
A study of some easily parallellizable automata1

Sylvie Hamel

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, CP.6128 Succ. Centre-Ville

Montréal, Québec, Canada, H3C 3J7
phone:+1 514 343-6111(3504) fax:+1 514 343-5834

sylvie.hamel@umontreal.ca

Abstract

A vector algorithm is an algorithm that applies a
bounded number of vector operations to an input
vector, regardless of the length of the input. The
allowable operations are usually restricted to bit-wise
operations available in processors, including shifts
and binary addition with carry. This paper studies
automata for which it is easy to derive a vector
algorithm to compute the sequence of states visited
by the automata on a given input sequence. A special
case of these automata, shellable automata, is used in
pattern matching problems on biological sequences [2].

Keywords: automata, vector algorithms

1 Introduction

Given a deterministic, finite and complete automaton
and an input sequence, we are interested in comput-
ing τ : A∗ → Q∗, the sequence of states visited by the
automaton while reading this input. We will call this
function τ a length-preserving transduction. Since ex-
ecuting one transition is usually considered to be a
constant time operation, the output sequence can be
obtained in O(m) time by simulating the run of the
automaton on an input word of length m.
One way to accelerate the computations is to exploit
the parallelism of bit-vector operations. For exam-
ple, in [1] and [4], bit-vectors are used to code the
set of states of a non-deterministic automaton. An-
other approach, developed in [7] and generalized in
[2], uses bit-vectors to code both the input and output
sequence, and computes the output with a bounded
number of bit-wise operations on the input.
In [3], A. Bergeron and S. Hamel have shown that
the automaton being aperiodic is a sufficient condi-
tion for the existence of a vector algorithm for the
transduction problem. The fact that it is also a neces-
sary condition was proved in [8] by O.Serre. However,
for general aperiodic automata, the construction of a
vector algorithm for the transduction problem relies

on the cascade decomposition of the automaton,
defined by Krohn and Rhodes in [5], yielding al-
gorithms with exponential complexity in the size
of the automaton. Drawbacks of this construction
are that, given an automaton, there is no efficient
way to obtain a cascade decomposition [6] and,
moreover, deciding if an automaton is aperiodic
is PSPACE-Hard [9].
In this article, we will investigate some easily par-
allellizable automata, meaning that, for these au-
tomata, the construction of a vector algorithm for
the transduction problem will not rely on the cas-
cade decomposition, but will be directly derived
from the automaton. The paper is organized as
follow. First we will talk about the basics of vec-
tor algorithms for the transduction problem. We
will then recall how we can derive a vector al-
gorithm for the transduction problem in a class
of automaton, that was called solvable in [2], but
that we will called shellable to avoid any confu-
sion with solvable groups. We will then present
vector algorithms for the transduction problem in
two new classes of automata, the k-shellable au-
tomata and the connected-k-shellable automata.

2 The Basics of Vector Algo-

rithms

2.1 Notation.

Most of our notation is standard. We will use
bold letter to denote vectors. If x = x1 . . . xm

and y = y1 . . . ym are two boolean vectors –or bit
vectors – then x ∨ y, x ∧ y, ¬x and x +b y repre-
sent the bit-wise logical disjunction, conjunction,
negation and binary addition with carry (that we
perform from left to right, dropping the eventual
last carry bit). We generalize this notation to ar-
bitrary predicates and terms. For example, for a
set S and a vector e = e1 . . . em, the expression
(e ∈ S) is the bit vector (e1 ∈ S, . . . , em ∈ S),
where ei ∈ S = 1 or 0 depending on whether or

1with the support of NSERC and FQRNT

not the element ei of the vector e is included in the
set S. Finally, we need two more basic operations on
vectors. First, the right shift by j is defined for x =
x1 . . . xm to be ↑j x = jx1 . . . xm−1. Thus, the values
of x are shifted to the right, and the first component
is set to j. Second, we will need the operator → x on
a bit vector x defined as → x = x ∨ [¬(x +b 1)]. This
operator turns on (put 1’s) in x all the positions to the
right of the first 1. For example, if x = 00101110001
then → x = 00111111111.

2.2 Vector Algorithms and the Trans-

duction Problem.

It may be best to introduce the concept of vector algo-
rithms for the transduction problem with an elemen-
tary example. Consider the following automaton. On
input sequence e = bcaacbbacb, it will generate the
output r = 1200122012.

0 1 2

a

b, c

b, c

a

b, c

a

A

We first compute the characteristic vector of each let-
ter of the input alphabet. The characteristic vector of
the letter a, denote a, is simply the bit vector where
the ”on” bits indicate the positions of the letter a in
the input. So given the input e = bcaacbbacb, we have
the following characteristic vectors; a = 0011000100,
b = 1000011001, c = 0100100010. Now, looking at
the automaton A, one sees that the output will be 0 if
and only if the input letter is a, thus (r = 0) = a =
0011000100. Similarly, the output state is 1 if we were
in state 0 and the input letter is either b or c, and so we
have (r = 1) = ↑1(r = 0) ∧(b ∨ c) = 1000100010.
In all other cases, the output state is 2, and we have
(r = 2) = ¬ [(r = 0) ∨ (r = 1)] = 0100011001.
If we assume that vector operations are done in paral-
lel then, regardless of the length of the input sequence,
the output can be computed here with only 5 vec-
tor operations (1 shift, 1 conjunction, 2 disjunctions
and 1 negation). Although this example is simple, the
output state depends on at most two input letters, it
gives the flavor of the technique. In general, the out-
put state will depend on arbitrarily ”far” input letters
and we will see in the next section how we can use the
binary addition with carry bit as a memory of these
past events for a special class of automata that have
nice properties.

3 The Shellable Case

Let us recall the main features of the transduction
problem in a shellable automaton. Since these results

can be found in [2] all the proofs of this section
are omitted. A reset in an automaton A is a tran-
sition event that induces a constant function on
the states of A. When a state s is reached only
by resets than we will see that (r = s) (the posi-
tions where we are in state s given an input se-
quence) can easily be computed using only vector
operations. We will also recall a generalization
of this result that will give us a vector algorithm
for the transduction problem in so called shellable
automaton.

Definition 3.1 Let A be a finite automaton on
alphabet of events Σ, with states Q and transition
function F : Q × Σ−→Q. A state s is said to be
shellable if and only if for all events x ∈ Σ,
the fact that there exists a state s′ 6= s such that
F (s′, x) = s implies that x is a reset to s (for all
states q ∈ Q we have F (q, x) = s).

Definition 3.2 The indicator set Is, of a
shellable state s, is the set of resets to s.

To lighten the notation, we will denote, given
an input vector e, the bit vector e ∈ Is by Is.
With this notation in mind, we have the follow-
ing proposition:

Proposition 3.1 ([2]) If s is shellable, and if Ls

is the set of event looping on s but not in Is, then,
if s is the initial state, the bit vector (r = s) is
equal to

Is ∨ [Ls ∧ (¬Is +b ¬(Is ∨ Ls))]. (a)
Otherwise, (r = s) is equal to

Is ∨ [Ls ∧ ¬(Is +b (Is ∨ Ls))]. (b)

Let A be a complete deterministic automaton and
A\{s} be the automaton obtained from A by re-
moving state s, and all its pending arrows. Then
if s is shellable, A\{s} is still a complete automa-
ton on the alphabet Σ \ Is, since F (r, a) 6= s, if a
is not in Is. Note that if s is the initial state then
A \ {s} will become a complete automaton with-
out initial state.This is not a problem here since
the initial state s will have been already taking
care of by Formula (a) of Proposition 3.1.

Definition 3.3 An automaton A is shellable if
it has one state, or if it has one shellable state s,
and A \ {s} is shellable.

When an automaton A with d states is shellable,
there is an induced ordering (not always unique)
on its states, starting from the first shellable
state, and then the next, and so on. We can
thus relabel the states of A and assume that
Q = {0, 1, . . . , d − 1}.

Theorem 3.1 ([2]) If A is a shellable automaton
then we can easily derive from A a vector algorithm
for the transduction problem, of complexity O(d|Σ|).

4 k-shellable and connected-k-

shellable automata

In this section, we will generalize the concept of
shellable automata to k-shellable and connected-k-
shellable automata. We will then derive vector algo-
rithms for the transduction problem in these classes
of automata.

Definition 4.1 Let A be a complete deterministic au-
tomaton on alphabet of events Σ with states Q and

transition function Q × Σ
F

−→ Q. A word w ∈ Σ∗ is
said to be synchronizing in A if there exists a state
p ∈ Q such that for all states q ∈ Q, q · w = p.

Definition 4.2 A state s is k-shellable iff for all
words x ∈ Σk, the fact that there exist a state s′ 6= s
such that s′ · x = s implies that for all states q ∈ Q,
q · x = s. The indicator set Ik

s , of a k-shellable
state s, is the set of synchronizing words w of length
k reaching s. An automaton A is k-shellable if it
has one state, or if it has one k-shellable state s, and
A \ {s} is k-shellable.

We will now define an even more general class of au-
tomata, called connected-k-shellable.

Definition 4.3 An automaton A is connected-k-
shellable if all of its strongly connected components
Ci are t-shellable for a certain t ≤ k, when consid-
ered as the complete automaton obtained by transform-
ing all transitions going out of a state qj of Ci, as a
loop on qj. If k = 1 we say that the automaton is
connected-shellablea.

Example 4.1 The following automaton is connected-
2-shellable since its connected component C1 is 2-
shellable, while C2 and C3 are shellable:

1 2 3

4

5 6

a

b a

b

a a

b

a

a

b

b
b

C1

C2

C3

aThe case k = 1 was studied in [8].

Given a connected-k-shellable automaton, there
exist a partial ordering of its components de-
scribed as follows. Let us call C1 the connected
component containing the initial state. Then, for
i < j, we will say that a component Ci is visited
before another component Cj , denoted Ci ≺ Cj ,
if there exist a path from any state of Ci to any
state of Cj . For example, in the figure above, we
have C1 ≺ C2, C3 and C2 ≺ C3.

4.1 Vector algorithms for k-

shellable and connected-k-

shellable automata

Theorem 4.1 If A is a k-shellable automaton
then we can easily derive from A a vector algo-
rithm for the transduction problem, of complexity
O(kd|Σ|k).

Proof. Here, we are given k, such that the au-
tomaton A is k-shellable. Suppose that we also
have the generalized transition function F k : Q×
Σk → Q. Let Q = {0, 1, . . . , d−1} be an ordering
of the states of A such that A \ {0, 1, . . . , ℓ − 1}
is k-shellable for state ℓ, and let i be the ini-
tial state of A. Given the input sequence e =
e1e2 . . . em, we will recursively compute the out-
put r = r1r2 . . . rm using intermediate compu-
tations of the bit vectors (r = ℓ), for each ℓ in
{0, 1, . . . , d − 1}, in k steps:

1. Starting with the initial state i of the au-
tomaton and reading the input with a win-
dow of length k, we can find the bits in po-
sition km, m ≥ 1 of (r = ℓ) using Theo-
rem 3.1.

2. Beginning in state F (i, e1) = i2 of the au-
tomaton, and reading the input with a win-
dow of length k, starting at e2, we can find
the bits in position (k + 1)m, m ≥ 1 of
(r = ℓ) using Theorem 3.1. Set the first bit
of the vector (r = i2) to 1 (since after read-
ing e1 we will be in that state).

...

k. Finally, beginning in state i ·e1e2 . . . ek−1 =
ik of the automaton and reading the input
with a window of length k, starting at ek, we
can find the bits in position (k + k − 1)m,
m ≥ 1 of (r = ℓ) using Theorem 3.1. Set
the k − 1th bit of the vector (r = ik) to 1.

Each step described here requires a constant num-
ber of vector operations, apart from the test
Fk(↑i r, e) = ℓ, which requires |Σ|k steps (once
the vector (r = ℓ) is known, we can form the con-

juction, for each word w ∈ Σk, (↑i r = ℓ) ∧ (e = w),
and then look-up the value of F k(ℓ, w) in the transi-
tion table). Since we compute the d vectors (r = ℓ)
in k of these steps, the complexity of the algorithm is
O(kd|Σ|k).

Theorem 4.2 If A is a connected-k-shellable au-
tomaton then we can easily derive from A a vector
algorithm for the transduction problem, of complexity
O(kd|Σ|k).a

Proof. First, let us partially order the connected
components of A as described in section 4.2. Given
this order, we will now show that we can compute,
given an input e = e1 . . . en, when we are in each of
the states of a component Ci given that we have al-
ready computed when we are in each of the states
of the components visited before Ci. This intuitively
comes from the fact that when we go out of a compo-
nent we never come back to it and we always go to a
“lower” component in the partial ordering.
Computing when we are in the states of compo-
nent C1: Let q1, . . . qn1

be the states in C1. We want
a vector algorithm that will compute the characteris-
tic vectors (r = qj), for 1 ≤ j ≤ n1, given an input
e. To do that, we first consider component C1 as a
complete t-shellable automaton (t ≤ k) by considering
all transitions going out of a state qj of C1, as a loop
on qj . Using Theorem 4.1 we can compute with vec-
tor algorithms the characteristic vectors (rC1

= qj),
for 1 ≤ j ≤ n1, and these vectors are equals to the
vectors (r = qj) iff on input e we never go out of com-
ponent C1. Now, if we do not stay in C1 on input
e, there exists some transitions aj and states qj ∈ C1

such that qj · aj /∈ C1. Let the vector OUTC1
be the

disjunction of all these events:

OUTC1
=

h∨

j=1

[(↑i rC1
= qj) ∧ (e = aj)],

with i = 1, if qj is the initial state, and 0 otherwise.
Then the vector → OUTC1

contains a sequence of 1’s
starting at the first position in e, where we go out of
C1, up to the end of the vector, i.e in all positions we
are out of C1 on input e. So, we can now compute the
vectors (r = qj), for 1 ≤ j ≤ n1 with the formula:

(r = qj) = (rC1
= qj) ∧ ¬(→OUTC1

).

Computing when we are in the states of com-
ponent Cm given that we know when we are in
the states of components C1, . . .Cm−1: The first
thing to do here is to compute if, reading the input e,
we will enter component Cm are not. To do that, let
us consider the following vector of all events aj going
in Cm:

aThe case k = 1 was proved in [8]. Here, we generalize this
result to an arbitrary k.

INCm
=

h∨

j=1

[(↑i r = qj) ∧ (e = aj)].

All the vectors (r = qj) appearing in this formula
have already been computed since all the qj are
in one of the components C1, . . .Cm−1 by the
partial ordering of the components. If the vector
INCm

is null than, on input e, we never enter
component Cm of the automaton and for each
state s of Cm we have that the vector (r = s) is
null.
Otherwise, let p1, . . . pnm

be the states in Cm.
Again, we consider component Cm as a complete
automaton by considering, as for C1, all the tran-
sitions going out of Cm, from a state pj , as a loop
on pj. The initial state of Cm is the state where
we enter Cm, while reading the input e. Also, we
want to begin the lecture of the input e where we
left it entering Cm. To do that, we will introduce
an ”already read” marker R, R 6∈ Σ, and a loop
labeled R on each state of the component Cm.
(Cm is now a complete automaton on the alpha-
bet Σ ∪ R.) We will then transform the input e
to e′, where e′j = R, in all positions j that are
already read and e′j = ej , otherwise. Since the
vector INCm

gives us the position where we go in
Cm, we easily get the following formulas for e′:

(e′ = R) =↑1 ¬(→ INCm
) and

(e′ = a) = [(e = a)∧ ↑0 (→INCm
)], ∀a ∈ Σ.

With this e′ and Theorem 4.1 we can then com-
pute the characteristic vectors (rCm

= pj), for
1 ≤ j ≤ nm and the vector OUTCm

. It is easy
to see that we have the following formulas for
(r = pj), for 1 ≤ j ≤ nm:

(r = pj) = →INCm
∧(rCm

= pj) ∧ ¬(→OUTCm
).

Now, let us talk about the complexity of the al-
gorithm. Each state s of a connected-k-shellable
automaton belongs to exactly one component Ci.
To compute (r = s) we have to compute three
bit vectors: INCi

, OUTCi
and (rCi

= s). Since
INCi

and OUTCi
can be computed with O(d|Σ|)

operations and (rCi
= s) is computed using The-

orem 4.1, we have that the complexity of the al-
gorithm is O(kd|Σ|k).

Example 4.2 Given the connected-2-shellable
automaton A of Example 4.1 and the input e =
abaababbabbaba we should find the output vector
r=21232321215656. The first thing to do is to
consider C1 as a complete 2-shellable automa
ton and compute the vectors (rC1

= qj) for all
state qj ∈ C1. Using Theorem 5.1 we get that

(rC1
= 1)=01000001011010, (rC1

= 2) =
10101010100101 and (rC1

= 3)=00010100000000.
Now, there is two ways to go out of component C1;
we are in state 1 and follow the transition b or we
are in state 3 and follow the transition a. These two
events gives us the following vector:
OUTC1

=[↑1 (rC1
= 1) ∧ (e = b)]

∨[↑0 (rC1
= 3) ∧ (e = a)]

= 00000000001000
Now, → OUTC1

= 00000000001111, which gives us
the following vectors for state 1, 2 and 3:
(r = 1)=(rC1

= 1) ∧ ¬(→OUTC1
) = 01000001010000

(r = 2)=(rC1
= 2) ∧ ¬(→OUTC1

) = 10101010100000
(r = 3)=(rC1

= 3) ∧ ¬(→OUTC1
)=00010100000000.

Now that we are done with all the states of component
C1, let us see if we enter component C2 while reading
e. The only transition that goes in C2 from an other
component is the transition a going from state 3 to
state 4. That gives us the following vector:

INC2
= (↑0 r = 3) ∧ (e = a) = 00000000000000.

Since INC2
is the null vector, we will never enter com-

ponent C2, while reading e, and so we have (r = 4) =
00000000000000. Finally, for the last component C3

we can compute easily the vectors

INC3
= [(↑1 r = 1) ∧ (e = b)] ∨ [(↑0 r = 4) ∧ (e = b)]

= 00000000001000
OUTC3

= 00000000000000.
What we have to do now is compute the vec-
tors (rC3

= 5) and (rC3
= 6), on input e′ =

RRRRRRRRRRRaba, where C3 is the following
complete automaton on alphabet Σ ∪ R, with initial
state 5 (we enter C3 by state 5):

5 6b,R a,R

a

b

C3

Since, C3 is shellable, we use Theo-
rem 3.1 and input e′ to get the vectors
(rC3

= 5) = 11111111111010 and (rC3
= 6) =

00000000000101. Finally, with the formula
(r = pj) = (→ INC3

) ∧ (rC3
= pj) ∧ ¬(→ OUTC3

)
we get (r = 5) = 00000000001010 and (r = 6) =
00000000000101.

5 Conclusion

We have shown that k-shellable and connected-k-
shellable automata are easily parallellizable, meaning
that vector algorithms for the transduction problem
in these automata can be directly derived from their
transition table. The complexity of these algorithms
is independent of the length of the input. We have

also shown that it is possible to decide member-
ship for both of these classes. In [2], A. Bergeron
and the author have shown that, for some spe-
cial shellable automata appearing in an approx-
imate string matching algorithm, it was possible
to accelerate the computation by exploiting cer-
tain arithmetic properties of the transition table
of the automaton. This gave them a vector al-
gorithm with complexity depending only on the
number of states of the automaton. Recall that in
the general case, the complexity of the algorithm
depends on the number of states and transitions
of the automaton. So, one interesting question
here is the following. Can we describe formally
the properties of the transition table of an au-
tomaton that will gives us an O(d) vector algo-
rithm for the transduction problem in a shellable
automaton with d states? If so, can we general-
ize these properties to words to get O(kd) vec-
tor algorithm for the transduction problem in k-
shellable are connected k-shellable automata?

References

[1] R. A. Baeza-Yates and G. H. Gonnet, A New
Approach to Text Searching, Communications
of the ACM, 35, (1992), 74-82.

[2] A. Bergeron and S. Hamel, Vector Algorithms
for Approximate String Matching, Inter. J. of
Found. of Comp. Sc., 13-1, (2002), 53–66.

[3] A. Bergeron and S. Hamel, From cascade de-
composition to bit-vector algorithms, Theoret-
ical Computer Science, 313, (2004), 3–16.

[4] J. Holub and B. Melichar, Implementation
of Nondeterministic Finite Automata for Ap-
proximate Pattern Matching, LNCS 1660,
(1999), 92-99.

[5] K. Krohn and J. L. Rhodes, Algebraic Theory
of machines, Trans. of the American Math.
Soc., 116, (1965), 450-464.

[6] O. Maler and A. Pnueli, Tight Bounds on the
Complexity of Cascaded Decomposition Theo-
rem, Annual Symp. on Found. of Comp. Sc.
IEEE, vol. II, (1990), 672-682.

[7] G. Myers, A Fast Bit-Vector Algorithm for
Approximate String Matching Based on Dy-
namic Programming , J. ACM, 46-3, (1999),
395-415.

[8] O. Serre, Vectorial Languages and Linear
Temporal Logic, to appear in Theo.Comp. Sc.

[9] J. Stern, Complexity of some Problems from
the Theory of Automata, Inform. and Control,
66, (1985), 163–176.

