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Abstract 
A heterogeneous dependency graph (HDG) defined as 
the intermediate representation for instruction set 
automated customization is presented in this paper. 
The main motivation of this model is to constructs a 
unified internal specification that bridges the gap from 
the application benchmarks to the instruction set 
customization. To represent the necessary information 
required by the instruction set customization process, 
basic elements and heterogeneous structures including 
pipelining, parallel, branch and loop are presented in 
detail. 
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1. Introduction 
Application Specific Instruction-set Processor (ASIP) 
is a processor designed for a set of particular 
applications, which provides a good tradeoff between 
efficiency and flexibility [1]. To face the challenges of 
high efficiency and time-to-market pressure, automatic 
customization of ASIP to the application requirements 
has become an attractive technology [2]. 

In ASIP synthesis, instruction set customization 
plays a kernel role, which consists of the generation of 
whole instruction set and corresponding assembly 
code. In order to find an efficient solution for the 
instruction set customization, designers must bridge 
the gap with an intermediate representation which can 
satisfy the requirements of the customization process. 

There are many candidate representations which 
have been widely used. Control and Data Flow Graph 
(CDFG) has been widely used in high level synthesis 
[3] [4]. As an intermediate representation, CDFG 
performs the conversion of the behavior description 
into a single graph used by the scheduling and 
allocation algorithm in synthesis. CDFG Toolkit [5] is 
even produced by Design Automation Lab in Seoul 

National University. Furthermore, a powerful three 
layered CDFG including DFG, CFG and Hierarchical 
Task Graphs have been presented in SPARK [6], 
which resolves the existing problem that abstraction 
level is too low for the range of coarse-grain and fine-
grain parallelizing compiler transformations. 

However, there are two intrinsic limitations in the 
specifications mentioned above. First, main structures 
in those models are sequential, which cannot satisfy 
the parallel optimizations in the instruction set 
customization. Second, those models focus on certain 
application problems and their specific definitions are 
not suitable for instruction set customization. 

To address these issues, we present a novel model 
named as Heterogeneous Dependency Graph (HDG), 
which consists of four heterogeneous structures, 
pipelining, parallel, branch and loop. As the unified 
intermediate representation, HDG satisfies the basic 
requirements of three sub-processes of instruction set 
customization, basic instruction set selection, complex 
instruction generation and assembly code generation. 

The rest of the paper is organized as follows. In 
Section 2, the instruction set customization framework 
and corresponding requirements for the intermediate 
representation are presented. Then the basic elements 
of HDG are defined in Section 3. Section 4 presents 
the four main heterogeneous structures in detail. To 
understand it deeply, an experimental example for 
HDG is presented in Section 5. Finally, an analysis 
compared with CDFG is done to support our proposed 
model HDG. The last section draws the conclusion. 

2. Application Requirements 
Instruction set customization is a process which 
gradually moves the design to lower levels, as shown 
in Figure 1. It starts with the behavior specification of 
the application benchmarks written with high level 
languages. During instruction set customization, basic 
instructions are selected from a pre-designed library 
and complex instructions are generated by profiling  



Basic instruction set selection

Benchmarks

Complex instruction set generation

Instruction encoding

Assembly code generation

Assembly code optimization

Intermediate 
Representation

Utilized operations Info.

Data dependency Info.

Control dependency Info.

 
Fig. 1: Framework of instruction set customization.  
data dependency information in the benchmark. After 
instruction encoding, the assembly code is generated 
and optimized to improve the processor performances. 

From this framework we can find that the gap 
between the application benchmarks and instruction 
set customization process must be bridged by using an 
intermediate representation. There are three essential 
requirements this representation should satisfy: 

(1) This representation should be able to extract 
and represent the information of the utilized atomic 
operations from benchmarks. As explained previously, 
the motivation of instruction set selection is to match 
the atomic operations to the basic instructions in the 
library, so during the conversion from the benchmark 
written in high level language to the intermediate 
representation, the utilized operations must be 
represented with a proper format. 
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Fig. 2: An example of complex instruction generation. 

 (2) The intermediate representation must be able 
to supply the data dependency information for the 
complex instruction generation. Furthermore, it also 
has the hierarchical feature. As shown in Figure 2, the 
complex instruction is generated by combining atom 
instructions, which should have same numbers of 
input and output. So the intermediate representation 
must represent the dependencies from fine to coarse 
granularity via the hierarchical feature. The essential 
problem of the complex instruction generation is to 
determine the subset of an application’s data flow 
graph, as shown in Figure 3, which can improve the 
performances of the final processor. For example, we 
combine the atomic operations on the critical path of 
the graph and implement with one instruction, the 
executable rate of the processor must be improved. 
Therefore, to find an efficient solution for instruction 
set customization, those data dependency information 
is very necessary in the intermediate representation. 
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Fig. 3: Sub-graph exploration for complex instructions. 

 (3) Control dependency information must be 
contained in the intermediate representation for the 
assembly code generation and optimization. After the 
instruction set is generated, the benchmark should be 
converted to assembly language to execute on the 
processor, so basic structures in the benchmark such as 
branch and loop must be represented in intermediate 
representation. Furthermore, to increase the execution 
rate optimization on the assembly code will be utilized, 
such as loop unrolling, parallelism and pipelining. 
Therefore, the intermediate representation should also 
be able to represent those heterogeneous structures. 

From the analysis of the application requirements 
above, we present a novel model as the intermediate 
representation which named as HDG. In the following 
sections we will give the detailed definitions of HDG. 

3. Basic Elements of HDG 
As the unified representation for the instruction set 
customization, HDG consists of two basic elements, 
node and flow. It is defined as flows: 

HDG = <V, E> 
V = {v1, v2, …vm} 
E = {e1, e2, … en} 
Where V is the set of nodes, which represent the 

utilized operations, states, variables, or tasks. E is the 
set of flows, which represent a data flow or a control 
token’s transmission. And to represent the hierarchical 
feature, we add an option to the parameters in V: 

v = <id, type, in_flows, out_flows, father, child > 
where father is a pointer which links to the 

hierarchical node v belongs to, and child points to the 
set of nodes which are captured in v. 

V    = ON  ⋃ TN  ⋃ CN 
CN = SN  ⋃ MN  ⋃ FN  ⋃ JN  ⋃ CLN  ⋃ EN 
E    = CF  ⋃ DF 
The nodes in HDG consist of three types: 

operation node (ON), transport node (TN) and control 
node (CN). ON stands for one operation or task, TN 
represents an event which results in a transport of data, 
and CN is the symbol of special structures. In addition, 
CN consists of select node (SN), merge node (MN), 
fork node (FN), join node (JN), clear node (CLN) and 
encase node (EN). The representations of these control 
nodes are shown in Figure 4. Furthermore, CF and DF 
represent the control flow and data flow respectively.  

The difference of SN and FN is that SN sends the 
control token to only one output flow and FN sends 



the same token to each output flow. Similarly, MN is 
fired only if one token from input flows arrives, but JN 
waits until all the tokens from input flows arrive. CLN 
and EN are mainly used in pipelining structures. 
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Fig. 4: Graph representation for control nodes. 

4. Heterogeneous Structures 
In order to represent the features for the instruction set 
customization, special structures in HDG are presented, 
including pipelining and parallel supporting assembly 
code optimization, and branch and loop supporting 
basic structures in the benchmark.  

4.1. Pipelining 
Pipelining is a special structure of parallel execution 
which is widely used to represent the characters of 
hardware. Recently effective hardware generation to 
deal with complex loops requires the ability to exploit 
the pipelining. Furthermore, pipelining also has an 
important effect on power dissipation, which has been 
validated by Actel Corporation [7]. 
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Fig. 5: (a) An example of pipelining; (b) Pipelining in HDG; 
(c) Data storage when pipelining. 
      Therefore, for the sake of widely application of 
pipelining in the whole design, the intermediate model 
HDG must be able to represent this structure. A 
typical example for pipelining is shown in Figure 5(a). 
There are three operations A1, A2 and A3 which forms 
a three-stage pipelining, including encase stage, core 
stage and clear stage. In HDG pipelining is composed 
of encase and clear nodes, as illustrated in Figure 5(b). 
       HDG also supports the specification of the data 
storage when pipelining. Dummy registers in TNs are 
defined to fulfill this task. Between the pipeline stages, 
additional dummy registers are added into TN to store 
variables in different stages. As the example shown in 
Figure 5(c), variable g1 stores data from operation A1 
to A3, whereas g2 and g3 from operation A1 to A2, and 
A2 to A3 respectively. Three dummy registers in g1 
and two dummy registers in g2 and g3 ensure that g1 
transfer data in the second pipelining period from A1 
to A2 and in the third pipelining period from A1 to A3. 

4.2. Parallel 
Parallel is a simple but widely used structure, which 
represents the feature of hardware design very well. 
Many input languages support this structure, such as 
VHDL, Verilog, SpecC, SystemC. Furthermore, in the 
hardware design level, parallel computation and data 
transmission is connatural. 
       Parallel structures are represented mainly with 
fork and join nodes in HDG. An example is shown in 
Figure 6(a), where A1, A2 and A3 run in parallel. They 
all start simultaneously when the fork node is started 
up. Once all of them have completed their execution, 
the token will be route to the join node. 
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Fig. 6: (a) Parallel; (b) Branch; (c) while loop structure; (d) 
do-while loop structure. 

4.3. Branch 
Branch is one of the most widely used structures. A 
majority of input languages have this structure, in spite 
of software languages and hardware languages such as 
C and VHDL. 
      In HDG, branch structure begins with a select node 
and ends with the corresponding merge node, as 
illustrated by Figure 6(b). In this definition, the 
condition estimation part is not contained in the 
branch structure; instead, it only communicates with 
the branch by the data input flow of the select node, 
which controls the directions in the branch. 

4.4. Loop 
Loop structure is also a familiar structure in high level 
languages, which contain while and do-while two 
types. The graph representation for loop is shown in 
Figure 6(c) (d). It begins with a merge node and ends 
with the corresponding select node. The difference 
between while type and do-while type is that the 
positions of condition estimation node and loop body 
are just opposite. 

(1) for (j=0; j<hight; j++){
(2)    offs=(width*(j<<1)+j0)+i0;
(3)    for(i=0; i<width; i++){
(4)        offs++;
(5)        blk0[j*16+i]=cur[offs]-pred[offs];
(6)        blk1[j*16+i]=cur[offs+width]-pred[offs+width];
(7)     }
(8) }  

Fig. 7: A section of MPEG as an example. 



5. An Experimental Example 
To understand the novel model deeply, we choose one 
section of MPEG as an example, as shown in Figure 7. 
Because the computation for the motion picture is very 
large, many optimized process should be done. Several 
guidelines should be followed when turning MPEG to 
HDG: (1) All possible parallelism operations should 
be exposed explicitly using the concurrent-execution 
constructs in HDG, such as parallel and pipelining. (2) 
Hierarchical nodes should be chosen with appropriate 
size and utilized to group related leaf operations, 
which are the smallest indivisible units in HDG. 
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Fig. 8: HDG representation for the MPEG example. 
 

Following the two guidelines mentioned above, 
we can find that the fourth statement is staggered from 
the fifth and sixth statements and they can be 
implemented with pipelining. Furthermore, the fifth 
and sixth statements also can be operated in parallel 
because there are no relations between them. The 
corresponding specification with HDG is shown in 
Figure 8. There are three hierarchical nodes and three 
special structures, pipelining, parallel and loop. If we 
adopt CDFG or other models, this character cannot be 
expressed. In this figure, the real lines stand for 
control flows and broken lines stand for data flows. 

6. Advantage compared with CDFG 
CDFG is a widely used model which has many same 
characters with HDG. For example, they are both 
composed with nodes and flows, and data dependency 
and control dependency can be represented both in 
these two representations. 

However, there are two advantages in HDG 
compared with CDFG to supply necessary information 
for the instruction set customization: 

(1) HDG has pipelining and parallel structures 
which support the assembly code optimization process. 
But this heterogeneous feature does not exist in CDFG. 
CDFG can only represent the nonparallel structures. 

(2) For the generation of complex instruction set 
generation, the intermediate specification should be 
able to represent the hierarchical character. HDG 
solves this problem very well. As the example shown 
in section 5, subset of nodes can be captured into a 
hierarchical node. However, CDFG can only represent 
the fine-granularity level graph. 

From the compare above, we can find that HDG is 
a more appropriate choice than CDFG for representing 
the instruction set customization process. 

7. Conclusion 
In this paper, a novel intermediate representation 
named as HDG is presented to bridge the gap between 
application benchmarks and the process of instruction 
set customization. This specification is composed of 
nodes, flows and ports, which have four heterogeneous 
structures, pipelining, parallel, branch and loop. Those 
definitions ensure that it satisfies the requirements of 
instruction set customization.  

Future work will focus on the automated 
conversion from the benchmarks written in high level 
languages to this intermediate representation. 
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