SBT-QL: A Stock Time Series Query Language based on Specialized
Binary Tree Representation

Tak-chung Fu*, Fu-lai Chung, Robert Luk, Man-yee Au and Chak-man Ng

Abstract

—Stock time series query is one of the fundamental
components in technical analysis. Technical analysts would like
to query either a whole time series or a segment of a time series
in different resolutions for long-term or short-term
investigations. Moreover, unnecessary data points should be
filtered during the query process for easy analysis. In this paper,
query approaches for both the whole stock time series and a
subsequence of the stock time series based on the SB-Tree
representation scheme are proposed. An approximate approach
is proposed to improve the performance of the subsequence
query process. Moreover, the local and global pruning methods
are suggested to filter the unimportant data points. Besides
studying these various query methods, an user-oriented query
language, called SBT-QL, is proposed for: using easily,
implementing efficiently and providing the ability to specify the
query conditions to limit the retrieved data. The efficiency and
effectiveness of the proposed approach are shown by the
experiments.

1. INTRODUCTION

STOCK time series query is one of the fundamental
components in technical analysis. Unlike transactional
databases with discrete items, the natures of time series data
include: large in data size, high dimensionality and updating
frequently. Indeed, stock time series has its own
characteristics over other time series data. For example, a
stock time series 1s typically characterized by a few critical
points and multi-resolution consideration is always necessary
for long-term and short-term analyses. In addition, technical
analysis is usually used to identify patterns of market
behavior, which have high probability to repeat themselves.
These patterns are similar in the overall shape but with
different amplitudes and/or durations.

Recent research on time series query can be found in [1,2].
First, Shape Definition Query (SDL) is introduced in [1] for
retrieving objects based on the shapes contaned in the
histories associated with these objects. In [2], it proposes a
Chart-Pattern Language (CPL) to enable financial analysts to
define patterns with subjective criteria and incrementally
compose complex patterns from simpler patterns. However,
both of them are query the time series data by defining a
shape of the pattern but leak of the ability to retrieve a time
series or its subsequence in different resolutions.

In this paper, time series retrieval methods come along
with a query language, which is based on a tree representation

* Corresponding Author: Department of Computing, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong (e-mail:
cstefu@comp polyu.eduhk).

scheme - a specialized binary tree (i.e. SB-Tree) is proposed.
The representation scheme is first proposed in [3] based on a
SB-Tree structure and it is customized for stock time series
applications. Based on the SB-Tree representation scheme,
multi-resolution data retrieval and subsequence retrieval can
be achieved. Moreover, a query language has been built to
simplify the retrieval task for the users. The paper is
organized into five sections. The SB-Tree representation
scheme and the corresponding retrieval process are presented
in section 2. Section 3 proposes a query language which
based on the proposed retrieval mechanisms of the SB-Tree.
The simulation results are reported in section 4 and the
conclusion is made in the final section.

2. ATIME SERIES REPRESENT ATION
FOR DATA RETRIEVAL

In this section, the financlal tune series representation
scheme, which is adopted in this paper, will be revisited
briefly first and the retrieval processes are proposed
afterwards.

A. Specialized Binary Tree Data Structure

In view of the importance of extreme points in stock time
series, the identification of perceptually important points
(PIP) is firstly introduced in [4]. The frequently used stock
patterns are typically characterized by a few critical points.
These points are perceptually immportant in the human
identification process and should be considered as more
important points. The proposed scheme follows this idea by
reordering the sequence P based on PIP identification, where
the data point identified in an earlier stage is considered as
being more important than those points identified afterwards.
The distance measurement for evaluating the importance is
the vertical distance (VD) [4].

After introducing the concept of data point importance, a
binary tree (B-tree) structure has been proposed to store the
time series data and is called specialized binary tree
{SB-Tree) [3]. To create a SB-Tree, the PIP identification
process [4] is adopted. A sample time series and the
corresponding SB-Tree built are shown in Fig.1. Detail
creating and accessing processes of the SB-Tree can be found
n [3].

1 2 3 4 5 6 7 8 9 10
Fig. 1. Sample time series and the SB-Tree built

B. Retrieving the Whole Time Series from the SB-Tree

Supposing a SB-Tree is given, data then can be retrieved
according to the data point importance [3]. Besides, retrieving
all the data points, it may not necessary to retrieve all the data
points like the limitation of the visualization devices, or a
specified number of data points are required for pattern
matching or analysis. It is related to the multi-resolution issue
and the number of data points required, that is the resolution
n, is supposed to be given. Then, the SB-Tree is accessed
recursively, started from the root and the time series data
points will be retrieved according to their importance.

Additionally, the retrieval method should be able to prune
the unnecessary nodes of the SB-Tree. Unimportant signals
(i.e. data points) of a time series should be filtered according
to a threshold A. As the tree 1s accessed from the top and the
VD of each node is considered, when the VD of a node is
smaller then A, the fluctuation does not vary widely and the
descendants are considered as less important to the users.
Thus, this node and all the descendants of it can be filtered. It
is called local pruning method. Fig.2 shows the local pruning
of a sample SB-Tree which the threshold is set to 0.15 (1.e. A
<0.15).

Fig. 2. Example of local pruning method

Another approach is to prune the retrieved data by a global
error tatio o, This pruning method is based on the ratio of
fluctuation. By determining the maximum (max) and
minimum (min) prices within the retrieved range of the time
series, the fluctuation ratio fi 1s calculated by:
fr=(price-min)/(max-min) where price is the amplitude of the
evaluating point. If fi is less thana, this point and all the
descendants will be pruned. This approach can help the users
to filter the unimportant points which are less critical to the
overall shape of the time series and 1s called global pruming
method.

C. Retrieving a Time Series Subsequence from the SB-Tree

When a sub-tree is considered, it represents a subsequence
of the time series. To retrieve a subsequence, either an exact
or an approximate approach can be applied based on the
SB-Tree representation. For the exact approach, because the
overall shape of a subsequence is different from its whole
sequence, the data points of the subsequence should be
retrieved in an exact order based on their importance
according to this subsequence. In other words, the SB-Tree of
this subsequence 1s needed to build.

However, it 1s time consuming to build the SB-Tree of the
subsequence every time when retrieving any subsequence.
An approximate approach i1s proposed. The subsequence 1s
retrieved according to the data point importance in the whole

SB-Tree of the corresponding time series. It is generally
faster than the exact approach as no re-calculation is
necessary. It is achieved only based on accessing the SB-Tree
with additional criteria. Given the starting and ending points
of a subsequence, the subsequence can be retrieved from the
SB-Tree of the time series it belongs to. The data points
within that subsequence can be identified based on their
positions in the SB-Tree. Therefore, a similar retrieval
mechanism as accessing the whole SB-Tree is introduced
with additional condition checking. Furthermore, retrieving
the subsequence in different resolutions can also be achieved
by retrieving a smaller number of data points from the tree
comparing to the length of the subsequence, that is resolution
n.

For example, if the subsequence from point 5 to point 11 of
a sample time series in Fig.3a is needed to retrieve, the
corresponding nodes needed to retrieve are shown in Fig.3b

and the order of retrieving the data points is:
5—29—-11-10—-6—7—8.
al

Fig. 3. Example of retrieving a time series subsequence from the SB-Tree

3. QUERY LANGUAGE FOR
THE SB-TREE

Query language 1s a high-level computer language which is
primarily oriented towards the retrieval of data held on files
or databases [5]. Indeed, a query language for stock time
series storage should be used easily, implemented efficiently
and 1s able to specify the retrieval conditions to limit the
retrieved data. Based on the retrieval methods proposed in
Section 11, a SQL-like query language 1s developed to help
the users to retrieve necessary time series data based on the
SB-Tree representation, specify the query conditions and
reduced the data size. It is called Specialized Binary Tree
Query Language (SBT-QL). In this stage, the functions of
SBT-QL include whole sequence / subsequence retrieval,
multi-resolution retrieval (i.e. all points / » number of
important points) and the two proposed pruning methods.
Fig.4 shows the complete syntax of the SBT-QL while Table
1 describes the corresponding meanings of the syntax. Query
examples will be presented in Section T'V.

[Get Chart / Prices]

[Storage RDEMS / XML]

Stock stock id

[from start trade date to end trade date [Exact
/ Approximate]]

[Reselution no of pip]

[[Local / Global] Pruning threshold]

Remarks: Case-insensitive; Each line can be issued in arbitrary
order; Syntax within brackets [] are optional; Bold
words are index words; Underlined words are exact
values to be input; Italic words are the value to be input.

Fig. 4. Syntax of the proposed query language

Table. 1. Definition of the syntax

Syntax Meaning

Get Chart / Prices The retrieved data can be displayed by a

chart or listed in text. Default is set to
Prices.

Storage RDBMS / XML |[Specify the data source, either from RDBMS
or XML file. In this paper, only RDBMS

will be considered.

Stock stock id Stock to be queried, where stock idis

the identifier of the stock.

from start trade date|The range of trade dates of the query data.
te end trade date Whole time series retrieval is assumned if the
range is not specified.

Exact / Approxzimate |Specify either exact or approximate retrieval
approach to be applied in the subsequence
query. Default value is set to approximate

approach for subsequence query.

Resclution no of pip |Resolution, number of PIP requested. If it is
not specified, all the data points within the
range will be returned. Otherwise,

no of pipnumber of important points
will be retumed where no _of pip should
be smaller than or equal to the length of the
queried time sequence.

[Lecal / Glebal]
Pruning threshold

Specify the pruning approaches to be used.
Either using local pruning method,
(threshold=A4)or global pruning method

(threshold=a)

4. EXPERIMENTAL RESULTS

The simulation results are reported in this section. The
proposed approach for time series representation was
implemented in Java 2 Platform, Standard Edition (J2SE).
The experiments were conducted on Intel Pentium(R) M
Processor 1.4Ghz with 512M RAM. Ten stock time series
with average 2000 data points were imported to the time
series database for the simulation. Time series with 2532 data
points captured from the past ten years of the Hong Kong
Hang Seng Index (HSI) was used to demonstrate the
visualization results.

A. Accuracy vs. Approximate Subsequence Query
Approaches

In this subsection, the performance and accuracy of
retrieving a subsequence using the exact and the approximate
approaches are evaluated. The effect of retrieving different
numbers of data point (resolution) is first evaluated The
lengths of subsequence used were fixed to 500 and 2500,
which is about 10% and 90% of the whole time series data

respectively. The query used was:
Get Prices Storage RDBMS Stock hsi from s to e
approach Resolution n;

where from s to e = from 1993-02-08 to 1995-02-10 and
from 1988-01-03 to 1999-01-03, approach = Exact and
Approximate, n= 9, 50, 100, 200, 300 and 400. The Chart
option in Get directive was used for displaying the
visualization result.

Fig.5 shows that the performance of the approximate
approach generally outperformed the exact approach. The
charts of accuracy shows that the accuracy was in
insignificant differences of both approaches — it was less then
0.007 for retrieving 9 data points and less then 0.001 for

retrieving a larger number of pomts. Fig.6 shows the
visualization effect of the query results when the difference
was 0.006]1 and the accuracy was around 0.94. When only
some of the data points are retnieved, distance 1s existed
between the overall shapes of the retrieved series when
comparing to the original time series, no matter the exact or
the approximate query is adopted.

In addition, when the length of the subsequence was set to
500 points, less than 0.4 second was required for the
approximate queries, while 0.5 to 0.6 second was needed for
the exact queries. When the length of the subsequence was set
to 2500 points, the approximate approach required less than
half of the time compared to the exact approach. Thus, it can
be concluded that the approximate approach is more
appropriate than the exact approach.

s = @ m wm
Wumber ot 3l ol

[E=mun W spprermaE Gy

W o amRon

EE=I (] 1

Processinglime of evactand spprovimste
sibsequense queryof windows width = 2500

A eirscy of exsct and sppraximate subseqence
query of windows swidih = 2500

ek

e
i

s @ s mm @ zm B m am wm em am
Wurier ortals Rt

EE W opainaE Qe

Wumaer oxvan Run

By Wooprcomae ey

Fig. 5. Processing time and accuracy of exact and approximate subsequence
query of windows width = 500 and 2500

= i1
Sub-sequence Query of Windows Width = 2500 points

g

Trade Date

1500000 |
1260000 |
10000.00 |

>

Price

750000 |

500000 |

2500.00 |

1988-01-01
1880-01-01
1891-01-01
1882.01-01
1893.01.01

o64.01.01
1995-01.01
1898-01-01
1897-01-01
1898-01.01
1892-01.01

[@ Original Sequence (AlI2800 Paints) ® Exact Query (0 paints) + Appraximate Query (9 points) |

Fig. 6. Different PIPs are retrieved based on exact and approximate
subsequence query approaches (width of subsequence query is 2500 and
number of PIP retrieved is 9)

The second experiment evaluated the query performance
of retrieving fixed number of points at different lengths of
subsequence. Particularly, the retrieval of 9 PIPs is interested
because it can match the widely recognized technical patterns

like double tops and head-and-shoulder. The query used was:
Get Prices Storage RDBMS Stock hsi from s to e
approach Resolution n;

where s and e specify the range of subsequence and obtains
the length of subsequence which are 10, 500, 1000, 1500,
2000 and 2500, approach — Exact and Approximate, n = 9
and 100,

The accuracy of all the experiments in this subsection was
between 0.93 and 0.99 which is similar to the previous
experiment. Fig. 7 shows the processing time of the exact and
the approximate subsequence query approaches of retrieving

different numbers of PIP (i.e. 9 and 100). From the result, it
shows that when the length of the query subsequence
increased, the performance of the approximate approach kept
stable while that of the exact approach increased accordingly.
For the approximate query, it took around 0.5 second while
the exact query increased from less than 1.2 second to more
than 2.5 seconds when the length of the subsequence rose
from 150 to 2500. Again, it is found that the approximate
subsequence query approach outperformed the exact
subsequence query approach.

Get Prices Storage RDBMS Stock hsi Global Pruning

oy
where « =0.0001, 0.005, 0.07 and 0.15.

With the global pruning method, similar effect of using the
local pruning method was obtained. However, the pruning
process was controlled by fluctuation ratio of the whole query
sequence instead of the VD of the data point. Fig.9 shows the
visualization effects of using different fluctuation ratios_f7.

Table. 3. Processing time, accuracy and number of PIP retrieved by using
lobal pruning method

Threshold a | Process Numr:tir;fezomt
Y e e Te e e e (fluctuation time Accuracy (from 2532
o 2 ratio fr) (second) :
2 2% points)
e E—— - i - . 0.0001 0.511 0.9999 2461
= B WA 5 RN N 0.005 0.530 0.9989 1012
R Rh B e O T e, T 0.07 0.531 0.9810 52
Fig. 7. Processing time of exact and approximate subsequence query of
retrieving different numbers of PIP, no. of FIP = 2 (left) and no. of PIP=100 b) b

(right)
B. ILocal vs. Global Pruning Methods

In this subsection, the performance and corresponding
visualization effects by using the two proposed pruning
methods: local pruning and global pruning are shown. First,
the processing time, the accuracy and the number of points
retrieved by applying the local pruning method with different

thresholds A are shown in Table 2. The query used was:
Get Prices Storage RDBMS Stock hsi Local Pruning A;

where A=1, 100, 1oo0and zo00.

From the result, it can be observed that the time required
for different thresholds remained steady around 0.5 second.
Larger threshold resulted in less number of points to be
retrieved and led to lower accuracy. The visualization effects
on different threshold levels are shown in Fig.8. By setting a
larger threshold, more data points were filtered.

Table 2. Processing time, accuracy and number of PIP retrieved by using
local pruning method

Threshold Pr?cess Number of point
A (price) time Accuracy reirleved_
{second) {from 2532 points)
1 0.551 0.9999 2481
100 0.541 0.9999 802
1000 0.550 0.95820 53
2000 CESSH 0.9647 19
Bl oy

Fig. 8 Visualization of the pruning effect using local pruning approach with
different thresholds, (a) A=100, (b) A=1000 and () 3=2000

Second, the processing time, the accuracy and the number
of points retrieved by applying the global pruning method
with different thresholds ¢ are shown in Table 3. The query
used was:

& () c) (] Cj

INEREE
INEERE|

Fig. 9 Visualization of the pruning effect using global pruning approach
with different thresholds (a) a=0.005, (b) a=0.07 and () a=0.15

5. CONCLUSION

In this paper, the retrieval methods for both the whole time
series data and a subsequence of the time series based on the
SB-Tree representation scheme are proposed. An
approximate approach is proposed to improve the
performance of the subsequence query process. Moreover,
the local and the global pruning methods are suggested to
filter the unimportant data points. Besides studying these
various retrieval methods, a query language, called SBT-QL,
is proposed for accessing the SB-Tree. SBT-QL is an
SQL-like language which can be used easily, implemented
efficiently and is able to specify the retrieval conditions to
limit the retrieved data. After testing and evaluating the
proposed query language, it is found that it functions
efficiently and effectively.

REFERENCES

[1] E. Agrawal, G. Psaila, EL Wimmers, M. Zait: Querying Shapes of
Histories. Proc. ofthe 21st VLDE (1995) 502-514

[2] Baswat, 3.C. Khoo, WIN. Chin: Charting Patterns on Price History
Proc. of ACM SIGPLAN Intemnational Conf in Functional
Programming (2001)

[3] T.C. Fu, FL Chung, R Luk, C.M Ng: & Specialized Binary Tree for
Financial Time Series Representation,” In: The 10th ACM SIGEDD
Workshop on Temporal Data Mining (2004) 96-103

[4] FL. Chung, T.C. Fu, k. Luk, V. Ng: Flexible Time Series Pattern
Matching Based on Perceptually Irmportant Points. In: The 17th IJCAT
‘Workshop on Learning from Temporal and Spatial Data (2001) 1-7

[5] Query languages: a unified approach, British Computer Society. Query
Language Group, Heyden on behalf of the British Computer Society
(1981)

	CIEF-5_頁面_1.jpg
	CIEF-5_頁面_2.jpg
	CIEF-5_頁面_3.jpg
	CIEF-5_頁面_4.jpg

