
USIS: A Unified Framework for Secured
Information System Lifecycle

Bei-Tseng Chu1

Huiming Yu2

 Audrey Dance2

1Department of Software and Information Systems
UNC Charlotte

billchu@uncc.edu

2Department of Computer Science
North Carolina A&T State University

{cshmyu, asdance}@ncat.edu

Abstract

Information security ≠ information system + security
features such as access control and intrusion
detection. Security considerations must be an integral
part of the entire lifecycle of the information system.
This paper presents a framework to systematically
classify all security considerations throughout the
lifecycle of an information system. This framework
can be seamless integrated into mainstream
information system development frameworks and can
serve as an effective guide for both students as well
as practicing information system professional.

Keywords: Secure Software Development,
Information Assurance, Information Security and
Privacy, Information System Lifecycle.

Acknowledgement: This work has been supported
in part by a grant from the National Science
Foundation under the grant DUE 0416042.

1. Introduction

Given the importance of information in modern
society and poor security track record of many
commercial software products and information
systems, information assurance throughout the entire
information system life cycle is a topic of great
interest to academic researchers, educators, as well
practicing IT professionals. Securely designed
information system with appropriate information
security features is a much better alternative to the
unsustainable penetration and patch model being
practiced today. Experiences have shown time and
again that poorly designed security features can be
serious information security hazards.

There is a rapidly increasing body of published

research and best practices, e.g., [2,3,4,5], for
Information Assurance throughout information
system lifecycle. IT professionals must fully consider
both functional as well as security issues. Examples
of security considerations for developers including
checking array bounds to prevent buffer overflows,
and avoiding using dynamic SQL whenever possible
as they may be subject to SQL injection. Experiences
have clearly shown that information system design
and implementation is a complex endeavor that is
prone to human errors. Seamless integration of
functional and security consideration is key to any
effective IS lifecycle methodology.

Many existing published best practices for
secured information systems are organized based on
the waterfall lifecycle model [4]. The amount of
issues demanding attention can be overwhelming for
practitioners. The Zachman framework [6] has shown
to be an effective guide for information system
designers to systematically consider important design
and implementation issues. This paper proposes a
Unified framework for Secured Information Systems
(USIS). It extends the Zachman framework to cover
important security considerations throughout the
lifecycle of an information system. Due to space
limitations, details of the original Zachman
framework are not described. A summary of our
contributions will be discussed later.

Our experiences as educators find this
framework to be very effective to systematically
organize this large body of knowledge and help
students to develop valuable insights. Based on
experiences with the original Zachman framework,
we expect that USIS can also serve as an effective

mailto:billchu@uncc.edu
mailto:cshmyu,%20asdance%7D@ncat.edu

guide to IT professions who work on different aspect
of an information system to deliver more secure
information systems and services.

2. USIS Overview

USIS is organized as a two dimensional matrix as
illustrated in the appendix. The rows correspond to
perspectives from key stake holders. They loosely
map to a water fall model: customers (requirements),
designer/architect (design), developer (coding /
testing) , people involved in daily operators, people
involved in maintenance and risk assessment
(maintenance). The columns list key questions that
must be addressed by key stake holders: what, why,
how, when, where and, how good. The same person
may fill multiple roles. Multiple persons may fill the
same role with each answering only a subset of these
questions, e.g. some implementation tasks may be
outsourced.

The interpretation for the columns includes
issues in traditional information systems. The “what”
column focuses on data and information provided by
the system. The “why” column focuses on motivation.
The “how” column focuses on function and
processes. The “who” column focuses on people. The
“when” column focuses on timing. The “where”
column focuses on network topology as well as
physical facilities. The “how good” column focuses
on assessment. In addition, information security
considerations should be also considered associated
with data, motivation, function, people, timing,
network, and assessment.

Each cell in the matrix lists key answers to a
specific question from the perspective of a specific
stake holder. The appendix gives some examples.
Traditional IS issues are depicted in regular font
whereas security issues are written in italics; issues
pertaining to both are underlined. Tools can also be
organized into the cells as they are used to address
related questions. The framework can be used in the
context of a spiral development model [1] as each
iteration in a spiral model often contains a subset of
stages of a water fall process.

Space limitations only permit us to highlight a
few examples to illustrate how USIS can be helpful
to practitioners. Let’s first consider the perspective of
a customer.

One can start by describing (what) business
information a particular information system is
intended to serve. At the same time, the customer
must also be aware of the business risks associated
with the information systems such as reputation risk

if private customer information were improperly
exposed. He/she then need to understand the business
objectives (why) as well as compliance issues the
organization must address such as the SOX
regulations. To describe the how the system works,
he/she needs to clearly specify the functions of the
system, privacy and security policies, and business
continuity plans. The customer’s view also includes
key stake holders of the system, relevant
organizational charts and key roles and responsibility
(who). The role of how the information security
organization should support the system under
consideration must also be specified. Key business
events (when) along with the business risks posed by
them must be analyzed. Geographical location of the
organizations interacting with the system (where)
along with the business risks imposed by such a
configuration must also be identified. Finally, an
assessment plan must be given with specific
performance metrics as well as security auditing
policies.

A designer / information architect provides the
logical data design schema (what). It is important to
perform threat modeling against such a design as well
as identifying privacy implications associated with
statistical inferences. Business rules governing the
system should be specified (why) along with
analyzing potential threats associated with these rules.
Logic design and process design are traditional ways
to provide functional specifications. At the same time,
he/she should identify the system’s exposed attack
surface. An attack surface is a channel through which
malicious may be carried out. It might be input data
fields on a screen or web page, or an API as part of a
library. It is much easier to identify the attack surface
in conjunction with functional requirement
development while all the issues are fresh in the
designer’s mind.

It is also important for the designer to have a
clear understanding of the workflow for people who
will be interacting with the system. At the same time
he/she should identify potential threats to information
security as a result of these interactions, including
issues related to physical security. Next the
distributed aspect of the information system should
be specified (where) along with analysis of the
associated attack surface. Finally, assessment
strategies must define such as design and security
reviews.

An implementer would produce the physical data
model (what), and implement business rules (why).
He/she must practice secure coding to guard against
malicious attacks, select appropriate cryptographic
algorithms and provide security annotations, e.g.

Microsoft SAL, for other analysis tools. Usability
issues (who) must be addressed as well as security
considerations such as at when and how security
dialogs should be placed. Specific events (when) and
how they are handled must be coded in a secure way.
Assessment at this level includes function testing,
penetration testing, and integration testing and
fuzzing. Fuzzing is an effective testing technique
which feeds a program being tested with variations of
input data such as different sizes and character
combinations. It has shown to effectively uncover
both functional defects as well as buffer overflow
bugs.

An operator should understand the data that
he/she is responsible of collecting and monitoring
including the analysis of network intrusion logs
(what). He/she must also under stand policies (why)
to be followed, including security policies, and
follow established procedures (how) including
incident response procedures. Detailed roles and
responsibilities of people interacting with the system
must be clearly understood, including contacts and
protocols to involved law enforcement organizations
in response to security incidents.

An operator / operation manager, e.g. those
involved in delivering IT help desk services, will
answer the “what” question by understanding his/her
role and responsibilities. Appropriate security
trainings must be provided at this stage as they are
often part of the front line defense against social
engineering attacks. The operator must also
understand events he/she must monitor, including
security events (when). He/she must be understood
the network topology as well as physical security
(where). Clear assessment methodology must be put
in place including performance metrics and auditing.

A person performing system maintenance / risk
assessment should clearly understand changes to data
along with changes in the threat model. (what).
Similarly changes to business rules and environment
must be understood (why) including associated new
threats. He/she then must implement these changes
practicing secure coding. Changes to user interfaces
(how) must also be made along with full security
considerations. Security issues must be fully
considered in changes to events (when) are changes
to networks including patch management (where).
Finally regression testing and penetration testing
must be performed.

3. Contributions

USIS is based on the Zachman framework [5], which
only addressed system development phases of

information systems, and it did not address
information assurance issues. USIS is designed to
cover the entire information system lifecycle
including daily operations, maintenance, and risk
assessment. The original framework did not
highlight assessment issues. Issues related to testing
were lumped within the “how” question. USIS
explicitly creates a column “how good” to highlight
many issues associated with assessment and testing
as they are key components of information assurance.

To the best knowledge of the authors this is the
first attempt to cover, in a uniform way, many key
information assurance issues over the entire lifecycle
of an information system. Because USIS is based on
a well respected traditional IS framework, it also
easily covers traditional software engineering issues.
Our experiences as educators suggest that the
columns are very valuable for students to organize
and integrate the large amount of knowledge covered
in Software Engineering and Information Assurance.
For example all assessment related issues are grouped
together in one column and discussed from
perspectives of different stake holders. This helps
students to understand subtle relationships between
different techniques, e.g., penetration testing,
functional testing, and fuzzing. As another example,
by explicitly asking “what”, “why”, and “how”
questions, USIS can help students develop deeper
appreciation of the relationships between business
objectives, business risks, government regulation,
and organizational policies.

4. Future work

We plan to continue this work by putting key
concepts throughout information system lifecycle and
information assurance into USIS. Popular tools can
also be put in the context of USIS. We believe such
an exercise have significant values in education as
well as providing guidance for practitioners.

From an education perspective, USIS has shown
promise of being able to help students organize a
large body of knowledge as well help develop deeper
appreciation of important relationships between
different perspectives. USIS can also be a very
effective guide for practitioners in their effort to
design, operation, and manage a large information
system in a way that meet high information security
standards.

References

[1] Boehm, B. “A spiral model of software
development and enhancement” IEEE Computer,
Vol 21, No. 5, pp. 61-72, 1988.

[2] Howard, M. Lablanc, D., and Viega, J. 19
Deadly Sins of Software Security McGraw Hill,
2006

[3] Howard, M. and Lablanc, D. Writing Secure
Code Second Edition, Microsoft Press, Redmond,
WA 2002

[4] Howard, M. and Lipner, S. “The Trustworthy
Computing Security Development Lifecycle” in
MSDN library, (msdn.microsoft.com), March
2005

[5] Swiderski, F., and Snyder, W., Threat Modeling
Microsoft Press, Redmond, WA, 2004

[6] Zachman, J. A. “A framework for information
systems architecture” in IBM System Journal Vol.
26, No. 3, pp. 276-292, 1987

Appendix

 What (data /

information)
Why
(motivation)

How (function
/ process)

Who
(people)

When
(time)

Where
(network /
facility)

How good
(assessment)

Customer Business
information,
Business
Risk

Business
goals,
Compliance
Regulation

Functions
provided,
Privacy/
Security
policies,
business
continuity

Stake
holders,
Org chart,
roles and
responsibi
lities, Info
sect org.

Business
events,
Business
risk

Locations
business
operates,
Business
risk

Performance
metrics,
Security
auditing
policies

Designer/
Architect

Logical data
model,
Threat
model,
statistical
DB security
issues

Business
rules, threat
modeling

Logic design,
process model,
threat model
attack surface,
defense in
depth

Workflow
model,
Threat
model

System
events,
processing
structure,
Threat
model

Distribute
d system
architectur
e
Attack
surface,
physical
security

Design
reviews,
Security
reviews

Implementer Physical
data model,
Secure
coding

Rule design,
secure
coding, SAL
annotation

Coding, secure
coding, SAL
annotation,
propagation of
fixes, crypto
algorithm
selection

Human
interface
designs,
security
and
privacy
considerat
ions in
HCI

Timing
definitions
, secure
coding,
SAL
annotatio
n

Network
architectur
e System
patching,
firewalls,
IDS,
physical
security

functional
testing,
fuzzing,
penetration
testing

Operator Logs, data
collection,
security logs

Policies,
Security
policies

Procedures,
incident
response
procedure

Detailed
org charts,
relationsh
ip with
law
enforceme
nt

Detailed
events,
recognize
security
events

Network
managem
ent, ,Physi
cal
security

Performance
metrics,
auditing,
penetration
testing

Maintenance
and risk
assessment

Data
changes,
Threat
modeling

Business
rule
changes,
changes in
environment
, threat
modeling,
secure
coding

Implement
changes,
change
management,
Propagation of
fixes

Workflow
, HCI,
threat
model

Changes
in events,
threat
modeling,
secure
coding

Network
changes,
correspon
ding
security
changes,
patch

Regression
testing,
functional
testing,
penetration
testing

	References
	Appendix

