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Abstract 
This paper presents a neuro-fuzzy system to speech 
classification.  We propose a multi-resolution feature 
extraction technique to deal with adaptive frame size.  
We utilize fuzzy adaptive resonance theory (FART) to 
cluster each frame.  FART was an extension to ART, 
performs clustering of its inputs via unsupervised 
learning.  ART describes a family of self-organizing 
neural networks, capable of clustering arbitrary 
sequences of input patterns into stable recognition 
codes.  In our experiments, the TIMIT database is used 
and extracts features of each phoneme. The 
performance of speech classification is 88.66%, 
demonstrate the effectiveness of the proposed system 
is encouraging. 
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1. Introduction 
In large vocabulary speech recognition, words are 
frequently modeled as networks of sub-word units 
such as phonemes.  In other words, a word is modeled 
acoustically by concatenating phonetic acoustic 
models according to a pronunciation network stored in 
a dictionary of phonetic spellings.  A benefit of this 
approach is that it is not necessary for the speaker to 
train all words in the vocabulary, only the acoustic of 
phonetic models need to be trained.  To identify a 
phoneme, some of its features in time/frequency or in 
some other domain must be known.  It is a basic 
requirement of a speech recognition system to extract 
a set of features for each phoneme.  A feature can be 
defined as a minimal unit, which distinguishes 
maximally close phonemes.  The extracted features are 
then passed to a network for the recognition of 
phonemes.  The recognized phonemes are combined to 
give a word utterance. 

For simplifying the speech recognition task, 
speech classification plays an important role in speech 
recognition system.  In speech classification, we 
extract a set of features of each frame from wavelet 
transform (WT).  The windowed Fouier transform (FT) 
has uniform resolution over the time frequency plane.  
It is difficult to detect sudden burst in a slowly varying 
signal by FT.  Recently, WT has been proposed for 
feature extraction [1-3].  To overcome the problem of 
fixed resolution extracted from FT, the WT uses 
adaptive window sizes, which allocate more time to 
the lower frequency and less time for the higher 
frequency [4,5]. 

Several approaches have been proposed for 
classification problems.  Some works focus on 
conventional probabilistic and deterministic classifiers 
[6-8].  Another approach uses neural networks to 
classify patterns.  Adaptive resonance theory (ART) 
describes a family of self-organizing neural networks, 
capable of clustering arbitrary sequences of input 
patterns into stable recognition codes [9,10].  Fuzzy-
ART (FART) was an extension to ART, performs 
clustering of its inputs via unsupervised learning 
[11,12].  The patterns it operates on are assumed to be 
real-valued vectors with no missing features.  A major 
characteristic of FART is the capability of both 
incremental (on-line) and batch (off-line) learning. 

This paper is organized as follows.  In section 2 
we discuss the features extraction based on wavelet 
transform.  Section 3 briefly describes the class of 
FART.  The experimental results are given in Section 
4.  Finally, some concluding remarks are presented in 
Section 5. 

2. Features Extraction Based on 
Wavelet Transform 

The multi-resolution formulation of WT is obviously 
designed to represent signals where a single event is 
decomposed into finer and finer detail, but it turns out 
also to be valuable in representing signals where a 



time-frequency or time-scale description is desired 
even if no concept of resolution is needed.  In many 
applications, one studies the decomposition of a signal 
in terms of basis function.  For example, stationary 
signals are decomposed into the Fourier basis using 
FT.  For nonstationary signals (i.e. signals whose 
frequency characteristics are time-varying like music, 
speech, image, etc.) the Fourier basis is ill-suited 
because of the poor time-localization.  The classical 
solution to this problem is to use the short-time (or 
windowed) Fourier transform (STFT).  However, the 
STFT has several problems, the most severe being the 
fixed time-frequency resolution of the basis functions.  
Wavelet techniques give a new class of bases that have 
desired time-frequency resolution properties.  The 
“optimal” decomposition depends on the signal 
studied. 

Each function in a basis can be considered 
schematically as a tile in the time-frequency plane, 
where most of its energy is concentrated.  
Nonoverlapping tiles can schematically capture 
orthonormality of the basis functions.  With this 
assumption, the time-frequency tiles for the standard 
basis and the Fourier basis are shown in Fig. 1. 

 
 
 
 
 
 
               (a)                                            (b) 

Fig. 1 (a) Standard time domain basis (b) Standard frequency 
domain basis 

The discrete wavelet transform (DWT) is another 
signal –independent tiling of the time-frequency plane 
suited for signals where high frequency signal 
components have shorter duration than low frequency 
signal components.  Fig. 2 shows the corresponding 
tiling description, which illustrates time-frequency 
resolution properties of a DWT basis. 
 

 
Fig. 2  Three-scale of wavelet basis. 
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This two-variable set of basis function is used in 
a way similar to the short time Fourier transforms.  A 
set of expansion functions such that any signal can be 
represented by the series 
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A signal space of multi-resolution approximation 
is decomposed by WT in an approximation (lower 
resolution) space and a detail (higher resolution) space.  
In order to generate a basis system that would allow 
higher resolution decomposition at higher frequencies, 
we will iterate the WT recursively to divide the 
approximation space, giving a left binary tree structure. 
The wavelet packet (WP) was proposed by Ronald 
Coifman [13] to allow a finer and adjustable to 
particular signals or signal classes. 

3. Fuzzy Adaptive Resonance 
Theory 

ART describes a family of self-organizing neural 
networks, capable of clustering arbitrary sequences of 
input patterns into stable recognition codes [9,10].   
Grossberg attempted to address the stability-plasticity 
dilemma: how can a learning system remain plastic 
(adaptive) in response to new, unseen information, yet 
remain stable in response to irrelevant information?  
How can a system preserve its already acquired 
knowledge and at the same time be flexible enough to 
accommodate new information to be store?  How can 
the system decide when to alternate from the stable to 
the plastic state and vice verse?  Grossberg’s answer to 
the stability-plasticity dilemma was the ART.  In an 
ART-based network, information reverberates 
between the network’s layers.  Learning is possible in 
the network, when resonance of the neural activity 
occurs.  According to ART, resonance occurs (1) when 
an already learned pattern is presented and the network 
recalls / recognizes it and (2) when a novel input 
pattern is presented, the network realizes that the 
pattern constitutes new information and then enter 
resonant state to memorize it. 
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clustering of its inputs via unsupervised learning 
[11,12].  The patterns it operates on are assumed to be 
real-valued vectors with no missing features.  Also, 
FART is an exemplar-based method for clustering, 



meaning that instead of memorizing individual 
patterns it aggregates them into unique category via 
the use of (in general, overlapping) hyper-rectangles, 
which define groupings of patterns.  Forming groups 
out of a mass of observations is a form of compression, 
which FART uses to form abstract rules about the 
distribution of the data and achieves generalization. 

A major characteristic of FART is the capability 
of both incremental (on-line) and batch (off-line) 
learning.  In the former case, the system is capable of 
incorporating new evidence about its environment as it 
becomes available.  In the later one, the training set is 
repeatedly presented until the system learns the 
presented knowledge either to perfection or to an 
acceptable degree of accuracy. 

A block diagram of a FART module is displayed 
in Fig. 3, and is comprised by two major subsystems.  
The attentional subsystem itself consists of three 
layers of neurons.  If the dimensionality of input 
patterns is M, the module’s F0 layer has M nodes and 
is a pre-processing stage that complete encodes the 
input patterns.  It requires that its input vectors have 
their entire feature values normalized between 0 and 1.  
In other words, FART’s input domain is M-dimension.  
F0 transforms an input vector to 2M-dimension, which 
serves as an input vector to the F1 layer.  Although 
complement coding doubles the size of input patterns, 
it turns out to be essential for FART to perform 
clustering.  Layer F1 has 2M nodes, while F2 has a 
large enough number of nodes that will allow the 
FART module to perform its learning task.  All nodes 
in F1 are interconnected with all nodes in F2 via 
bottom-up and top-down weights. 

 
Fig. 3 Block diagram of Fuzzy ART. 

FART employs localized rather than distributed 
learning.  The later one applies to multi-layer 
perceptrons (MLP), in order to learn a single pattern; 
many weights have to be updated.  However, learning 
a particular pattern in FART only involves the 
template modification of a single node, whether a 
category updates or a category creation takes place.  
Thus, updating weights in FART’s learning lies 
primarily in the search (the combination of repetitive 

node competition and performing the vigilance test) 
for a suitable category. 

When a single pattern x is being presented, the 
basic steps of FART training and performance phase 
are outlined in the below. 

For each category j, the category choice function 
(CCF) )|( xwT j is defined as 
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The CCF reflect the degree to which the weight 
vector wj is a fuzzy subset of the input vector x.  The 
category match function (CMF) )|( xw jρ  is defined 
as 
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Resonance occurs if the CMF of the chosen node 
meets the vigilance criterion.  The weight vector wJ is 
updated according to the equation 
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Fast learning corresponds to setting 1=β . 
1. Present pattern x. 
2. Calculate the category choice function (CCF) values 

)|( xwT j  for all nodes in the F2 layer according to 
Eq. (5). 

3. Find the smallest node index J, such as 
)}|({max arg xwTJ j

j
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4. Perform the vigilance test (VT) for node J as in Eq. 
(6). 

5. If node J passes the VT, proceed to step 6. 
Otherwise, reset node J and return back to step 3. 

6. If FART operates in performance phase, report that 
x is associated to category J, then update J according 
to Eq. (7) or, if J is uncommitted, report that x is a 
novel pattern. 

7. Reinstate the active status of all nodes that have 
been reset during the node selection search. 

In general, FART training may produce 
overlapping categories, that is, the intersection of 
some hyper-rectangles corresponding to FART 
categories might be non-empty.  A pattern located 
inside the intersection of some categories will choose 
the categories of smallest size. 

4. Experimental Results  
In speech classification experiments, the database is 
the Texas Instrument / Massachusetts Institute of 
Technology (TIMIT) acoustic-phonetic corpus of read 



speech [14].  TIMIT database is widely used as a 
reference for comparison of speech recognition 
performance [15].  The speech signal was sampled at a 
rate of 16KHz with 16 bits resolution.  A set of 
features of each frame is extracted from DWT.   In this 
work, Daubechies wavelet is used.  Each frame of 
16ms was taken and three-scale of DWT 
decomposition was applied.  As the sampling 
frequency of the speech signal is 16KHz, the 
frequency bands obtained after decomposition are 0-1, 
1-2, 2-4 and 4-8KHz.  The normalized energy of each 
frequency bands is calculated. 

We utilize FART to search their clusters. The 
clustering of phonemes is shown in Table 1.  The 
results of speech classification with Daubechies 
wavelet were in Table 2. 
Table 1 The clustering of phonemes 

Cluster Phoneme 
1 silence 
2 b, d, g, p, t, k 
3 jh, ch, s 
4 sh, z, zh, f, th, v, dh, m, n, ng, hh 
5 l, r, w, y, iy, ih, eh, ey, ae, aa, aw 
6 ay, ah, ao, oy, ow 
7 uh, uw, er, ax, axr 

 
Table 2 The results of speech classification. 

Cluster Classification 
1 95.2% 
2 83.1% 
3 84.2% 
4 86.5% 
5 91.2% 
6 89.8% 
7 90.6% 

Average 88.66% 

5. Concluding remarks  
In this paper, a neuro-fuzzy model for speech 
classification is presented.  We propose a multi-
resolution feature extraction technique to deal with 
adaptive frame size.  We utilize fuzzy adaptive 
resonance theory to cluster each frame.    The fuzzy 
rules with variable fuzzy regions were defined by 
activation regions, which show the existence region of 
data for a class.  In the near future, we will try to apply 
wavelet transform to adjust features to speech 
recognition system. 

6. References  

[1] J. W. SEOK and K. S. BAE, “A Novel Endpoint 
Detection Using Discrete Wavelet Transform,” 
IEICE Trans. Inf. & Syst., Vol. E82-D, No. 11, 
Nov. 1999, pp. 1489-1491. 

[2] S. H. Chen and J. F. Wang, “Application of 
Wavelet Transform for C/V segmentation on 
Mandarin Speech Signals,” IEE Proc. Vision, 
Image and Signal Processing, Vol. 148, No. 2, 
April 2001, pp. 133-139. 

[3] O. Farooq and S. Datta, “Phoneme recognition 
using wavelet based features,” Information 
Sciences 150, 2003, pp. 5-15. 

[4] C. S. Burrus, R. A. Gopinath, and H. Guo, 
“Introduction to Wavelets and Wavelet 
Transforms,” Prentice-Hall, 1998. 

[5] G. Strang and T. Nguyen, “Wavelets and Filter 
Banks,” Wellesley Cambridge, 1997. 

[6] L. R. Rabiner and B. H. Juang, “An introduction 
to hidden Marcov models,” IEEE ASSP 
Magazine, Jan. 1986, pp. 4-16. 

[7] L. R. Rabiner and B. H. Juang, “Fundamentals of 
speech recognition,” Prentice-Hall, 1993. 

[8] X. Huang, A. Acero and H. W. Hon, “Spoken 
language processing: A guide to theory, 
algorithm, and system development,” Prentice-
Hall, 2001. 

[9] G. A. Carpenter and S. Grossberg, “The ART of 
adaptive pattern recognition by a self-organizing 
neural network,” IEEE Computer, Vol. 21, 
March 1988, pp.77-88. 

[10] G. A. Carpenter and S. Grossberg, “Search 
mechanisms for adaptive resonance theory (ART) 
architectures,” International Joint Conference on 
Neural Networks, June 1989, pp. 201-205. 

[11] G. A. Carpenter, S. Grossberg, and D. B. Rosen, 
“Fuzzy ART: an adaptive resonance algorithm 
for rapid, stable classification of analog 
patterns,” IJCNN-91, Vol. 2, July 1991, pp. 
411 – 416. 

[12] G. C. Anagnostopoulos, “Novel approaches in 
adaptive resonance theory for machine learning,” 
Ph. D. thesis, University of Central Florida, 2001. 

[13] R. R. Coifman and M. V. Wickerhauser, 
“Entropy-based algorithms for best basis 
selection,” IEEE Trans. on Information Theory, 
Vol. 38, March 1992, pp. 713-718. 

[14] TIMIT Acoustic-Phonetic Continuous Speech 
Corpus, NIST Speech Disc 1-1.1, Oct. 1990. 

[15] R. Chengalvarayan and D. Li, “Use of 
generalized dynamic feature parameters for 
speech recognition,” IEEE Trans. on Speech and 
Audio Processing, Vol. 5, Issue: 3, May 1997, pp. 
232-242. 


