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Abstract an ordinary set of attribute implications (which are, there-
fore assumed to be fully valid) using ordinary deduction
We present Pavelka-style fuzzy logic for reasoning abaules, see e.g. [3, 5].
attribute implications, i.e. formulad = B known also  Such a notion, however, does not directly capture the
as association rules and functional dependencies. Fuggt that an attribute implication may be only partially
attribute implications allow for two different interpretatrue, i.e. we may assume its validity only to some de-
tions, namely, in data tables with graded (fuzzy) attributggee, say @, not only 0 or 1. In addition to that, an
and in data tables over domains with similarity relationattribute implication can follow semantically from other
In the first interpretationA = B reads “each object hav-attribute implications (valid partially or completely) in a
ing all attributes fromA has also all attributes frorB”.  degree, say 9, not only 0 or 1. In this paper, we develop
In the second interpretatioA = B reads “any two table a |ogic which captures both inference from partially true
rows which have similar values on attributes frénhave attribute implications and semantic entailment in degrees.
similar values on attributes frofd”. The axioms of our Our logic fits the framework of graded style (Pavelka-
logic are inspired by well-known Armstrong axioms buityle) fuzzy logic, see e.g. [9, 10, 14, 13]. The axioms of
the logic allows us to infer partially true formulas fronpur logic are inspired by well-known Armstrong axioms
partially true formulas. We prove soundness and cofflem databases. We prove soundness and completeness of
pleteness of our logic in graded style, i.e. we prove thabar logic.
degree to which an attribute implicatidn= B semanti-
cally follows from a collectionT of partially true attribute
implications equals a degree to whidh= B is provable 2. Preliminaries
fromT.
Due to lack of space, we just survey basic notions and re-
Keywords: attribute dependency, fuzzy logic, attributéer to, e.g., [1, 9, 10] for further details and properties. Our
implication, Armstrong axioms, graded completeness basic structure of truth degrees is a complete residuated
lattice with a hedge, i.e., an algebta= (L,A,V,®,—
,*,0,1) such that(L,A,V,0,1) is a complete lattice with
1. Introduction 0 and 1 being the least and greatest elemenit,ofe-
spectively;(L,®,1) is a commutative monoid (i.e® is
Reasoning about rules = B whereA andB are collec- commutative, associative, aath 1 = 1® a = a for each
tions of attributes plays a crucial role in several areas @k L); ® and — satisfy so-called adjointness property:
computer science and data engineering in particular. Tae@ b < ciff a < b — c; for eacha,b,c € L; hedge* sat-
most important areas are databases where iilesB isfies (i) I = 1, (ii) a* < a, (iii) (a— b)* <a* — b*, (iv)
are called functional dependencies [12], and data miniag = a*, for all a,b € L. Elementsa of L are called truth
where the rules are called association rules [15]. degrees® and— are (truth functions of) “fuzzy conjunc-

In our previous papers [2, 3, 4, 5, 6], we studied th®n” and “fuzzy implication”. Hedgé is a (truth function
rules A = B from the point of view of fuzzy approach.of) logical connective “very true”, see [10, 11]. Properties
We presented two kinds of semantics for the rules. Fir§)—(iv) have natural interpretations, e.g. (iii) can be read:
a semantics in tables where a table entry contains a trtitha — b is very true and ifais very true, therb is very
degree to which an object (row) has an attribute (columtiye”, etc.
see [2, 4]. Second, a semantics in tables which extend A common choice ot is a structure with. = [0, 1]
ordinary database tables in that each domain is equipifedit interval),A andV being minimum and maximun®
with a similarity relation [6, 7]. We proved that both obeing a left-continuous t-norm with the corresponding
the semantics have the same notion of semantic ent@iiliree most important pairs of adjoint operations on the
ment. We developed several issues, e.g. descriptionuaft interval are: Lukasiewica(® b= maxa+b—1,0),
non-redundant bases and an algorithm for computing #he- b = min(1—a+ b, 1)), Godel: @® b = min(a,b),
bases, see [2, 7]. Furthermore, we developed a logical @l b =1 if a < b, a— b = b else), Goguen (product):
culus in an ordinary style, i.e. provability is defined frofa®b=a-b,a—b=1ifa<b,a— b= g else). Ex-



amples of finite structures: Take a finite sublset [0,1] for details and the role of the hedge). Therefq{a,=

which is closed under tukasiewicz ob@el operations. If B[y is a truth degree of “if it is true that the object has alll

we takeL = {0,1}, this gives us a two-element Booleamttributes fromA, then it has all attributes frorB”. Ac-

algebra (structure of truth degrees of classical logic). Twording to Pavelka-style fuzzy logic theoryin our logic

boundary cases of hedges are (i) identity, i.& = a is a fuzzy sefl of formulas, i.e. a fuzzy set of FAls; a

(aeL); (ii) globalization:a* =1 ifa=1,a* =0 else. degreeT (A= B) is intuitively understood as a degree to
GivenL which serves as a structure of truth degreeshich we can assume validity éf= B (e.g. when mak-

we define usual notions: dn-set (fuzzy set)A in uni- ing deductions fronT). The set ModT) of all modelsof

verseU is a mappingA: U — L, A(u) being interpreted a theoryT is defined by

as “the degree to which belongs toA”; A is also de-

noted byA = {?/u,...} wherea= A(u). LetLY denote Mod(T) ={M eLY| T(A=B) < [|[A= B||m

the collection of allL-sets inU. The operations with for eachA = B};

L-sets are defined componentwise. For instance, inter-

section ofL-setsA,B € LY is anL-setANB in U such eachM € Mod(T) is called a model off. A degree

that (AN B)(u) = A(u) A B(u) for eachu € U, etc. For [|A= Bj||t €L to which A= B semantically follows from

aclL andAc LY, we defineL-setsa® A (a-multiple a theory Tis defined by

of A) anda — A (a-shift of A) by (a®@ A)(u) = a®@ A(u),

(a— A)(u)=a— A(u) (ueU). GivenA,Be LY, we de- |A =Bt = Amemod(T) [[A = Bl|m- )

fine a subsethood degr&A,B) = A A(u) — B(u)), . ] . ) .

which generalizes the sCelzss?cal sfliJs(etEl())od re(la)t_%on That s, |[A = BJ|r is a degree to whickh = Bis true in

Described verballyS(A, B) represents the degree to whic§ach model of .

Ais a subset oB. ) ) )
Remark 1 Note that forL = 2 (ordinary case in which 0

and 1 are the only truth degrees), the above notions yield
3. Pavelka-sty|e fuzzy |ogic for their well-known ordinary counterparts, see e.g. [8, 12].
. . . . Note also that our extension to a fuzzy setting gives much
attribute |mpI|cat|ons more expressive power in expressing data dependencies;

. . . due to lack of space we refer the reader to the references.
3.1. Formulas and basic semantic notions

We first recall basic notions related to (fuzzy) attribute in8 2, Deduction rules and provability
plications; details can be found in [2, 4, 6].

LetY be a finite set of attributes. fuzzy attribute im- 1N Pavelka-style fuzzy logic, one works with truth-
p|icati0n (OVGTY) is an expressioﬁi B, WhereA7B c Welghted formulas. ACCOfdingly, we consider Welghted
LY (A andB are fuzzy sets of attributes). Fuzzy attributEAIS, i.e. pair§A=-B, a) whereA=-BisaFAlanda€ L
implications (FAIs) are formulas of our logic. Next, waS a truth degree. Weighted FAls will be used in making
introduce a semantics for FAls. Due to a lack of spagductions from theorie$, i.e. from possibly partially
and since it is sufficient for our purposes, we present thge FAIs. For simplicity, we denote (schemes of) FAls
semantics in tables with fuzzy attributes only (see S&¥ ¢ and the like in the subsequent text. Furthermdre,
tion 1.). Rows and columns of these tables are labeleddgnotes a theory (fuzzy set of FAIs).
objects and their attributes; table entries contain truth de- Our deduction rules work with weighted FAls; each
grees fromL to which a particular object has a particula-ary ruleRwill be visualized by
attribute. Therefore, a table row labeled by objergpre-
sents a fuzzy seél of attributes of objeck: M(y) equals (91,81),- -, (On, a”>7 3)
the table entry at the crossing of rovand columry, i.e. ($,a)

a degree to whick hasy. The intuitive meaning oA = B . i .

being true in a data table with fuzzy attributes is: “if it vhich r(alacli?s.hfrorI(¢1, a1>t, o (0n, ?”> t|.nfer (¢, a). g\n
true that an object has all attributes frégthen it has also n-ary rule = has wo parts, a syn Iac Ic petyn and a
all attributes fromB”. Formally, for a fuzzy seM € L semantic parRsem Rsyn IS @ partiain-ary mapping as-

of attributes, we define degree||A = B||u € L to which zlfg:'g:g ?ol:e\llﬁiséa(gl’ : 'i's7gg‘itr?e?j?;m-t;p;]ﬁzr. : 'r7n¢an>-
A= Bis true in Mby syn 1Nsem y map

ping assigning a truth degré®em((¢1, a1), ..., {(dn, an))

|A= Bljm = S(A,M)* — S(B,M), (1) toeachn-tuple ((¢1,a1),...,(¢n, an)) of weighted FAIs.
Note that we haved = Rsyn(¢p1,...,n) and a =

whereS(: - ) denote subsethood degrees, see SectionRen(($1, a1),...,(dn, a1)) above. Note also that one
and* is a hedge which serves as a parameter (see [2, du§lially assumes thBem(($1, a1), ..., (dn, @y)) depends




only onay,...,an in Pavelka-style fuzzy logic (we there- (Ref) ;xsx7;, (Wea) %, (Pro) %,
fore allow for a more general case). An example is a rulg (A=B,a),(A=C,b) (A=B,a),(B=C,b)
of modus ponen# Paveka-style [14]: from(, a) and Add) “TmSaicas - (M) “azcaen
¢ = |, a) infer (Y, a® b). Before showing our deduc- (A=B.a) (A=B.1)
t<ion rules,>we pr(<)ceed w?th further notions adopted frorrgsm) weaos s M) moacsar
a general setting of Pavelka-style fuzzy logic. foreachAB,CeLY,andabe L.
Let R be a given set of deduction rules. wdighted

proof of (¢, a) from T is a sequenc@y, a), ..., (dn, an) Proof. Sketch (details postponed to a full version): (Ref):

of weighted FAIs such thath, a) — (&n, an) and for each Directly by puttingd = 0in (Ax). (Wea): Apply (Cuf) to
i =1,....nwe havea = T(d:) or (¢i, &) is obtained by (CUA = A1) (infer this by (Ax)) and(AUA = B, a).
some of the rules ot from some(¢;, a;)'s (j < i). A (Pr0): Apply (Sh) and observe that< S(B,a® (BUC)).

degree/A= B|r of provabilityof a FAIA= Bfrom T is (&) Use (Cuf). (Sh: PutC =a®B and observe
defined by that 1= S(a® B,a® B). (Sh|): PutC = a— B and ob-

serve thata < S(a — B,1®B). (Add): Use (Sh) to in-

A= B|r =V{a| ...,(A=B,a)isaproof fromT}. fer (A= a®B,1) from (A= B, a); use (Wea) to infer
(AUa®B = C, b) from (A= C, b) and then use (Sh

A theory T is calledsyntactically closedv.r.t. R if to infer (AUa®B = b®C, 1); then apply (Cut) to the
foreach ruleRe R and all FAIs... ,(I)i, ... for which Rsyn last pair and to<b ®@CUa®B=b®CuUua®B, ]_> to

is defined we have infer (@@ BUA = b®CUa®B, 1); then use (Cut) to
' ' . infer (A= b®CUa®B, 1), use (Sh) to infer (A =
Reer.+, (@i T(®0)),) < T(Reynl-... 4i,..)), (anb) = b®Cua®B,aAb), and finally use (Pro) to

i.e., if a FAI can be syntactically inferred from, then it infer (A= BUC, aAb) (observe thaBUC C (anb) —

is in T already. A theoryT is calledsemantically closed P& CUa®B). _ o
if for each FAI® we have A rule Ris calledsoundif for each¢y,... (for which

Rsyn is defined) and for eadd, ... € L we have
bl <T(d),

Mod({*/91,...}) C Mod({eert ®1.20))/Rgyn(9,...)}),
i.e., if a FAI follows semantically fromTl, then it is in

T already. One can denote by ¥ the least syn- i.e., for arbitraryM: if each ¢1,.._‘ is trug inM at least
tactically closed theory containing and by sergr) {0 degreea,..., thenReyn(¢1,...) is true inM at least to
the least semantically closed theory containihg A d€gréeRsen(¢1, 1), ...).

rule R preserves supremi Vi Rsen(.--, (9, @).---) = _emma 4 Each of the rulegAx)—(Sh)is sound. There-
Rsen(---+ (9, Viai),...). Then we have fore, (Ref)—(SH) are sound as well.

Theorem 2 For any set®_of rules which preserve supre- B o -
ma, (syn(T))(A= B) — |A= B Proof. Soundness of (AX)—(Sh) can be verified by defini

(sem(T))(A= B) — ||A= B| - tion. Soundness of (Ref)—($his due to Lemma 3. O
= T_

Remark 5 Note that replacin@* ® b by a® b in (Cut)

3.3. Soundness and completeness and (Tra) would not yield sound rules (counterexample
omitted due to lack of space).
Our logic uses the following deduction rules:

(A=B,a),(BUC=D,b) The following theorems show soundness and com-
(AX) (AUB=A,1)" (Cut) (AUC=D,a*®b) pleteness of our logic for FAls. Note that provability
(Mul) <C*®<233;>B o (Sh) <A;$<CA§%Z>®B)>, refers to rules (Ax)—(Sh), i.eJA =- B|t is a degree of

provability using rules (Ax)—(Sh).

for eachA B,C,D € LY, anda,b,cc L; §---) denotes a

subsethood degree, see Section 2. The rules are inspirégorem 6 (soundness)For each fuzzy set T of FAls and

by Armstrong axioms, see [12]. Note that, in fact, (Sh) gach FAl A=- B we havgA = Bt < |[|A= B||r.

a parameterized rule; we have one ruledSior eachC. ] )
As usual, we call a rule (3) derivable from a =t Proof. It can be shown that since each of (Ax)—(S_h) is

of rules if there is a weighted proof @, b) with a < b sound (Lemma 4), each semantically closed theory is also

from T = {2/¢1,...,2/d,} using rules fronR (for each syntactically closed. Since s¢in) is semantically closed,
i, a). it is also syntactically closed and so $gamT)) =

sem(T). Therefore,|A = B|r < (syn(T))(A= B) C
Lemma 3 The following are rules are derivable from(syn(sem(T)))(A=-B)=(sem(T))(A=B)=||A=B||t
(Ax)—(Shy O



Theorem 7 (completeness) et L be finite. For each the present framework naturally fits a fuzzy approach to
fuzzy set T of FAls and each FAI-A B we have|A = attribute implications.

B||r = |A= BJr. (3) The full version of this paper contains full proofs,
examples, further rules and discussion about their mutual
Proof. “>” follows from Theorem 6. ¥”: Analo- derivability and other issues.

gously to the proof of Theorem 6, it suffices to show

that each syntactically closed theory is also semanticatlyknowledgementSupported by grant No. 1ET101370417 of
closed. We concentrate on this and present a sketchGaf AV CR, by grant No. 201/05/0079 of the Czech Science
proof. LetT be syntactically closed. We need to shoWwoundation, and by institutional support, research plan MSM
sem(T) C T. Assume, by way of contradiction, th& = 6198959214.

Bl|t £ T(A=-B). Itis now sufficient to show that there

exists amodeA* of T such that|A=B||a+ < T(A=B)
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