
HIGH-SPEED FUZZY INFERENCE PROCESSOR
USING ACTIVE RULES IDENTIFICATION

Shih-Hsu Huang, Shi-Zhi Liu, Yi-Rung Chen, and Jian-Yuan Lai

Department of Electronic Engineering,
Chung Yuan Christian University,

Chung Li, Taiwan, R.O.C.

ABSTRACT
Once the input values are given, the active rules in a
fuzzy inference execution have been determined.
Based on the observation, our approach is to identify
the active rules before fuzzy inference execution. To
achieve this goal, our architecture provides the
following two mechanisms: (1) a mechanism to
ignore the non-active rules before fuzzy inference
execution; and (2) a mechanism to arrange the active
rules for fuzzy inference execution. The proposed
architecture has been implemented using a 0.35μm
cell library. Implementation data show that, if the
number of active rules is only 4, the inference speed
can achieve 23.755 MFLIPS. To the best of our
knowledge, our approach is the fastest hardware
implementation.

1. INTRODUCTION
Fuzzy logic [1] has been successfully employed in

many complex applications. With the progress made
in real-time applications, the inference speed
required may reach up to the range of Mega fuzzy
logic inferences per second (MFLIPS). Several
hardware architectures [2-6] have been proposed to
support general-purpose fuzzy inference execution at
higher speed. However, these architectures have the
following property: in each fuzzy inference execution,
all the rules in the knowledge base are required. As a
result, the inference speed is limited by the total
number of rules in the knowledge base.

In fact, many fuzzy applications have the
following property: in an individual fuzzy inference
execution, the active rules are only a small part of
the total rules. For example, as the fuzzy systems
described in [7-10], the maximum number of active
rules among all the combinations of input values is
only four. Since the non-active rules make null
contribution to a fuzzy inference execution, the
non-active rules can be ignored. Based on this
observation, some hardware architectures [11,12]
have been proposed to ignore the non-active rules in
the earlier stage of the pipeline. However, they [11,12]
still need to compute the weight of each rule during
the fuzzy inference execution; otherwise, they cannot
determine the set of active rules.

In this paper, we propose a new architecture for
the fuzzy applications, whose active rules are few in
each fuzzy inference execution. Note that, once the
input values are given, the active rules in a fuzzy

inference execution has been determined. Based on
this property, our approach only extracts the active
rules according to the input values. Compared with
previous hardware architectures [11,12], the main
advantage of our approach is that: previous hardware
architectures ignore the non-active rules during the
fuzzy inference execution, whereas our approach
ignores the non-active rules before the fuzzy
inference execution.

Following the same specification in [12], each
membership function is assumed to be
trapezoid-shaped. The new features in this paper are
below:
(1) The rules in the knowledge are sorted in the

sequence of their antecedent membership
functions. Therefore, we can use binary search
strategy to extract the active rules with respect
to the input values.

(2) The set of active rules are dependent on the
input values. Therefore, to handle the dynamic
condition, we design a scheduling unit to
arrange 4 active rules to enter the fuzzy
inference execution per pipeline stage cycle.

2. MOTIVATION
 If the weight of a rule is zero, it has null
contribution to the fuzzy inference. Therefore, when
the input values are given, we say that a rule is active
if and only if the weight of this rule is positive. Note
that, in each fuzzy inference execution, only a part of
the total rules are active.
 Let’s use the following fuzzy system as an example.
The fuzzy system has two input variables: X and Y.
The antecedent membership functions of input
variable X are A0, A1 and A2, respectively. The
antecedent membership functions of input variable Y
are B0, B1 and B2, respectively. Figure 1 shows the
antecedent membership functions. Therefore, the
fuzzy system has 9 rules as follows.

IF (X is A0) and (Y is B0) THEN …
IF (X is A0) and (Y is B1) THEN …
IF (X is A0) and (Y is B2) THEN …
IF (X is A1) and (Y is B0) THEN …
IF (X is A1) and (Y is B1) THEN …
IF (X is A1) and (Y is B2) THEN …
IF (X is A2) and (Y is B0) THEN …
IF (X is A2) and (Y is B1) THEN …
IF (X is A2) and (Y is B2) THEN …

If the fuzzified inputs of variables X and Y are X1
and Y1, respectively, then the active rules as follows:

IF (X is A0) and (Y is B0) THEN …
IF (X is A0) and (Y is B1) THEN …
IF (X is A1) and (Y is B0) THEN …
IF (X is A1) and (Y is B1) THEN …

If the fuzzified inputs of variables X and Y are X2
and Y2 respectively, then the active rules as follows:

IF (X is A0) and (Y is B1) THEN …
IF (X is A0) and (Y is B2) THEN …
IF (X is A1) and (Y is B1) THEN …
IF (X is A1) and (Y is B2) THEN …

If the fuzzified inputs of variables X and Y are X2
and Y1, respectively, then, the active rules as follows:

IF (X is A1) and (Y is B0) THEN …
IF (X is A1) and (Y is B1) THEN …
IF (X is A2) and (Y is B0) THEN …
IF (X is A2) and (Y is B1) THEN …

If the fuzzified inputs of variables X and Y are X2
and Y2, respectively, then the active rules as follows:

IF (X is A1) and (Y is B1) THEN …
IF (X is A1) and (Y is B2) THEN …
IF (X is A2) and (Y is B1) THEN …
IF (X is A2) and (Y is B2) THEN …

(a)

(b)

Figure 1: Intersection between fuzzy input variables
and membership functions.

 In this example, we observe that: for each input
variable, the number of membership functions that
are overlapped with a fuzzified input is only 2.
Therefore, in each fuzzy inference execution, the
number of active rule is only 4 (i.e., 2*2). Especially,
with the increase of the total rules, the percentage of
active rules is very low. Based on the above
discussion, we know that the active rules are only a
part of the total rules. If we can ignore the non-active
rules before fuzzy inference execution, the
performance can be significantly improved.

3. THE PROPOSED ARCHITECTURE
 The proposed fuzzy inference processor has two
inputs and one output. For each input, the maximum
number of sets of membership functions is 32. For
each output, the maximum number of sets of
membership functions is 16. The maximum number
of fuzzy rules is 1024. To speed up the process of

fuzzy inference, we apply parallel and pipeline
structure to design the fuzzy inference processor.

Our architecture is designed based on [12]. We
divide the fuzzy inference processor into 8 pipeline
stages: Fuzzifier (fuzzy rule database), Detection,
Scheduling Unit, Fuzzy Decoder, Access Rule, Fuzzy
Decision, Maximum Unit, Accumulator and Divisor.
Each pipeline stage needs 8 clock cycles to complete
its process. Note that the last six pipeline stages of
our fuzzy inference processor are the same as [12].
Due to the limitation of pages, in this paper, we only
introduce the first two pipeline stages of our fuzzy
inference process.

3.1 FUZZY RULE DATABASE
 In order to match up our fuzzy inference processor
structure, the membership function and the fuzzy rule
database are designed as fixed forms. In the design of
membership function, we have some constrains. As
shown in Figure 2, if i is smaller than j, then Aia must
be equal to or smaller than Aja, and Aid must be equal
to or smaller than Ajd (Aib is not necessarily equal to
or smaller than Ajb, and Aic is not necessarily equal to
or smaller than Ajc).

1

0
A1a

m
A1b A1c A1d

… … …

Aia Aib Aic Aid Aja Ajb Ajc Ajd

μ(m)

Figure 2: Membership functions

 Furthermore, the membership functions in the
fuzzy rule database are sorted according to the
antecedent part of fuzzy rules. Table 1 gives a fuzzy
rule database example, in which the membership
functions of variables X and Y are {A0, A1, A2} and
{B0, B1, B2}, respectively.

Antecedent
Ai Bi

R0 A0 B0
R1 A0 B1
R2 A0 B2
R3 A1 B0
R4 A1 B1
R5 A1 B2
R6 A2 B0
R7 A2 B1
R8 A2 B2

Table 1: The antecedent part of fuzzy rule database.

3.2 DETECTION
 The detection unit is to find intersection between

membership functions and input variables. It is
time-consuming if we sequentially check the
intersection between membership functions and input
variables. Since our design of fuzzy inference
processor has most 32 sets of membership function at
the antecedent part., we use binary search strategy as
shown in Figure 3. The detection unit is to find: (1)
the address of starting membership function (StartA)
and the address of end membership function (EndA)
that intersects with input variable X; (2) the address
of starting membership function (StartB) and the
address of end membership function (EndB) which
are intersected simultaneously with input variable Y.
In Figure 3 (a), we use two registers to store the
offset between the present memory address and the
next memory address. The Control Signal is used to
control the Add/Sub to perform addition or
subtraction. Figure 3 (b) illustrates the change of two
registers in Figure 3 (a), in which the notation Clk1
denotes the first clock cycle, Clk2 denotes the second
clock cycle, and so on.

Offset
(shift Right Register) Add/Sub Memory Address

Control Signal

(a)

(b)

Figure 3: Architecture of binary sSearch.

 Figure 4 gives the circuit used in the detection
unit to perform the binary search strategy for finding
the address of starting membership function that
intersects with input variable X (StartA). In Figure 4,
when the Rnew signal is 0, it will obey the rule data
and rule address given to update the corresponding
membership function; when the Rnew signal is 1, it
will access the membership function corresponds to
the address of starting membership function which
obtained from binary search.

Let’s consider an input variable X that has five
membership functions: A0, A1, A2, A3 and A4.
Suppose that the elements of A0, A1, A2, A3 and A4
are (0, 0, 5, 10), (5, 10, 15, 20), (10, 15, 20, 25), (25,
30, 35, 40), and (35, 40, 45, 50), respectively. When
the element of input variable X is (13, 14, 15, 16), we
can use the following binary search strategy to find
the address of starting membership function (StartA)
that intersects with input variable X:
 1. At the beginning, the initial values of memory
address and offset are 2 and 2, respectively. Because

the membership function A2 intersects with input
variable X, the address of starting membership
function (StartA) that intersects with input variable X
have to be smaller than or equal to 2. The Control
Signal sends out Sub signal at the same time.
Consequently, memory address is 0 and offset is 1 at
next global clock cycle.
 2. Due to the intersection between membership
function A0 and input variable X is a null set and the
place of A0 is in the front of input variable X, the
address of starting membership function (StartA) that
intersects with input variable X have to be bigger
than 0. The Control Signal sends out Add signal
simultaneously. Consequently, memory address and
offset are updated to 1 and 0, respectively, at next
global clock cycle.
 3. The address of starting membership function
(StartA) that intersects with input variable X is
updated to 1, since A1 that intersects with input
variable X.

 4. We can obtain StartB using similar steps. The
StartB is updated to 2.

System
Counter

Detection Unit
(StartA)

4

X[23:18]

Initial Memory Address

Base
Memory

A1
Rule Data

6

5
5

5
6 Initial0 1

6

5
StartA

 Figure 4: Detection unit.

4. IMPLEMENTATION RESULTS
 The proposed fuzzy inference processor has been
implemented by using a 0.35μm cell library. Through
verification and timing analysis, the clock rate of the
global clock is up to 190MHz. Because a pipeline
stage takes 8 global clock cycles, the maximum
performance of the proposed architecture is 23.75
MFLIPS. Table 2 depicts the maximum performance
of fuzzy inference processor under different number
of active rules.
Table 3 tabulates the comparisons of our approach
with other hardware architectures, including [2], [4],
[5], [6], [11], and [12]. Note that, due to the parallel
processing, the number of inputs (outputs) has almost
no influence on the circuit performance. Therefore,
even though the input numbers of these architectures
are not the same, we still can compare them.
Furthermore, although these architectures are
implemented in different process technologies, we
find that the improvement of our approach is very
significant. Therefore, our approach is the fastest
hardware implementation.

We use the proposed fuzzy processor to implement

two control systems, including backing-up control
system and cart-pole balancing. Figure 5 gives the
control surface of backing-up control system. Figure
6 gives the control surface of cart-pole balancing.

Number of
active rules

Performance
(MFLIPS)

0~4 23.75 MFLIPS
5~8 11.85 MFLIPS
9~12 7.92 MFLIPS

Table 2: Processor Performance.

Figure 5: Control surface of backing-up control

system.

Figure 6: Control surface of cart-pole balancing.

5. CONCLUSION
In this paper, we present a high-speed VLSI fuzzy

inference processor with rule analysis. The maximum
frequency reaches to 190MHz, and the maximum
performance reaches p to 23.75 MFLIPS (Mega
Fuzzy Logic Inferences Per Second). Compared with
the existing hardware implementations, our approach
is the fastest hardware implementation.

6. REFERENCE

[1] L.A. Zadeh, “Fuzzy sets,” Inf. Control, vol.8, pp.
338-351, 1965.

[2] H. Watanabe, W.D. Dettloff and K.E. Yount, “A
VLSI Fuzzy Logic Controller with
Reconfigurable, Cascade Architecture”, IEEE

Journal of Solid-State Circuits, vol. 25, pp.
376-381, 1990.

[3] A. Gabriellu and E. Gandolfi, “A Fast Digital
Fuzzy Processor”, IEEE Micro, pp. 68-79, vol. 19,
no. 1, 1999.

[4] J.M. Jou and P.Y. Chen, “An Adaptive Fuzzy
Logic Controller: Its VLSI Architecture and
Applications”, in IEEE Trans. on VLSI systems,
vol. 8, pp 52-60, 2000.

[5] S.H. Huang and J.Y. Lai, “A High Speed VLSI
Fuzzy Logic Controller with Pipeline
Architecture”, Proc. of IEEE International
Conference on Fuzzy Systems, vol. 3,
pp.1054-1057, 2001.

[6] S.H. Huang and J.Y. Lai, “A High-Speed VLSI
Fuzzy Inference Processor for Trapezoid-Shaped
Membership Functions”, Journal of Information
Science and Engineering. vol. 21, no. 3, pp.
607-626, 2005.

[7] D.V. Cleave and K.S. Rattan, “Tuning of Fuzzy
Logic Controller using Neural Network”, Proc. of
National Aerospace and Electronics Conference,
pp. 305—312, 2000.

[8] V. Kunsriraksakul, B. Homnan and W.
Benjapolakul, “Comparative Evaluation of Fixed
and Adaptive Soft Handoff Parameters Using
Fuzzy Inference Systems in CDMA Mobile
Communication Systems”, Proc. of IEEE
International Conference on Vehicular Technology,
vol. 2, pp. 1017—1021, 2001.

[9] H. Zhuang and X. Wu, “Membership Function
Modification of Fuzzy Logic Controllers with
Histogram Equalization”, IEEE. Trans. on
Systems, Man, Cybernetics, vol. 31, pp. 125—132,
2001.

[10] B.D. Liu, C.Y. Chen and J. Y. Tsao, “Design of
Adaptive Fuzzy Logic Controller Based on
Linguistic-Hedge Concepts and Genetic
Algorithms”, IEEE Trans. on System, Man and
Cybernetics, vol. 31, pp. 32—53, 2001.

[11] G. Asica, V. Catania and M. Russo, “VLSI
Hardware Architecture for Complex Fuzzy
Systems”, IEEE Trans. on Fuzzy Systems, vol. 7,
no. 5, pp. 553-570, 1999.

[12] S.H. Huang and J.Y. Lai, “A High Speed Fuzzy
Inference Processor with Dynamic Analysis and
Scheduling Capabilities”, IEICE Transactions on
Information and Systems, vol. 88-D, no. 10, pp.
2410-2416, 2005.

 Ours [2] [4] [5] [6] [11] [12]
Inputs 2 4/2 2 2 2 3 2

Outputs 1 2/1 1 1 1 1 1
Specification

Rules 1024 102 50 64 64 18 1024
Technology 0.35μm 1.10μm 0.8μm 0.35μm 0.35μm 0.5μm 0.35μm Implementation
Performance
(MFLIPS) 23.75 0.58 0.49 2.50 7.00 3.30 4.00

Table 3: Comparisons among different architectures.

