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Abstract

We present Pavelka-style fuzzy logic for reasoning about
attribute implications, i.e. formulasA ⇒ B known also
as association rules and functional dependencies. Fuzzy
attribute implications allow for two different interpreta-
tions, namely, in data tables with graded (fuzzy) attributes
and in data tables over domains with similarity relations.
In the first interpretation,A⇒ B reads “each object hav-
ing all attributes fromA has also all attributes fromB”.
In the second interpretation,A⇒ B reads “any two table
rows which have similar values on attributes fromA have
similar values on attributes fromB”. The axioms of our
logic are inspired by well-known Armstrong axioms but
the logic allows us to infer partially true formulas from
partially true formulas. We prove soundness and com-
pleteness of our logic in graded style, i.e. we prove that a
degree to which an attribute implicationA⇒ B semanti-
cally follows from a collectionT of partially true attribute
implications equals a degree to whichA⇒ B is provable
from T.

Keywords: attribute dependency, fuzzy logic, attribute
implication, Armstrong axioms, graded completeness

1. Introduction

Reasoning about rulesA⇒ B whereA andB are collec-
tions of attributes plays a crucial role in several areas of
computer science and data engineering in particular. Two
most important areas are databases where rulesA ⇒ B
are called functional dependencies [12], and data mining
where the rules are called association rules [15].

In our previous papers [2, 3, 4, 5, 6], we studied the
rules A ⇒ B from the point of view of fuzzy approach.
We presented two kinds of semantics for the rules. First,
a semantics in tables where a table entry contains a truth
degree to which an object (row) has an attribute (column),
see [2, 4]. Second, a semantics in tables which extend
ordinary database tables in that each domain is equipped
with a similarity relation [6, 7]. We proved that both of
the semantics have the same notion of semantic entail-
ment. We developed several issues, e.g. description of
non-redundant bases and an algorithm for computing the
bases, see [2, 7]. Furthermore, we developed a logical cal-
culus in an ordinary style, i.e. provability is defined from

an ordinary set of attribute implications (which are, there-
fore assumed to be fully valid) using ordinary deduction
rules, see e.g. [3, 5].

Such a notion, however, does not directly capture the
fact that an attribute implication may be only partially
true, i.e. we may assume its validity only to some de-
gree, say 0.7, not only 0 or 1. In addition to that, an
attribute implication can follow semantically from other
attribute implications (valid partially or completely) in a
degree, say 0.9, not only 0 or 1. In this paper, we develop
a logic which captures both inference from partially true
attribute implications and semantic entailment in degrees.
Our logic fits the framework of graded style (Pavelka-
style) fuzzy logic, see e.g. [9, 10, 14, 13]. The axioms of
our logic are inspired by well-known Armstrong axioms
from databases. We prove soundness and completeness of
our logic.

2. Preliminaries

Due to lack of space, we just survey basic notions and re-
fer to, e.g., [1, 9, 10] for further details and properties. Our
basic structure of truth degrees is a complete residuated
lattice with a hedge, i.e., an algebraL = 〈L,∧,∨,⊗,→
,∗,0,1〉 such that〈L,∧,∨,0,1〉 is a complete lattice with
0 and 1 being the least and greatest element ofL, re-
spectively;〈L,⊗,1〉 is a commutative monoid (i.e.⊗ is
commutative, associative, anda⊗1 = 1⊗a = a for each
a ∈ L); ⊗ and→ satisfy so-called adjointness property:
a⊗b≤ c iff a≤ b→ c; for eacha,b,c∈ L; hedge∗ sat-
isfies (i) 1∗ = 1, (ii) a∗ ≤ a, (iii) (a→ b)∗ ≤ a∗→ b∗, (iv)
a∗∗ = a∗, for all a,b∈ L. Elementsa of L are called truth
degrees.⊗ and→ are (truth functions of) “fuzzy conjunc-
tion” and “fuzzy implication”. Hedge∗ is a (truth function
of) logical connective “very true”, see [10, 11]. Properties
(i)–(iv) have natural interpretations, e.g. (iii) can be read:
“if a→ b is very true and ifa is very true, thenb is very
true”, etc.

A common choice ofL is a structure withL = [0,1]
(unit interval),∧ and∨ being minimum and maximum,⊗
being a left-continuous t-norm with the corresponding→.
Three most important pairs of adjoint operations on the
unit interval are: Łukasiewicz (a⊗b = max(a+b−1,0),
a → b = min(1− a+ b,1)), Gödel: (a⊗ b = min(a,b),
a→ b = 1 if a≤ b, a→ b = b else), Goguen (product):
(a⊗b = a ·b, a→ b = 1 if a≤ b, a→ b = b

a else). Ex-



amples of finite structures: Take a finite subsetL ⊆ [0,1]
which is closed under Łukasiewicz or Gödel operations. If
we takeL = {0,1}, this gives us a two-element Boolean
algebra (structure of truth degrees of classical logic). Two
boundary cases of hedges are (i) identity, i.e.a∗ = a
(a∈ L); (ii) globalization:a∗ = 1 if a = 1, a∗ = 0 else.

GivenL which serves as a structure of truth degrees,
we define usual notions: anL -set (fuzzy set)A in uni-
verseU is a mappingA : U → L, A(u) being interpreted
as “the degree to whichu belongs toA”; A is also de-
noted byA = {a/u, . . .} wherea = A(u). Let LU denote
the collection of allL -sets inU . The operations with
L -sets are defined componentwise. For instance, inter-
section ofL -setsA,B ∈ LU is anL -setA∩B in U such
that (A∩B)(u) = A(u)∧B(u) for eachu ∈ U , etc. For
a ∈ L and A ∈ LU , we defineL -setsa⊗A (a-multiple
of A) anda→ A (a-shift of A) by (a⊗A)(u) = a⊗A(u),
(a→A)(u) = a→A(u) (u∈U). GivenA,B∈ LU , we de-
fine a subsethood degreeS(A,B) =

V
u∈U

(
A(u)→ B(u)

)
,

which generalizes the classical subsethood relation⊆.
Described verbally,S(A,B) represents the degree to which
A is a subset ofB.

3. Pavelka-style fuzzy logic for
attribute implications

3.1. Formulas and basic semantic notions

We first recall basic notions related to (fuzzy) attribute im-
plications; details can be found in [2, 4, 6].

LetY be a finite set of attributes. Afuzzy attribute im-
plication (overY) is an expressionA⇒ B, whereA,B ∈
LY (A andB are fuzzy sets of attributes). Fuzzy attribute
implications (FAIs) are formulas of our logic. Next, we
introduce a semantics for FAIs. Due to a lack of space
and since it is sufficient for our purposes, we present the
semantics in tables with fuzzy attributes only (see Sec-
tion 1.). Rows and columns of these tables are labeled by
objects and their attributes; table entries contain truth de-
grees fromL to which a particular object has a particular
attribute. Therefore, a table row labeled by objectx repre-
sents a fuzzy setM of attributes of objectx: M(y) equals
the table entry at the crossing of rowx and columny, i.e.
a degree to whichx hasy. The intuitive meaning ofA⇒B
being true in a data table with fuzzy attributes is: “if it is
true that an object has all attributes fromA, then it has also
all attributes fromB”. Formally, for a fuzzy setM ∈ LY

of attributes, we define adegree||A⇒ B||M ∈ L to which
A⇒ B is true in Mby

||A⇒ B||M = S(A,M)∗→ S(B,M), (1)

whereS(· · ·) denote subsethood degrees, see Section 2.,
and∗ is a hedge which serves as a parameter (see [2, 4, 6]

for details and the role of the hedge). Therefore,||A⇒
B||M is a truth degree of “if it is true that the object has all
attributes fromA, then it has all attributes fromB”. Ac-
cording to Pavelka-style fuzzy logic, atheoryin our logic
is a fuzzy setT of formulas, i.e. a fuzzy set of FAIs; a
degreeT(A⇒ B) is intuitively understood as a degree to
which we can assume validity ofA⇒ B (e.g. when mak-
ing deductions fromT). The set Mod(T) of all modelsof
a theoryT is defined by

Mod(T) = {M ∈ LY | T(A⇒ B)≤ ||A⇒ B||M
for eachA⇒ B};

eachM ∈ Mod(T) is called a model ofT. A degree
||A⇒ B||T ∈ L to which A⇒ B semantically follows from
a theory Tis defined by

||A⇒ B||T =
V

M∈Mod(T) ||A⇒ B||M. (2)

That is,||A⇒ B||T is a degree to whichA⇒ B is true in
each model ofT.

Remark 1 Note that forL = 2 (ordinary case in which 0
and 1 are the only truth degrees), the above notions yield
their well-known ordinary counterparts, see e.g. [8, 12].
Note also that our extension to a fuzzy setting gives much
more expressive power in expressing data dependencies;
due to lack of space we refer the reader to the references.

3.2. Deduction rules and provability

In Pavelka-style fuzzy logic, one works with truth-
weighted formulas. Accordingly, we consider weighted
FAIs, i.e. pairs〈A⇒B, a〉whereA⇒B is a FAI anda∈ L
is a truth degree. Weighted FAIs will be used in making
deductions from theoriesT, i.e. from possibly partially
true FAIs. For simplicity, we denote (schemes of) FAIs
by ϕ and the like in the subsequent text. Furthermore,T
denotes a theory (fuzzy set of FAIs).

Our deduction rules work with weighted FAIs; each
n-ary ruleRwill be visualized by

〈ϕ1, a1〉, . . . ,〈ϕn, an〉
〈ϕ, a〉

, (3)

which reads: from〈ϕ1, a1〉, . . . ,〈ϕn, an〉 infer 〈ϕ, a〉. An
n-ary rule R has two parts, a syntactic partRsyn and a
semantic partRsem. Rsyn is a partialn-ary mapping as-
signing a FAIRsyn(ϕ1, . . . ,ϕn) to eachn-tuple〈ϕ1, . . . ,ϕn〉
of FAIs for whichRsyn is defined;Rsem is ann-ary map-
ping assigning a truth degreeRsem(〈ϕ1, a1〉, . . . ,〈ϕn, an〉)
to eachn-tuple 〈〈ϕ1, a1〉, . . . ,〈ϕn, an〉〉 of weighted FAIs.
Note that we haveϕ = Rsyn(ϕ1, . . . ,ϕn) and a =
Rsem(〈ϕ1, a1〉, . . . ,〈ϕn, an〉) above. Note also that one
usually assumes thatRsem(〈ϕ1, a1〉, . . . ,〈ϕn, an〉) depends



only ona1, . . . ,an in Pavelka-style fuzzy logic (we there-
fore allow for a more general case). An example is a rule
of modus ponensin Paveka-style [14]: from〈ϕ, a〉 and
〈ϕ ⇒ ψ, a〉 infer 〈ψ, a⊗b〉. Before showing our deduc-
tion rules, we proceed with further notions adopted from
a general setting of Pavelka-style fuzzy logic.

Let R be a given set of deduction rules. A (weighted)
proof of 〈ϕ, a〉 from T is a sequence〈ϕ1, a1〉, . . . ,〈ϕn, an〉
of weighted FAIs such that〈ϕ, a〉= 〈ϕn, an〉 and for each
i = 1, . . . ,n we haveai = T(ϕi) or 〈ϕi , ai〉 is obtained by
some of the rules ofR from some〈ϕ j , a j〉’s ( j < i). A
degree|A⇒ B|T of provabilityof a FAI A⇒ B from T is
defined by

|A⇒ B|T =
W
{a| . . . ,〈A⇒ B, a〉 is a proof fromT}.

A theory T is calledsyntactically closedw.r.t. R if
for each ruleR∈ R and all FAIs. . . ,ϕi , . . . for whichRsyn

is defined we have

Rsem(. . . ,〈ϕi , T(ϕi)〉, . . .)≤ T(Rsyn(. . . ,ϕi , . . .)),

i.e., if a FAI can be syntactically inferred fromT, then it
is in T already. A theoryT is calledsemantically closed
if for each FAIϕ we have

||ϕ||T ≤ T(ϕ),

i.e., if a FAI follows semantically fromT, then it is in
T already. One can denote by syn(T) the least syn-
tactically closed theory containingT and by sem(T)
the least semantically closed theory containingT. A
rule R preserves supremaif

W
i Rsem(. . . ,〈ϕ, ai〉, . . .) =

Rsem(. . . ,〈ϕ,
W

i ai〉, . . .). Then we have

Theorem 2 For any setR of rules which preserve supre-
ma,(syn(T))(A⇒ B) = |A⇒ B|T ;
(sem(T))(A⇒ B) = ||A⇒ B||T . 2

3.3. Soundness and completeness

Our logic uses the following deduction rules:

(Ax) 〈A∪B⇒A,1〉 , (Cut) 〈A⇒B,a〉,〈B∪C⇒D,b〉
〈A∪C⇒D,a∗⊗b〉 ,

(Mul) 〈A⇒B,a〉
〈c∗⊗A⇒c∗⊗B,a〉 , (Sh) 〈A⇒B,a〉

〈A⇒C,S(C,a⊗B)〉 ,

for eachA,B,C,D ∈ LY, anda,b,c∈ L; S(· · ·) denotes a
subsethood degree, see Section 2. The rules are inspired
by Armstrong axioms, see [12]. Note that, in fact, (Sh) is
a parameterized rule; we have one rule (ShC) for eachC.

As usual, we call a rule (3) derivable from a setR
of rules if there is a weighted proof of〈ϕ, b〉 with a≤ b
from T = {a1/ϕ1, . . . ,

an/ϕn} using rules fromR (for each
ϕi ,ai).

Lemma 3 The following are rules are derivable from
(Ax)–(Sh):

(Ref) 〈A⇒A,1〉 , (Wea) 〈A⇒B,a〉
〈A∪C⇒B,a〉 , (Pro) 〈A⇒B∪C,a〉

〈A⇒B,a〉 ,

(Add) 〈A⇒B,a〉,〈A⇒C,b〉
〈A⇒B∪C,a∧b〉 , (Tra) 〈A⇒B,a〉,〈B⇒C,b〉

〈A⇒C,a∗⊗b〉 ,

(Sh↑) 〈A⇒B,a〉
〈A⇒a⊗B,1〉 , (Sh↓) 〈A⇒B,1〉

〈A⇒a→B,a〉 ,

for each A,B,C∈ LY, and a,b∈ L.

Proof. Sketch (details postponed to a full version): (Ref):
Directly by puttingB = /0 in (Ax). (Wea): Apply (Cut) to
〈C∪A⇒ A, 1〉 (infer this by (Ax)) and〈A∪A⇒ B, a〉.
(Pro): Apply (Sh) and observe thata≤ S(B,a⊗ (B∪C)).
(Tra): Use (Cut). (Sh↑): Put C = a⊗ B and observe
that 1= S(a⊗B,a⊗B). (Sh↓): PutC = a→ B and ob-
serve thata≤ S(a→ B,1⊗B). (Add): Use (Sh↑) to in-
fer 〈A⇒ a⊗B, 1〉 from 〈A⇒ B, a〉; use (Wea) to infer
〈A∪ a⊗B⇒C, b〉 from 〈A⇒C, b〉 and then use (Sh↑)
to infer 〈A∪ a⊗B⇒ b⊗C, 1〉; then apply (Cut) to the
last pair and to〈b⊗C∪ a⊗ B ⇒ b⊗C∪ a⊗ B, 1〉 to
infer 〈a⊗B∪A ⇒ b⊗C∪ a⊗B, 1〉; then use (Cut) to
infer 〈A ⇒ b⊗C∪ a⊗ B, 1〉, use (Sh↓) to infer 〈A ⇒
(a∧ b) → b⊗C∪ a⊗B, a∧ b〉, and finally use (Pro) to
infer 〈A⇒ B∪C, a∧b〉 (observe thatB∪C⊆ (a∧b)→
b⊗C∪a⊗B). 2

A rule R is calledsoundif for eachϕ1, . . . (for which
Rsyn is defined) and for eacha1, . . . ∈ L we have

Mod({a1/ϕ1, . . .})⊆Mod({Rsem(〈ϕ1,a1〉,...)/Rsyn(ϕ1, . . .)}),

i.e., for arbitraryM: if eachϕ1, . . . is true inM at least
to degreea1, . . ., thenRsyn(ϕ1, . . .) is true inM at least to
degreeRsem(〈ϕ1, a1〉, . . .).

Lemma 4 Each of the rules(Ax)–(Sh) is sound. There-
fore, (Ref)–(Sh↓) are sound as well.

Proof. Soundness of (Ax)–(Sh) can be verified by defini-
tion. Soundness of (Ref)–(Sh↓) is due to Lemma 3. 2

Remark 5 Note that replacinga∗⊗ b by a⊗ b in (Cut)
and (Tra) would not yield sound rules (counterexample
omitted due to lack of space).

The following theorems show soundness and com-
pleteness of our logic for FAIs. Note that provability
refers to rules (Ax)–(Sh), i.e.|A ⇒ B|T is a degree of
provability using rules (Ax)–(Sh).

Theorem 6 (soundness)For each fuzzy set T of FAIs and
each FAI A⇒ B we have|A⇒ B|T ≤ ||A⇒ B||T .

Proof. It can be shown that since each of (Ax)–(Sh) is
sound (Lemma 4), each semantically closed theory is also
syntactically closed. Since sem(T) is semantically closed,
it is also syntactically closed and so syn(sem(T)) =
sem(T). Therefore, |A ⇒ B|T ≤ (syn(T))(A ⇒ B) ⊆
(syn(sem(T)))(A⇒B) = (sem(T))(A⇒B) = ||A⇒B||T
2



Theorem 7 (completeness)Let L be finite. For each
fuzzy set T of FAIs and each FAI A⇒ B we have||A⇒
B||T = |A⇒ B|T .

Proof. “≥” follows from Theorem 6. “≤”: Analo-
gously to the proof of Theorem 6, it suffices to show
that each syntactically closed theory is also semantically
closed. We concentrate on this and present a sketch of
proof. Let T be syntactically closed. We need to show
sem(T)⊆T. Assume, by way of contradiction, that||A⇒
B||T 6≤ T(A⇒ B). It is now sufficient to show that there
exists a modelA+ of T such that||A⇒B||A+ ≤ T(A⇒B)
since then,||A ⇒ B||T ≤ ||A ⇒ B||A+ ≤ T(A ⇒ B) is a
contradiction with our assumption.

To this end, putA+ =
S

B∈LY T(A⇒ B)⊗B. Observe
first that T(A ⇒ A+) = 1. Indeed, sinceT is syntacti-
cally closed, (Sh↑) applied to〈A⇒ B, T(A⇒ B)〉 yields
1= T(A⇒ T(A⇒ B)⊗B). Since bothY andL are finite,
repeated application of (Add) and syntactical closedness
of T yieldsT(A⇒ A+) = 1.

We now verify (a)||A⇒ B||A+ ≤ T(A⇒ B) and (b)
A+ is a model ofT.

(a): Observe first thatA⊆ A+ and thusS(A,A+)∗ = 1.
Indeed, syntactical closedness ofT applied to (Ref) yields
T(A⇒ A) = 1 and thusA+ ⊇ T(A⇒ A)⊗A = A. Now,
||A⇒ B||A+ = S(A,A+)∗ → S(B,A+) = 1→ S(B,A+) =
S(B,A+). We therefore need to showS(B,A+) ≤ T(A⇒
B). As T is syntactically closed, we getS(B,A+) ≤
T(A+ ⇒ B) (hint: use (Ax) to infer〈A+ ⇒ S(B,A+)⊗
B, 1〉, then (Sh↓) with a = S(B,A+), then observeB ⊆
S(B,A+)→ S(B,A+)⊗B and use (Pro)). Then, (Tra) ap-
plied toA⇒ A+ andA+ ⇒ B and syntactical closedness
of T givesS(B,A+)≤ T(A⇒ B), proving (a).

(b): We need to showT(C ⇒ D) ≤ ||C ⇒ D||A+ for
any C ⇒ D, which is equivalent toS(C,A+)∗ ⊗T(C ⇒
D)⊗D ⊆ A+. SinceT(A⇒ A+) = 1, it suffices to show
that T(A ⇒ S(C,A+)∗ ⊗ T(C ⇒ D)⊗D) = 1 (namely,
A+ is the largestE with T(A ⇒ E) = 1, for if E ⊃ A+

for such anE, thenA+ =
S

BT(A ⇒ B)⊗B ⊇ T(A ⇒
E)⊗E = E, a contradiction). To see this, it is enough
to showT(C⇒ D) ≤ T(A⇒ S(C,A+)∗⊗D) (use (Sh↑),
we omit details). SinceT is syntactically closed, we
haveT(A ⇒ A+) = 1 andT(A+ ⇒ S(C,A+)∗⊗C) = 1
(by (Ax) sinceA+ ⊇ S(C,A+)∗ ⊗C); then using (Tra),
T(A⇒S(C,A+)∗⊗C) = 1; by (Mul) we getT(C⇒D)≤
T(S(C,A+)∗⊗C ⇒ S(C,A+)∗⊗D); applying now (Tra)
to the last facts, we getT(C⇒ D)≤ T(A⇒ S(C,A+)∗⊗
D), proving (b). 2

Remark 8 (1) One can get completeness for arbitraryL
when using a modified version of (Add); details omitted.

(2) Note also that a degree of semantic entailment can
be captured by an ordinary notion of a proof (from a set
of FAIs) using a technical trick [5]. Compared to this,

the present framework naturally fits a fuzzy approach to
attribute implications.

(3) The full version of this paper contains full proofs,
examples, further rules and discussion about their mutual
derivability and other issues.
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GA AV ČR, by grant No. 201/05/0079 of the Czech Science
Foundation, and by institutional support, research plan MSM
6198959214.

References
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