = max{Xl(q + Am−1 | um−1),

 Cl(q) + um−1}, l = 0, 1, …, L, (17)

where Xl(q | u0) = 0 for any l and q, then the
corresponding KFCD X0(q | um) is also a CF with EFs
Xl(q | um), l = 1, …, L and possesses PMC, i.e.,

 X0(q | um) = max{Xl(q | um): l = 1, …, L}. (18)

Proof: By induction.
In Theorem 2, Cl(q), l ≥ 1, is not necessary to be a

CDC, so there may exist some q such that Cl(q), even
Xl(q | um) in (17), is negative. However, it does not affect
the final correct X0(q | um).
Lemma 3: In Theorem 2, even there exists some p at a
certain um causes Cj(p) < 0 and/or Xj(p | um) < 0 for some
j. It does not affect the final correct X0(⋅ | um).
Proof: Because C0(q) is a CDC, it has max{Cl(p): l =
1,…, L} = C0(p) ≥ 0, which means there exists at least a
Ci(p) ≥ 0, i ≠ j. That is any negative Cj(p) does not affect
the value of C0(p). From (13), we have X0(q | um) =

max{ C0(q +∑
−

=

1m

ki
iA) + uk − 1: k = 1,…, m}, which must

be nonnegative, because of nonnegative C0(⋅). That is,
X0(q | um) is not influenced by any negative Cj(⋅).
Similarly, from (18), X0(p | um) = max{Xl(p | um): l = 1,…,
L} ≥ 0 results in that there must exist at least an Xi(p | um)
≥ 0, i ≠ j, even if Xj(p | um) < 0. That is, any negative Xj(p
| um) does not influence the final correct X0(p | um).

The above Lemma also roughly illustrates the defect
in [2] that will be specified in next subsection. In fact,
corresponding (13) with (18), if Ci(q) is not a linear
function, KFCD is the maximum element of the m×L
matrix constructed by Cl(⋅), so the complexity is O(mL).
The complexity grows with time um. It is unacceptable.
One way to eliminate the effect of time is to have SC an
LCF.

Theorem 3: If an LCF C(q) =∑
=

L

l
lll

1

),(: τση possesses

PMC, its KFCD is

 X(q | um) = max{ Cl(q) + Kl,m: l = 1,…, L}, (19)

where Cl(q) = ηl(q − σl) + τl, Kl,0 = 0, and

 Kl,m = max{Kl,m−1 + ηlAm−1, um − 1}. (20)

Proof: From Lemma 2, the Xl(q | um) corresponding to
Cl(q) is Cl(q) + Kl,m, where Kl,m = max{Kl,m−1 + ηlAm−1,
um−1}. Then Theorem 2 gives

 X(q | um) = max{Xl(q | um): l = 1, …, L}
 = max{ Cl(q) + Kl,m: l = 1,…, L}, (21)

so the proof is finished. Furthermore, the complexity of
deadline calculation of an LCF C(q) is O(L), because the
complexity of Xl(q | um) is O(1).

3.2. CPLSC

This subsection will finish two tasks. One is to do the
approach of deadline calculation of CPLSC by our
methodology; the other is to modify some defects of [2].

Because CPLSC S(t) =∑
=

L

l
lll

1

),(: στρ is invertible, we

can find C(q) by turning the t-q plant to q-t plant. Then
the corresponding CDC C(q) consists of Cl(q) =)(1 qSl

− , l

= 1, …, L, i.e., C(q) =∑
=

L

i
iii

1

),(: τση , where ηl = 1/ρl and

ηi < ηj for i < j, because ρi > ρj, i.e., C(q) is a convex
LCF. Next theorem will prove that CPLSC possesses
PMC after the following Lemma proven.
Lemma 4: For two points (x1, y1) and (x2, y2), x1 < x2, on
a convex curve y = f(x), it obtains f′(x1) ≤ (y2 − y1)/(x2 − x1)
≤ f′(x2), where yi = f(xi) for i = 1 and 2.
Proof: Assume there are N turning corners at ti, i = 1, …,
N in interval (x1, x2). Also, let t0 = x1 and tN+1 = x2, then y2

= y1 + ∫
2

1

y

y
dy = y1 +∑∫

=

+
N

n

t

t

n

n

dxxf
0

1

)(' . Because of convexity,

we have f′(x1) ≤ f′(x) ≤ f′(x2) for x1 ≤ x ≤ x2 no matter
from the right or the left hand side, such that

∑∫
=

+
N

n

t

t

n

n

dxxf
0

1

1

)(' ≤ ∑∫
=

+
N

n

t

t

n

n

dxxf
0

1

)(' ≤ ∑∫
=

+
N

n

t

t

n

n

dxxf
0

2

1

)(' ,

i.e., f′(x1)(x2 − x1) ≤ y2 − y1 ≤ f′(x2)(x2 − x1)
or f′(x1) ≤ (y2 − y1)/(x2 − x1) ≤ f′(x2).
Theorem 4: For an LCF, it possesses PMC, if and only
if it is convex.

Proof: Denote the LCF by C(q) =∑
=

L

l
lll

1

),(: τση with σi

< σj for i < j. This theorem is to prove ηi < ηj for i < j if
and only if C(q) = max{Cl(q): l = 1,…, L}, where Cl(q) =
ηl(q − σl) + τl is the EF-l. First we prove that if ηi < ηj
for i < j, then C(q) = max{Cl(q): l = 1,…, L}. For q ∈ [σn,
σn+1), n = 1, …, L, where σL+1 = ∞ is defined, one has
C(q) = Cn(q) = ηn(q − σn) + τn = τn+1 − ηn(σn+1 − q). For l
< n and from Lemma 4, the right-hand side derivative of
C(q) at σl is C′(+

lσ) = ηl ≤ (τn − τl)/(σn − σl), i.e., ηl(σn −
σl) + τl ≤ τn, so Cl(q) = ηl(q − σl) + τl = ηl(q − σn) + ηl(σn

− σl) + τl ≤ ηl(q − σn) + τn ≤ Cn(q). For l > n, the left-
hand side derivative of C(q) at σl+1 is C′(−

+1lσ) = ηl ≥ (τl+1
− τn+1)/(σl+1 − σn+1), i.e., τl+1 − ηl(σl+1 − σn+1) ≤ τn+1, so
Cl(q) = τl+1 − ηl(σl+1 − q) = τl+1 − ηl(σl+1 − σn+1) − ηl(σn+1
− q) ≤ τn+1 − ηl(σn+1 − q) < Cn(q). Finally, C(q) =
max{Cl(q): l = 1,…, L} = Cn(q).

We prove the reverse direction by contradiction.
Assume there exists an EF-l such that ηl < ηl−1. For σl <
q < σl+1, LCF makes C(q) = Cl(q). But, ηl < ηl−1 results in
Cl(q) = ηl(q − σl) + τl < ηl−1(q − σl) + τl = ηl−1(q − σl) +
ηl−1(σl − σl−1) + τl−1 = ηl−1(q − σl−1) + τl−1 = Cl−1(q). It
means C(q) = Cl(q) < Cl−1(q) ≤ max{Cl(q): l = 1,…, L},
which conflicts with premise C(q) = max{Cl(q): l = 1,…,
L}, so no such EF-l exists.

Now, the deadline calculation of CPLSC becomes
an easy task by our approach. The CDC of CPLSC is a
convex LCF, so it has PMC, and then the deadline can be
found easily by Theorem 3 and (12). The recursion and
the expression are clearer than those of [2].

Furthermore, the approach in [2] has a defect,
although the final results are the same as ours. While [2]
derived KFD of CPLSC [2, the first paragraph of the
right column on p.676], the S(t) is expressed as S(t) =
min{Sl(t): l = 1,…, L}, where

 Sl(t) = max{0, ρlt + θl}. (22)

Sariowan temporarily took Sl(t) as an S(t) to find KFD,
so we also temporarily consider Sl(t) only. Because ρlt +
θl is nonnegative for all nonnegative t, the max operator
in (22) is redundant (see the derivation of (8)). Thus, we
modify the expression of SC in (22) and also the last
equation of the left column on p.676 in [2] by removing
the max operator. One more modification is aimed at
Dl(q) = ηl(q − θl) [2, the first paragraph of the right
column on p.676]. Because there may exist some θl > 0
to cause an unreasonable negative Dl(q) for small q, the
expression of Dl(q) = ηl(q − θl) is not correct. From
definition of D(q), (4), Dl(q) must be not less than 1, so
the correct expression is

 Dl(q) = max{1, ηl(q − θl)}. (23)

The cause of this mistake comes from inverting cause
and effect. The derivation of KFD in [2, (21), (22), (23)]
first used (4) [2, (20)], where Dl(q) is not necessarily
linear and Dl(q) ≥ 1. Then [2] gave a linear Dl(q) [2, last
paragraph on p.675] to find out the specific KFD, in
which Dl(q) plays the role of cause, rather than the role
of effect. However, in deriving the KFD corresponding
to a line segment of CPLSC, the given premise is the line
segment Sl(t) [2, the first paragraph of the right column
on p.676], rather than Dl(q) given directly. In this way,
Dl(q) needs to be found out from Sl(t). At this moment,
the cause is Sl(t) and the effect is Dl(q), which is not
guaranteed to conform with the condition of DC [2, (20)]
to be larger than or equal to 1. To meet the requirement,
the actual result must be (23), which also influences the
KFD. The CDC corresponding to (23) is Cl(q) = max{1,
ηl(q − θl)}. It is a LCF with PMC, so, by (19), (14) and
(15), one has

 Xl(q | um) = max{um, ηl(q − θl) + Kl,m}, (24)

where Kl,m is as (20). Then Yl(q | um) = max{um, ηl(q − θl)
+ Kl,m} that is different from Yl(q | um) = Kl,m + ηl(q −
θl) of [2] (in the compact expression of this paper). The
result of [2] may lead to Yl(q | um) < um that means
deadline is before the arrival time. Although [2, (19)]
may modify the problem, however, Theorem 1 has
proven that the deadline is KFD and to take the
maximum value with um is not necessary. In a word, the
deadline finally achieved in [2] is the same as that

derived in this paper, but there are some defects in the
procedure of [2].

The last phrase is aimed on a single EF (a line
segment). Its object is to highlight the defect in [2].
Actually, to find the deadline corresponding to the whole
curve, it is unnecessary to do the maximum operation of
(24) for every EF. Lemma 3 has illustrated the value of
KFCD corresponding to each EF can be directly used
while utilizing the PMC, no matter whether the value is
negative or not. In a word, our approach is an efficient
and precise method to find the deadline of CPLSC.
Furthermore, the final recursive relation is more elegant
than that in [2].

4. Concluding Remarks
Although [2] has proposed the scheduling algorithm

SCED and derived the recursive relation of deadline,
some defects appeared in [2] and the recursive relation is
almost untreatable for general SCs. Even for CPLSC, the
recursive relation in [2] can be enhanced to have a more
compact and clearer expression. This study finishes some
modifications of SCED and derives out a better recursive
relation for CPLSC. Consequently, our recursive relation
makes the deadline calculation clearer and easier.

About SCED, do other kinds of SCs except the
CPLSC possess an easy recursive relation of deadline
calculation similar to that derived here? It is a further
study topic.

5. References
[1] R.L. Cruz, “Quality of service guarantees in virtual

circuit switched networks,” IEEE JSAC, vol. 13, no.
6, pp. 1048-1056, Aug. 1995.

[2] H. Sariowan, R.L. Cruz, and G.C. Polyzos, “SCED:
A generalized scheduling policy for guaranteeing
quality-of-service,” IEEE/ACM Trans. Net., vol. 7,
no. 5, pp. 669-684, Oct. 1999.

[3] J.Y. Le Boudec, “Network calculus made easy,”
Tech. Rep. EPFL-DI 96/218, 1996.
http://lrcwww.epfl.ch/PS_files/d4paper.ps

[4] J.Y. Le Boudec, “Application of network calculus
to guaranteed service networks,” IEEE Trans.
Inform. Theory, vol. 44, no. 3, pp. 1087-1096, May
1998.

[5] A.K. Parekh and R.G. Gallager, “A generalized
processor sharing approach to flow control in
integrated services networks: The single node
case,” IEEE/ACM Trans. Net., vol. 1, no. 3, pp.
344-357, June 1993.

[6] R.L. Cruz, “A calculus for network delay, part I:
Network elements in isolation,” IEEE Trans.
Inform. Theory, vol. 37, no. 1, pp. 114-131, Jan.
1991.

