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ABSTRACT 
Once the input values are given, the active rules in a 
fuzzy inference execution have been determined. 
Based on the observation, our approach is to identify 
the active rules before fuzzy inference execution. To 
achieve this goal, our architecture provides the 
following two mechanisms: (1) a mechanism to 
ignore the non-active rules before fuzzy inference 
execution; and (2) a mechanism to arrange the active 
rules for fuzzy inference execution. The proposed 
architecture has been implemented using a 0.35μm 
cell library. Implementation data show that, if the 
number of active rules is only 4, the inference speed 
can achieve 23.755 MFLIPS. To the best of our 
knowledge, our approach is the fastest hardware 
implementation. 
 

1. INTRODUCTION 
Fuzzy logic [1] has been successfully employed in 

many complex applications. With the progress made 
in real-time applications, the inference speed 
required may reach up to the range of Mega fuzzy 
logic inferences per second (MFLIPS). Several 
hardware architectures [2-6] have been proposed to 
support general-purpose fuzzy inference execution at 
higher speed. However, these architectures have the 
following property: in each fuzzy inference execution, 
all the rules in the knowledge base are required. As a 
result, the inference speed is limited by the total 
number of rules in the knowledge base. 

In fact, many fuzzy applications have the 
following property: in an individual fuzzy inference 
execution, the active rules are only a small part of 
the total rules. For example, as the fuzzy systems 
described in [7-10], the maximum number of active 
rules among all the combinations of input values is 
only four. Since the non-active rules make null 
contribution to a fuzzy inference execution, the 
non-active rules can be ignored. Based on this 
observation, some hardware architectures [11,12] 
have been proposed to ignore the non-active rules in 
the earlier stage of the pipeline. However, they [11,12] 
still need to compute the weight of each rule during 
the fuzzy inference execution; otherwise, they cannot 
determine the set of active rules. 

In this paper, we propose a new architecture for 
the fuzzy applications, whose active rules are few in 
each fuzzy inference execution. Note that, once the 
input values are given, the active rules in a fuzzy 

inference execution has been determined. Based on 
this property, our approach only extracts the active 
rules according to the input values. Compared with 
previous hardware architectures [11,12], the main 
advantage of our approach is that: previous hardware 
architectures ignore the non-active rules during the 
fuzzy inference execution, whereas our approach 
ignores the non-active rules before the fuzzy 
inference execution.  

Following the same specification in [12], each 
membership function is assumed to be 
trapezoid-shaped. The new features in this paper are 
below: 
(1) The rules in the knowledge are sorted in the 

sequence of their antecedent membership 
functions. Therefore, we can use binary search 
strategy to extract the active rules with respect 
to the input values.  

(2) The set of active rules are dependent on the 
input values. Therefore, to handle the dynamic 
condition, we design a scheduling unit to 
arrange 4 active rules to enter the fuzzy 
inference execution per pipeline stage cycle.  

2. MOTIVATION 
  If the weight of a rule is zero, it has null 
contribution to the fuzzy inference. Therefore, when 
the input values are given, we say that a rule is active 
if and only if the weight of this rule is positive. Note 
that, in each fuzzy inference execution, only a part of 
the total rules are active.  
 Let’s use the following fuzzy system as an example. 
The fuzzy system has two input variables: X and Y. 
The antecedent membership functions of input 
variable X are A0, A1 and A2, respectively. The 
antecedent membership functions of input variable Y 
are B0, B1 and B2, respectively. Figure 1 shows the 
antecedent membership functions. Therefore, the 
fuzzy system has 9 rules as follows. 

IF (X is A0) and (Y is B0) THEN … 
IF (X is A0) and (Y is B1) THEN … 
IF (X is A0) and (Y is B2) THEN … 
IF (X is A1) and (Y is B0) THEN … 
IF (X is A1) and (Y is B1) THEN … 
IF (X is A1) and (Y is B2) THEN … 
IF (X is A2) and (Y is B0) THEN … 
IF (X is A2) and (Y is B1) THEN … 
IF (X is A2) and (Y is B2) THEN … 

If the fuzzified inputs of variables X and Y are X1 
and Y1, respectively, then the active rules as follows: 



IF (X is A0) and (Y is B0) THEN … 
IF (X is A0) and (Y is B1) THEN … 
IF (X is A1) and (Y is B0) THEN … 
IF (X is A1) and (Y is B1) THEN … 

If the fuzzified inputs of variables X and Y are X2 
and Y2 respectively, then the active rules as follows: 

IF (X is A0) and (Y is B1) THEN … 
IF (X is A0) and (Y is B2) THEN … 
IF (X is A1) and (Y is B1) THEN … 
IF (X is A1) and (Y is B2) THEN … 

If the fuzzified inputs of variables X and Y are X2 
and Y1, respectively, then, the active rules as follows: 

IF (X is A1) and (Y is B0) THEN … 
IF (X is A1) and (Y is B1) THEN … 
IF (X is A2) and (Y is B0) THEN … 
IF (X is A2) and (Y is B1) THEN … 

If the fuzzified inputs of variables X and Y are X2 
and Y2, respectively, then the active rules as follows: 

IF (X is A1) and (Y is B1) THEN … 
IF (X is A1) and (Y is B2) THEN … 
IF (X is A2) and (Y is B1) THEN … 
IF (X is A2) and (Y is B2) THEN … 

 
(a) 

 
(b) 

Figure 1: Intersection between fuzzy input variables 
and membership functions. 
 
  In this example, we observe that: for each input 
variable, the number of membership functions that 
are overlapped with a fuzzified input is only 2. 
Therefore, in each fuzzy inference execution, the 
number of active rule is only 4 (i.e., 2*2). Especially, 
with the increase of the total rules, the percentage of 
active rules is very low. Based on the above 
discussion, we know that the active rules are only a 
part of the total rules. If we can ignore the non-active 
rules before fuzzy inference execution, the 
performance can be significantly improved. 

3. THE PROPOSED ARCHITECTURE 
  The proposed fuzzy inference processor has two 
inputs and one output. For each input, the maximum 
number of sets of membership functions is 32. For 
each output, the maximum number of sets of 
membership functions is 16. The maximum number 
of fuzzy rules is 1024. To speed up the process of 

fuzzy inference, we apply parallel and pipeline 
structure to design the fuzzy inference processor. 

Our architecture is designed based on [12]. We 
divide the fuzzy inference processor into 8 pipeline 
stages: Fuzzifier (fuzzy rule database), Detection, 
Scheduling Unit, Fuzzy Decoder, Access Rule, Fuzzy 
Decision, Maximum Unit, Accumulator and Divisor. 
Each pipeline stage needs 8 clock cycles to complete 
its process. Note that the last six pipeline stages of 
our fuzzy inference processor are the same as [12]. 
Due to the limitation of pages, in this paper, we only 
introduce the first two pipeline stages of our fuzzy 
inference process. 

 
3.1 FUZZY RULE DATABASE 
  In order to match up our fuzzy inference processor 
structure, the membership function and the fuzzy rule 
database are designed as fixed forms. In the design of 
membership function, we have some constrains. As 
shown in Figure 2, if i is smaller than j, then Aia must 
be equal to or smaller than Aja, and Aid must be equal 
to or smaller than Ajd (Aib is not necessarily equal to 
or smaller than Ajb, and Aic is not necessarily equal to 
or smaller than Ajc). 
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Figure 2: Membership functions 

 
  Furthermore, the membership functions in the 
fuzzy rule database are sorted according to the 
antecedent part of fuzzy rules. Table 1 gives a fuzzy 
rule database example, in which the membership 
functions of variables X and Y are {A0, A1, A2} and 
{B0, B1, B2}, respectively. 
 

Antecedent  
Ai Bi 

R0 A0 B0 
R1 A0 B1 
R2 A0 B2 
R3 A1 B0 
R4 A1 B1 
R5 A1 B2 
R6 A2 B0 
R7 A2 B1 
R8 A2 B2 

Table 1: The antecedent part of fuzzy rule database. 
 
3.2 DETECTION 
   The detection unit is to find intersection between 



membership functions and input variables. It is 
time-consuming if we sequentially check the 
intersection between membership functions and input 
variables. Since our design of fuzzy inference 
processor has most 32 sets of membership function at 
the antecedent part., we use binary search strategy as 
shown in Figure 3. The detection unit is to find: (1) 
the address of starting membership function (StartA) 
and the address of end membership function (EndA) 
that intersects with input variable X; (2) the address 
of starting membership function (StartB) and the 
address of end membership function (EndB) which 
are intersected simultaneously with input variable Y. 
In Figure 3 (a), we use two registers to store the 
offset between the present memory address and the 
next memory address. The Control Signal is used to 
control the Add/Sub to perform addition or 
subtraction. Figure 3 (b) illustrates the change of two 
registers in Figure 3 (a), in which the notation Clk1 
denotes the first clock cycle, Clk2 denotes the second 
clock cycle, and so on. 
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Figure 3: Architecture of binary sSearch. 

  Figure 4 gives the circuit used in the detection 
unit to perform the binary search strategy for finding 
the address of starting membership function that 
intersects with input variable X (StartA). In Figure 4, 
when the Rnew signal is 0, it will obey the rule data 
and rule address given to update the corresponding 
membership function; when the Rnew signal is 1, it 
will access the membership function corresponds to 
the address of starting membership function which 
obtained from binary search. 

Let’s consider an input variable X that has five 
membership functions: A0, A1, A2, A3 and A4. 
Suppose that the elements of A0, A1, A2, A3 and A4 
are (0, 0, 5, 10), (5, 10, 15, 20), (10, 15, 20, 25), (25, 
30, 35, 40), and (35, 40, 45, 50), respectively. When 
the element of input variable X is (13, 14, 15, 16), we 
can use the following binary search strategy to find 
the address of starting membership function (StartA) 
that intersects with input variable X: 
  1. At the beginning, the initial values of memory 
address and offset are 2 and 2, respectively. Because 

the membership function A2 intersects with input 
variable X, the address of starting membership 
function (StartA) that intersects with input variable X 
have to be smaller than or equal to 2. The Control 
Signal sends out Sub signal at the same time. 
Consequently, memory address is 0 and offset is 1 at 
next global clock cycle. 
  2. Due to the intersection between membership 
function A0 and input variable X is a null set and the 
place of A0 is in the front of input variable X, the 
address of starting membership function (StartA) that 
intersects with input variable X have to be bigger 
than 0. The Control Signal sends out Add signal 
simultaneously. Consequently, memory address and 
offset are updated to 1 and 0, respectively, at next 
global clock cycle. 
  3. The address of starting membership function 
(StartA) that intersects with input variable X is 
updated to 1, since A1 that intersects with input 
variable X. 

  4. We can obtain StartB using similar steps. The 
StartB is updated to 2. 

System
Counter

Detection Unit
(StartA)

4

X[23:18]

Initial Memory Address

Base
Memory

A1
Rule Data

6

5
5

5
6 Initial0  1

6

5
StartA

 
 Figure 4: Detection unit. 

4. IMPLEMENTATION RESULTS 
  The proposed fuzzy inference processor has been 
implemented by using a 0.35μm cell library. Through 
verification and timing analysis, the clock rate of the 
global clock is up to 190MHz. Because a pipeline 
stage takes 8 global clock cycles, the maximum 
performance of the proposed architecture is 23.75 
MFLIPS. Table 2 depicts the maximum performance 
of fuzzy inference processor under different number 
of active rules. 
Table 3 tabulates the comparisons of our approach 
with other hardware architectures, including [2], [4], 
[5], [6], [11], and [12]. Note that, due to the parallel 
processing, the number of inputs (outputs) has almost 
no influence on the circuit performance. Therefore, 
even though the input numbers of these architectures 
are not the same, we still can compare them. 
Furthermore, although these architectures are 
implemented in different process technologies, we 
find that the improvement of our approach is very 
significant. Therefore, our approach is the fastest 
hardware implementation. 

We use the proposed fuzzy processor to implement 



two control systems, including backing-up control 
system and cart-pole balancing. Figure 5 gives the 
control surface of backing-up control system. Figure 
6 gives the control surface of cart-pole balancing. 

 
Number of 
active rules 

Performance 
(MFLIPS) 

0~4 23.75 MFLIPS 
5~8 11.85 MFLIPS 
9~12 7.92 MFLIPS 

Table 2: Processor Performance. 
   

 
Figure 5: Control surface of backing-up control 

system. 

 
Figure 6: Control surface of cart-pole balancing. 

5. CONCLUSION 
In this paper, we present a high-speed VLSI fuzzy 

inference processor with rule analysis. The maximum 
frequency reaches to 190MHz, and the maximum 
performance reaches p to 23.75 MFLIPS (Mega 
Fuzzy Logic Inferences Per Second). Compared with 
the existing hardware implementations, our approach 
is the fastest hardware implementation. 
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 Ours [2] [4] [5] [6] [11] [12] 
Inputs 2 4/2 2 2 2 3 2 

Outputs 1 2/1 1 1 1 1 1 
Specification 

Rules 1024 102 50 64 64 18 1024 
Technology 0.35μm 1.10μm 0.8μm 0.35μm 0.35μm 0.5μm 0.35μm Implementation 
Performance 
(MFLIPS) 23.75 0.58 0.49 2.50 7.00 3.30 4.00 

Table 3: Comparisons among different architectures. 


