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Abstract  
This work proposes a two-stage immune algorithm 
that embeds the compromise programming to perform 
multi-objective optimal capacitor placement. A new 
problem formulation model that involves fuzzy sets to 
reflect the imprecise nature of objectives and 
incorporates multiple planning requirements is 
presented. The proposed approach finds a set of non-
inferior (Pareto) solutions rather than any single 
aggregated optimal solution. Additionally, this 
developed approach eliminates the need for any user-
defined weight factor to aggregate all objectives. 
Comparative studies are conducted on an actual 
system with encouraging results, demonstrating the 
effectiveness of the proposed presented approach. 
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1. INTRODUCTION 
Typical distribution systems operate in a radial 
configuration; they are supplied from substations and 
feed to distribution transformers. The spatial density 
of the load is high in urban areas, where underground 
cables and large transformers are used, but lower in 
mixed and rural areas, where overhead lines and 
smaller transformer units are used. Numerous shunt 
capacitors are installed along distribution feeders to 
compensate for reactive power to regulate the voltage; 
reduce energy; correct the power factor, and release 
system capacity, for both urban and rural areas. The 
general capacitor placement problem is to locate and 
determine the sizes of capacitors to be installed at the 
nodes of a radial distribution system under various 
loading conditions.  

Various attempts from different perspectives have 
been made to solve the capacitor placement problem. 
For instance, the problem has been formulated as a 

mixed integer programming problem in which power 
flows and voltage constraints are applied [1]. Optimal 
capacitor planning has been implemented based on the 
fuzzy algorithm in practical distribution systems [2]. A 
solution technique based on simulated annealing (SA) 
has been developed; implemented in a software 
package, and tested on a real distribution system with 
69 buses [3,4]. The Tabu Search technique has been 
applied to determine the optimal capacitor planning in 
the distribution system used in [5], and the results of 
the TS compared with those of the SA. Genetic 
algorithms (GA) have been used to determine the 
optimal selection of capacitors [6].  

Notably, most of these approaches treat the 
capacitor placement problem as a single objective 
problem. However, in recent years, customers have 
made strong demands of electrical utility companies 
[7]. Various problems have multiple and conflicting 
objectives, which make the optimization problem 
interesting to solve. No single solution is an optimal 
solution to a problem with multiple conflicting 
objectives, so a multi-objective optimization problem 
has a number of trade-off optimal solutions. Classical 
optimization methods can at best find one solution in 
one simulation run, so such methods inconvenient 
when used to solve multi-objective optimization 
problems. 

In light of the above, this study formulates the 
capacitor placement problem as a multiple objective 
problem, including operational requirements. This 
work also presents a two-staged immune algorithm to 
solve the constrained multiple objective problem. 

2. Problem Formulation 
This study formulates the capacitor allocation problem 
to determine the locations and size of capacitors to be 
installed in the nodes of a radial distribution system 
under various loading conditions. The problem 
formulation considers four objective functions, to 
minimize the total cost of capacitors to be installed, 



the energy loss and the deviation of bus voltage, and to 
maximize the system security margin of transformer 
capacity.  

2.1. Minimizing capacitor 
construction expenditure 

The cost of capacitors includes the purchase cost and 
installment and maintenance cost. 
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where ai is a 0-1 decision variable: ai = 1 if the ith bus 
is selected for capacitor installation; otherwise ai = 0;
Ψ represents the set of candidate locations of buses to 
be considered for capacitor injection; y denotes the life 
time (years) of the capacitors; kp represents the 
purchased cost of capacitors of capacitance q; km 
denotes the fixed installment and maintenance cost. 
Figure 1 plots the fuzzy membership function fc of the 
cost. 

2.2. Minimizing real power loss 
The total cost of the real power loss from line branches, 
is defined as,  
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where nt represents the total number of load levels; kej 
represents the cost of power under load j; tj represents 
the duration of the application of load j, and ploss,j is 
the total real power loss of the considered system 
under load j. Figure 2 displays the fuzzy membership 
function of power loss. 

2.3. Minimizing Deviation of Bus 
Voltage 

An index is defined that quantifies the deficiency in 
the system caused by the bus voltage. 
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where nb is the total number of buses; vi and vi
Rated 

denote the real and rated voltages of bus i, respectively, 
and  fv represents the maximal deviation of the bus 
voltage in the system. A lower fv corresponds to a 
higher quality voltage profile and better system 
security. Figure 3 plots the fuzzy membership function 
of the deviation of the bus voltage where fvmax is the 
maximum allowable deviation of bus voltage. 
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Fig. 1. Fuzzy membership function of the cost, fc 
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Fig. 2. Fuzzy membership function of power loss 
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Fig. 3. Fuzzy membership function of the deviation of the 
bus voltage 
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Fig. 4. Fuzzy membership function of the security margin of 

feeders and transformers 

2.4. Maximizing the Security 
Margin of Feeders and 
Transformers 

A simple index to assess the system security is the 
capacity margin of feeders and transformers.  
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where IiLoad and IiRetad  are the current flow and the rate 



flow of branch (transformer) i, respectively; nh 
represents the total number of branches (transformers), 
and fs denotes the security and system capacity index 
of the feeders. Lower fs implies more secure system 
capacity. Figure 4 plots the fuzzy membership 
function of the feeders (transformers). 

3. Immune Algorithm 
The immune system has a fundamental ability to 
produce new types of antibody or find the best-fitting 
antibody to attack an invading antigen [8, 9]. The 
immune system produces very many antibodies 
against innumerable, unknown antigen, by trial and 
error. The diversity of the immune system can be 
mathematically formulated as a multi-objective 
function optimization problem, with multiple solutions 
rather than single solution, to elucidate the diversity of 
antibodies that is essential to adaptability against 
foreign viruses and bacteria in the environment. A 
measure of diversity of antibodies produced from a 
lymphocyte population is required and must be 
defined. According to information theory, the entropy 
Hj(N) of the jth gene is defined as [8,9] 
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where pi,j represents the probability that locus j is 
allele i. If all alleles at the jth gene are the same, then 
the entropy of the jth gene equals zero. The mean of 
the informative entropy in a lymphocyte population is 
represented by  

!=
=

L

j
j NH

L
NH

1

)(
1

)(  (6) 

where H(N) denotes the mean of the informative 
entropy for all antibodies and L is the size of the genes 
in an antibody. This entropy specifies the diversity of 
the lymphocyte population. Two expressions for 
affinity are considered in the presented approach. One 
(Ab)vw, is used to determine the diversity between two 
antibody v and w and can be represented as, 
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where H(2) quantifies the diversity between two 
antibodies, according to Eq. (7) for N =2. For H(2) = 0, 
the genes of the two antibodies are identical. The other 
affinity (Ag)i is that between antigen Ag and antibody 
Ab and is defined by 
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µ  is the value of the membership 
function for antibody Abi on objective i; ( )!
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are the values of the membership function with all 
applied constraints for antibody Abi, and Nc and No are 
the numbers of constraints and objectives, respectively. 
The antibody is perfectly matched with the antigen 
when the affinity (Ag)i equals one. Antibodies that 
have high affinities toward an antigen are selected to 
proliferate, while antibodies with low concentrations 
are suppressed. The concentration cv of each antibody 
can be defined as 
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where ε is a preset threshold. If cv (v = 1, 2, …, No) is 
greater than a given threshold δc, then this antibody 
becomes a memory antibody; else, it is suppressed. 
The goal of this step is to eliminate surplus solution 
candidates. 

From the schema of the natural immune system, 
the mathematical optimization framework can be 
modeled as an algorithm, realized by the following 
steps. 

Notably, in the above immune algorithm, the 
number of generated antibodies and the number of 
iterations can be experimentally determined. The rate 
of the crossover and mutation are also determined on a 
trial basis. 

This study presents a two-stage immune algorithm 
embedded the compromise program to solve multi-
objective problems. 
In the first stage, the multi-objective optimization 
problem is transformed to a single objective 
optimization problem by selecting the kth objective as 
the primary objective function in turns k = 1,2,…,No 
and converting the other objectives to constraints with 
individual maximum allowable values if

)

 where i = 
1,2,…,No and i≠k.  

In the second stage, the non-inferior set for all 
objectives is obtained by compromise programming. 
Compromise programming finds the best compromise 
with respect to all the objectives by computing a 
normalized Euclidean distance measure.  
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This normalized Euclidean distance is used to 
evaluate how close the computed non-inferior solution 
is to the Pareto front. A smaller D indicates the current 
computed non-inferior solution is closer to the Pareto 
front. For a multi-objective problem, the ideal value of 
each objective if

(

 (from stage 1) and the maximum 
allowable value of each individual objective kf

)

 where 
i and k =1, 2,…, No, can be used to express the overall 



multi-objective minimizing objective function, as 
follows. 
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4. Simulation Results  
The testing system includes seven branches and 69 
buses, as presented in [3]. The presented method 
outputs five non-inferior solutions (options) with 
different features, one of which is to be selected by the 
decision-makers. Tables 1 and 2 compare the results 
with those in [3] and [10], in terms of the capacitor to 
be installed and power loss with and without 
compensation, respectively. In summary, the non-
inferior solutions obtained using the presented method, 
in terms of voltage deviation, power loss, cost and 
loading margin, are better than (or similar to) those 
obtained using the methods of [3] and [10].  
 

TABLE I 
CAPACITORS(kvar) TO BE INSTALLED 

 Methods 

No. of bus The proposed method Huang Chiang 

19 300 1200 300 600 300 600 300 

50 300 900 600 900 300 300 1200 

53 1200 600 600 600 600 300 0 

Total_kvar 1800 2700 1500 2100 1200 1200 1500 

 
TABLE II 

THE RESULT OF THE REAL POWER LOSS (kw) WITH AND 
WITHOUT INSTALLING CAPACITORS 

With compensation Load 
level 

Without 
compensation 

The proposed method Huang Chiang 

Light 538 393 457 347 401 337 347 345 

Medium 1,715 1,019 995 1,042 994 1,116 1,186 1,040 

Peak 3,190 1,865 1,752 1,965 1,806 2,134 2,276 1,964 

Total_loss 5,443 3,277 3,204 3,354 3,201 3,587 3,809 3,349 

5. Conclusions 
Multi-objective optimization is of increasing 
importance in various fields, and has a diverse range 
of applications. Highly effective and efficient multi-
objective algorithms can promote both scientific 
research and engineering applications in various areas. 
This work proposes the two-stage immune algorithm, 
embedding compromise programming, for solving the 
multi-objective capacitor placement problem. The 

concept of the non-inferior set is applied herein to 
obtain the set of optimal compromise solutions from 
which the decision maker can choose one. The 
simulation results indicate that the advantage of using 
the proposed technique is that it can find the best 
compromised solutions in a single run. 
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