An SOM-Based Secarch Algorithm for Dynamic Systems

Yi-Yuan Chen and Kuu-Young Young
Department of Electrical and Control Engineering
National Chiao-Tung University, Hsinchu, Taiwan

National Chiao-Tung University Vision Research Center

Abstract

—The self-organizing map (SOM), as a kind of
unsupervised neural network, has been applied for both static
data management and dynamic data analysis. To further exploit
its ability in search, in this paper, we propose an SOM-based
search algorithm (SOMS) for dynamic systems, in which the
SOM is employed as a searching mechanism. And, a new
SOM weight updating rule is proposed to enhance the learning
efficiency, which may dynamically adjust the neighborhood
function for the SOM in learning system parameters. For
demonstration, the proposed learning scheme is applied for
continuous optimization problem and also dynamic trajectory
prediction, and its effectiveness evaluated via the simulations
based on using the SOM and GA, due to their resemblance in
learning and searching.

Key words: Self-Organmizing Map, Search Algorithm, Dy-
namic System, Genetic Algorithm.

1. INTRODUCTION

The self-organizing map (SOM), as a kind of unsupervised
neural network, is performed in a self-organized manner in
that no external teacher or critic is required to guide synaptic
changes in the network [2], [7]. In its many applications,
the SOM has been used for both static data management
and dynamic data analysis, such as data mining, knowledge
discovering, clustering, visualization, speaker recognition,
mobile communication, robot control, identification and con-
trol of dynamic systems, local dynamic modeling, nonlinear
control, and moving object tracking [1], [5], [7]. [10], [11],
[12], [14]. However, from our survey, its ability in search
has not been well exploited yet [3], [4], [6], [8], [®]. [13]. It
thus motivates us to propose an SOM-based search algorithm
(SOMS) for dynamic systems.

In its use as a search mechanism, the SOM has been ap-
plied mainly for optimization problem [6], [8], [13]. Michele
et al. proposed a learnig algorithm for optimization based
on the Kohonen SOM evolution strategy (KSOM-ES) [8].
In this KSOM-ES algorithm, the adaptive grids are used to
identify and exploit search space regions that maximize the
probability of generating points closer to the optima. Su et
al. propose an SOM-based optimization algorithm (SOMO).
Through the self-organizing process in SOMO, solutions to
a continuous optimization problem can be simultaneously
explored and exploited. Our proposed SOMS will extend
the application further to optimization problems involving
dynamic systems. In search of dynamic system, the goal
may be to look for a set of optimal parameters that lead
to the desired performance of the dynamic system from
limited incoming dynamic data. For instance, in a missile

Search

Evaluation

Dvnamic moedel

Fig. 1. The structure and operation of the SOM in the proposed SOMS.

interception application, the task may be to predict the most
probable launching position and velocity of an incoming
missile from the measured radar data. Thus, the proposed
SOMS should be able to execute both system performance
evaluation and the subsequent search in a real-time manner.

In developing the SOMS, we will first examine the SOM
in its learning strategy and search ability. Meanwhile, as the
dynamic system is tackled, the SOM learning may involve
both the system parameters and their derivatives, which
operate in quite different ranges. To achieve high learning
efficiency under such a wide parameter variation, we propose
a new weight updating rule, which may dynamically adjust
the shape and location of the neighborhood function for
the SOM, in an individual basis, in learning the system
parameters.
2. PROPOSED SOM-BASED SEARCH

ALGORITHM

Figure 1 shows the structure and operation of the SOM
in the SOMS. The SOM performs two main operations:
evaluation and search. In Figure 1, each neuron ; in the
SOM contains a vector of a possible solution set W ; (the
weight vector). Each time new measured dynamic data P,
are sent into the scheme, the SOM is triggered to operate. All
of the possible solution sets in the neurons will then be sent
to the dynamic model to derive their corresponding dynamic
data Pz . The SOM evaluates the difference between I, and
each Fj .. Of all the neurons, it chooses the neuron j*, which
corresponds to the smallest difference, as the winner When
the weight vector W ;. of this winning neuron j* differs from
the average of all weights W (k), the weight vectors of 7* and
its neighbors will be updated to exploit a new range. When

W . 1s the same as W, the weight vectors will be updated
so as to make them form more and more compact clusters
centering at neuron j* Under successful learning, the SOM
will finally converge to an optimal solution set. Note that,
this SOMS can also be applied for continuous optimization
problems, with the dynamic model replaced by the objective
function for the given optimization problem and the input by
the reference data.

For effective weight updating in the SOM, the topological
neighborhood function and learning rate need to be prop-
erly determined. Their determination may depend on the
properties of the system parameters to learn. As mentioned
above, system parameters may operate in quite different
working ranges. To achieve high learning efficiency, the
weight updating should be executed in an individual basis,
mnstead of using a same neighborhood function for all the
parameters. We thus propose a new SOM weight updating
rule, which can dynamically adjust the center and width
of their respective neighborhood function for the SOM in
learning each of the system parameters.

The proposed weight updating rule is designed to make the
distance between neuron § and j* correspond to that of their
weight vectors, Wj and Eﬁ. We first define a Gaussian dis-
tribution function G(w; ;(k)) as the neighborhood function
for each element wj;{k), the ith element in W, (k):

s s (EY—am (B))?
Gy, (k))mexp(— (sl (0] (M

where 0; (k) stands for the average of all w; ; (k) and o, the
standard deviation of the neighborhood function G'(w; ;(k)).
We then define another two Gaussian neighborhood func-
tions, D;(k) in the neuron space and F(W,(k)) in the
weight vector space, in the kth stage of learning as

2
D;(k) = exp(_L;:;))
T (Y s 2
F(Ea(k)) = exp(T1 5 %ﬂ) (3)
=1 ey

where d; ;+ (k) stands for the lateral connection distance be-
tween neuron j and §*, wy« ;(k) the ith element in W . (k),
g the dimension of Wj, and o4 the standard deviation of
the neighborhood function D; (k). An error function Ej(k)
1s then defined as

Fy(B) = 5 (Dy(8) — FOV,())? @

During the learning, we can find that when wj;. ;(k) is
much different from @;(k), the optimal solution 1s possibly
located much outside of the estimated range; contrarily, when
wy» 5 (k) 1s close to w;(k), the optimal solution is possibly
within the estimated range. To speed up the learming, we thus
propose varying the mean and variance of G{w;;(k)) by
moving its center to where w;« ;(k) is located and enlarging
(reducing) the variance o2, to be ot * = |w;+ ; (k) —w; (k)|2,
where || stands for the absolute value, as illustrated in Figure
2. The new G™{w; ;(k)) is then formulated as
Gy (mop(— T Oy Lottt

3

Ubr

Uk

(k)]

x

| WL (k)

Udr

uzr-

02 G 0 et)
1) O -

w0 WL R @

Fig. 2. Variatiozns of the weights in the leaming]%rocess: (a) when
(’LT)Z' - 'wj*,i(k)) = J?-%i’ {b) when (’LT)Z - 'wj*,i(k)) < 0‘%1_

where wf;(k) stands for the new w;;(k) after the ad-
justment. Consequently, during each iteration of learning,
G(w;s(k)) is dynamically centered at the location of the
winning neuron 7%, with a larger (smaller) width when
w; (k) is much (less) different from w;« ; (k). It thus covers
a more fitting neighborhood region, and leads to a higher
learning efficiency. With this new G™(w},(k)), the new
weight wf (k) is derived as

fas ., (E) = (F) |

T s
Wi

wi (k)= (s, (o) — . (o)) 0w, (k) (6)

And, with a desired new weight w,(k), the learning
should also make W (k) approach W7 (k), in addition to
minimizing the error function E;{k) in Eq.(4). A new error
function EY (k) is thus defined as

£ (k) = %[(Dj(k) — FW;(k))* + (W, (k) — W3 (k)]

9
Based on the gradient-descent approach, the weight-updating
rule is derived as

BET(E)

w;,(k+1) = wa,t(k)—n(k)w
_ om, (1) OPUW, (1)
= wE -l oy e, L m

w30 (B = ()]
= w2 O b (1)-(D; (k)

—F(W, (k)+(w,: (k) —w], (k)] (8)

where 77(k) stands for the learning rate in the kth stage of
learning. In the initial stage of the leaming, w;;(k) and
wy» ;(k) may be much different from each other, and the
learning process can be speeded up with a larger (k). Later
on, when they almost coincide, the learning rate may be
decreased gradually. A function for n(k) that satisfies the
demand is formulated as

nik)=n1-e *"4ng (9)

where 7; and #; are constants smaller than 1, and + time
constant. Of course, other types of functions can also be used.
Together, the weight updating rule described in Eq.(8) and
the leaming rate in Eq.(9) will force the minimization of the
difference between the weight vector of the winning neuron
and those corresponding to every neuron in each learning
cycle. The learming will converge eventually.

3. TRAJECTORY PREDICTION
APPLICATION

For a dynamic trajectory prediction problem, the goal
may be to estimate the launching position and velocity of a
moving object using the measured data. Through a learning
process, the SOMS may determine a most probable initial
state through repeatedly comparing the measured data with
the predicted trajectories derived from the possible initial
states stored in the neurons of the SOM. We consider the
SOMS very suitable for this application, because the rela-
tionship between the initial state and its resultant trajectory
1s not utterly random. We can thus distribute the nitial states
into the SOM in an organized fashion, and make it as a
guided search.

In this application, the nonlinear dynamic equation de-
scribing the trajectory of the moving object and the mea-
surement equation are first formulated as

a(htl) = felz(e)+E, (10}
pk) = gz, (1)

where f; and g, are the vector-value function defined in
R% and R! (g and [the dimension), respectively, and their
first-order partial derivatives with respect to all the elements
of z(k) continuous. £, and ¢, are the zero-mean Gaussian
white noise sequence m RY and R’

Algorithm for dynamic trajectory prediction based on
the SOMS: Predict an optimal imitial state for the trajectory
of a moving object using the measured position data.

Step 1: Set the stage of learning & = 0. Estimate the ranges
of the possible launching position and velocity of the moving
object, and randomly store the possible initial states W ,(0)
mnto the neurons, where 4 = 1,...,m x n, m X n the total
number of neurcns in the 2D (m x n) space.

Step 2: Send W (k) into the dynamic model, described in
Egs.(10)-(11), to compute &j(k).

Step 3: For each neuron j, compute its output O, (k) as
the Euclidean distance between the measured position data
Poa(k) and Py (k).

E
O3 (k)= || Pon (8~ Pt (3)]]- (12)

Find the winning neuron j7* with the minimum O;.(k):

13 E
O+ ()= || ()= Pa , (B)l|=min; 37 | Pn(®)—Pa 9] (13)
i=0 =0
Step 4: Update the weight vectors of the winning neuron j*
and 1ts neighbors.
Step 5: Check whether O+ (k) is smaller than a pre-specified
value e

O (k) < €. (14)

If Eq.(14) does not hold, let & = & + 1 and go to Step 2;
otherwise, the prediction process i1s completed and output the
predicted optimal 1nitial state to the dynamic model to derive
the object trajectory.

Note that the value of ¢ 1s empirical according to the de-
manded resolution in learning, and we chose it very close to
zero. In addition, during each stage of learning, we perform
a number of leaming to increase the SOM learning speed.
This number of learning is set to be a large number in the
mitial stage of the learning process, such that the SOMS
may converge faster at the price of more oscillations, and
decreased gradually to achieve smooth learning in later stages
of learning.

4. SIMULATION

In the simulations, the trajectory to predict was for a mov-
ing object that emulated a missile. Its governing equations of
motion in the 3D Cartesian coordinate system are described
as

= A teitette. (15)
BT ari e teeitetuty (16)
T et ()

where g,, = 3.986 x 10%m?/s®> and w = 7.2722 x
10=®%rad/s stand for the gravitational constant and the
rotative velocity of the earth, respectively. (&., &y, £.) are as-
sumed to be continuous-time uncorrelated zero-mean Gaus-
sian white noise processes with a constant variance JJ% =
(0.1m/5%)%. The measurement data is a 3-D position (x,y,z)
with a zero mean and constant variance o2, = (30m)?
noise. The ranges of the possible initial states W ,(0) were
estimated to be

68.6%10%m <z (0)<68.8x10°%m
2.7x10%m <25 (0)<2.810%m
4.8%x10°m<2g (0)<4.9% 105m.
110 /s <zyq (0) <1501 /s
810 /s <z (0)<850m /s

13601 /s <zg(0)<1380m /5.

(18)

Within the ranges described in Eq.(18), the possible initial
states of the missile were selected and stored into the 729
(27x27) neurons of the 2D SOM. The learning rates for
each parameter were determined according to Hq.(9), with
the time constant 7 set to be 50 and %y and #; between
0.1 and 0.8. For the GA, the population size was selected

widm — measured

(a) Ideal and measured trajectories

— SOME

Position
[=igui g

(1m)

Learning stage (&)
(b) Estimated position error in the X -direction

P (5 op

(c) Meighborhood function FIHF, (k)

Fig 3. Simulation results for trajectory prediction using the SOMS and
GA with bad estimates of the initial state and larger noise distribution: (a)
the ideal and measured trajectories, (b) the estimated position error in the
X-direction, and (c) the neighborhood function (W, (%)) at k=50.

to be 729 to match with the SOMS, and the crossover and
mutation probability 0.6 and 0.0333, respectively.

In the simulaiion, we investigated the performances of
the SOMS and GA under the bad estimates of the ini-
tial state distribution. In this simulation, the ideal imitial
state was assumed to be (64 x 10°m, 4.8 x 10°m, 2.4 x
10°m, 215m /s, 2130m/ s, 1030m/), which was outside the
estimated range. Figure 3(a) shows the ideal and measured
trajectories, Figure 3(b) the estimated position error (only
the position error in the X-direction (1) is shown for
illustration), and Figure 3(c) the variation the neighborhood
function F'(W,(k)) in the 2D neuron space. In Figure 3(c),
from a random distribution in the beginning of the learning,
F(W,(k)) gradually approximated the expected Gaussian
distribution along with the stage of learning. The influence
of bad estimate on the SOM S was mostly at the initial stage
of the prediction. Afier the transient, the SOMS still managed
to find the optimal state.

To further demonstrate the capability of the SCMS, we
also applied the SOMS for the continuous optimization
problem. Two standard functions (Griewank and Rosenbrock
functions) [13] were used to test the performances of the
SOMS and GA. The results show thai the proposed SOMS
performed betier than GA. GA converged very slowly when

the optimal initial state did not fall within the estimated
range. And, it was not that straightforward to determine a
proper population size and crossover and mutation proba-
bilities to speed up its convergence rate. We thus conclude
that the proposed SOMS performed betier than the GA in
robusiness and effectiveness in the simulation examples.

5. CONCLUSION

In this paper, we have proposed an SOM-based search
algorithm (SOMS), in which the SOM is used as a search
mechanism. The proposed SOMS can be applied for optimal
parameter search for the dynamic system in a real-time
manner. The performance of the proposed scheme has been
compared with those of the GA via the simulations on tra-
jectory prediction and also continuous opiimization problem.
The results show that the SOMS algorithm performs better
than GA. It may be because the SOM in our design adopts
a somewhat organized search and the GA in some sense
a random approach. To further exploit its search ability, in
future work, we will apply the SOM for system identification
and control.

Acknowledgment: This work was supported in part by the
National Science Council under grant NSC 94-2218-E-009-
006, and also Department of Industrial Technology under
grant 94-EC-17-A-02-51-032.

REFERENCES

[1] G. A. Barreto and A. F. R. Araujo, “Identification and Control of
Dynamical Systems Using the Self-Organizing Map,” IEEE Trans. on
Neural Networks, Vol. 15(5), pp. 1244-1259, 2004.

[2] G. A. Carpenter and S. Grossberg, “The ART of Adaptive Pattern
Recognition by a Self-Organizing Neural Network” IEEE Computer,
Vol. 21(3), pp. 77-88, 1988.

[3] Y. ¥.Chen and K. Y. Young, “An Intelligent Radar Predictor for Hight-
speed Moving-target Tracting” International journal of Fuzzy Systems,
Vol. 6(2), pp. 90-99, 2004.

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addizon Wesley, New York, 1989.

[5] 5. Haykin, Neural Networks: A Comprehensive Foundation, Macmil-
lan, New York, 1994,

[6] H.-D. Jin, K.-S. Leung, M.-L. Wong, and Z.-B. Xu,“An Efficient Self-
Organization Map Designed by Genetic Algorithms for the Traveling
Salesman Problem,” IEEE Trans. on Systems, Man, and Cybernetics,
Part B: Cybernetics, Vol. 33(6), pp. 877-888, 2003.

[7] T. Kohonen, Self-Organizing Map, Springer, Berlin, Germany, 1997.

[8] M. Milano, P. Koumoutsakos, and J. Schmidhuber, “Self-Organizing
Nets for Optimization,” IEEE Trans. on Neural Networks, Vol. 15(3),
Pp. 758-765, 2004,

[9] K. Obermayer and T. J. Sejnowski, ed., Self-Organizing Map Forma-
tion: Foundation of Neural Computation, MIT Press, Cambridge, 2001.

[10] 1. C. Principe, L. Wang, and M. A. Motter, “Local Dynamic Modeling
with Self-Organizing Maps and Applications to Nonlinear System
Identification and Control,” Proceedings of the IEEE, Vol. 86(11), pp.
2240-2258, 1998.

[11] H. Shah-Hosgeini and R. safabakhsh, “TASOM: a New Adaptive Self-
Organization Map,” JEEE Trans. on Systems, Man, and Cybernefics,
Part B: Cybernetics, Vol. 33(2), pp. 271-282, 2003.

[12] M. C. Su and H. T. Chang, “Fast Self-Organizing Feature Map
Algorithm,.” TEEFE Trans. on Nueral Networks, Vol. 11(3), pp. 721-733,
2000.

[13] M. C. Su, Y. X. Zhao, and I. Lee, “Som-based Optimization,” IEEE
Int. Conference on Nevral Networks, pp. 781-786, 2004.

[14] 7. A. Walter and K. I. Schulten, “Implementation of Self-Organizing
Neural Networks for Visuo-Motor Control of an Industrial Robot,”
IEEE Trans. on Neural Networks, Vol. 4(1), pp. 86-96, 1993.

	FTT-51_頁面_1.jpg
	FTT-51_頁面_2.jpg
	FTT-51_頁面_3.jpg
	FTT-51_頁面_4.jpg

