
A Heterogeneous Dependency Graph as Intermediate
Representation for Instruction Set Customization

Kang Zhao Jinian Bian Sheqin Dong1

EDA Lab, Dept. of Computer Science & Technology
Tsinghua Univ., Beijing 100084, China, +86-10-62785564

1 Work supported in part by National Natural Science Foundation of China under grant NSFC-90207017, and NSFC-60236020;
National Basic Research Program of China (973) under grand 2005CB321605.

Abstract
A heterogeneous dependency graph (HDG) defined as
the intermediate representation for instruction set
automated customization is presented in this paper.
The main motivation of this model is to constructs a
unified internal specification that bridges the gap from
the application benchmarks to the instruction set
customization. To represent the necessary information
required by the instruction set customization process,
basic elements and heterogeneous structures including
pipelining, parallel, branch and loop are presented in
detail.

Keywords: Heterogeneous dependency graph, HDG,
design automation, instruction set customization, ASIP.

1. Introduction
Application Specific Instruction-set Processor (ASIP)
is a processor designed for a set of particular
applications, which provides a good tradeoff between
efficiency and flexibility [1]. To face the challenges of
high efficiency and time-to-market pressure, automatic
customization of ASIP to the application requirements
has become an attractive technology [2].

In ASIP synthesis, instruction set customization
plays a kernel role, which consists of the generation of
whole instruction set and corresponding assembly
code. In order to find an efficient solution for the
instruction set customization, designers must bridge
the gap with an intermediate representation which can
satisfy the requirements of the customization process.

There are many candidate representations which
have been widely used. Control and Data Flow Graph
(CDFG) has been widely used in high level synthesis
[3] [4]. As an intermediate representation, CDFG
performs the conversion of the behavior description
into a single graph used by the scheduling and
allocation algorithm in synthesis. CDFG Toolkit [5] is
even produced by Design Automation Lab in Seoul

National University. Furthermore, a powerful three
layered CDFG including DFG, CFG and Hierarchical
Task Graphs have been presented in SPARK [6],
which resolves the existing problem that abstraction
level is too low for the range of coarse-grain and fine-
grain parallelizing compiler transformations.

However, there are two intrinsic limitations in the
specifications mentioned above. First, main structures
in those models are sequential, which cannot satisfy
the parallel optimizations in the instruction set
customization. Second, those models focus on certain
application problems and their specific definitions are
not suitable for instruction set customization.

To address these issues, we present a novel model
named as Heterogeneous Dependency Graph (HDG),
which consists of four heterogeneous structures,
pipelining, parallel, branch and loop. As the unified
intermediate representation, HDG satisfies the basic
requirements of three sub-processes of instruction set
customization, basic instruction set selection, complex
instruction generation and assembly code generation.

The rest of the paper is organized as follows. In
Section 2, the instruction set customization framework
and corresponding requirements for the intermediate
representation are presented. Then the basic elements
of HDG are defined in Section 3. Section 4 presents
the four main heterogeneous structures in detail. To
understand it deeply, an experimental example for
HDG is presented in Section 5. Finally, an analysis
compared with CDFG is done to support our proposed
model HDG. The last section draws the conclusion.

2. Application Requirements
Instruction set customization is a process which
gradually moves the design to lower levels, as shown
in Figure 1. It starts with the behavior specification of
the application benchmarks written with high level
languages. During instruction set customization, basic
instructions are selected from a pre-designed library
and complex instructions are generated by profiling

Basic instruction set selection

Benchmarks

Complex instruction set generation

Instruction encoding

Assembly code generation

Assembly code optimization

Intermediate
Representation

Utilized operations Info.

Data dependency Info.

Control dependency Info.

Fig. 1: Framework of instruction set customization.
data dependency information in the benchmark. After
instruction encoding, the assembly code is generated
and optimized to improve the processor performances.

From this framework we can find that the gap
between the application benchmarks and instruction
set customization process must be bridged by using an
intermediate representation. There are three essential
requirements this representation should satisfy:

(1) This representation should be able to extract
and represent the information of the utilized atomic
operations from benchmarks. As explained previously,
the motivation of instruction set selection is to match
the atomic operations to the basic instructions in the
library, so during the conversion from the benchmark
written in high level language to the intermediate
representation, the utilized operations must be
represented with a proper format.

ADD2_MUL
ADD ADD

MUL

Fig. 2: An example of complex instruction generation.

 (2) The intermediate representation must be able
to supply the data dependency information for the
complex instruction generation. Furthermore, it also
has the hierarchical feature. As shown in Figure 2, the
complex instruction is generated by combining atom
instructions, which should have same numbers of
input and output. So the intermediate representation
must represent the dependencies from fine to coarse
granularity via the hierarchical feature. The essential
problem of the complex instruction generation is to
determine the subset of an application’s data flow
graph, as shown in Figure 3, which can improve the
performances of the final processor. For example, we
combine the atomic operations on the critical path of
the graph and implement with one instruction, the
executable rate of the processor must be improved.
Therefore, to find an efficient solution for instruction
set customization, those data dependency information
is very necessary in the intermediate representation.

A B C

D

E

F G H

J

K

Fig. 3: Sub-graph exploration for complex instructions.

 (3) Control dependency information must be
contained in the intermediate representation for the
assembly code generation and optimization. After the
instruction set is generated, the benchmark should be
converted to assembly language to execute on the
processor, so basic structures in the benchmark such as
branch and loop must be represented in intermediate
representation. Furthermore, to increase the execution
rate optimization on the assembly code will be utilized,
such as loop unrolling, parallelism and pipelining.
Therefore, the intermediate representation should also
be able to represent those heterogeneous structures.

From the analysis of the application requirements
above, we present a novel model as the intermediate
representation which named as HDG. In the following
sections we will give the detailed definitions of HDG.

3. Basic Elements of HDG
As the unified representation for the instruction set
customization, HDG consists of two basic elements,
node and flow. It is defined as flows:

HDG = <V, E>
V = {v1, v2, …vm}
E = {e1, e2, … en}
Where V is the set of nodes, which represent the

utilized operations, states, variables, or tasks. E is the
set of flows, which represent a data flow or a control
token’s transmission. And to represent the hierarchical
feature, we add an option to the parameters in V:

v = <id, type, in_flows, out_flows, father, child >
where father is a pointer which links to the

hierarchical node v belongs to, and child points to the
set of nodes which are captured in v.

V = ON ⋃ TN ⋃ CN
CN = SN ⋃ MN ⋃ FN ⋃ JN ⋃ CLN ⋃ EN
E = CF ⋃ DF
The nodes in HDG consist of three types:

operation node (ON), transport node (TN) and control
node (CN). ON stands for one operation or task, TN
represents an event which results in a transport of data,
and CN is the symbol of special structures. In addition,
CN consists of select node (SN), merge node (MN),
fork node (FN), join node (JN), clear node (CLN) and
encase node (EN). The representations of these control
nodes are shown in Figure 4. Furthermore, CF and DF
represent the control flow and data flow respectively.

The difference of SN and FN is that SN sends the
control token to only one output flow and FN sends

the same token to each output flow. Similarly, MN is
fired only if one token from input flows arrives, but JN
waits until all the tokens from input flows arrive. CLN
and EN are mainly used in pipelining structures.

Fork node Join nodeSelect node

S F J

Merge node

M

Clear nodeEncase node

E C

Fig. 4: Graph representation for control nodes.

4. Heterogeneous Structures
In order to represent the features for the instruction set
customization, special structures in HDG are presented,
including pipelining and parallel supporting assembly
code optimization, and branch and loop supporting
basic structures in the benchmark.

4.1. Pipelining
Pipelining is a special structure of parallel execution
which is widely used to represent the characters of
hardware. Recently effective hardware generation to
deal with complex loops requires the ability to exploit
the pipelining. Furthermore, pipelining also has an
important effect on power dissipation, which has been
validated by Actel Corporation [7].

(a) (c)(b)

 A1

A2

A3

C

E

encase

core

clear

cycle

A1

A1

A2

A2

A2

A3

A3

A3

A1

A1

A2

A3

b

b

b

b

b

b

b

A1

A2

A3

g1

g2

g3

Fig. 5: (a) An example of pipelining; (b) Pipelining in HDG;
(c) Data storage when pipelining.
 Therefore, for the sake of widely application of
pipelining in the whole design, the intermediate model
HDG must be able to represent this structure. A
typical example for pipelining is shown in Figure 5(a).
There are three operations A1, A2 and A3 which forms
a three-stage pipelining, including encase stage, core
stage and clear stage. In HDG pipelining is composed
of encase and clear nodes, as illustrated in Figure 5(b).
 HDG also supports the specification of the data
storage when pipelining. Dummy registers in TNs are
defined to fulfill this task. Between the pipeline stages,
additional dummy registers are added into TN to store
variables in different stages. As the example shown in
Figure 5(c), variable g1 stores data from operation A1
to A3, whereas g2 and g3 from operation A1 to A2, and
A2 to A3 respectively. Three dummy registers in g1
and two dummy registers in g2 and g3 ensure that g1
transfer data in the second pipelining period from A1
to A2 and in the third pipelining period from A1 to A3.

4.2. Parallel
Parallel is a simple but widely used structure, which
represents the feature of hardware design very well.
Many input languages support this structure, such as
VHDL, Verilog, SpecC, SystemC. Furthermore, in the
hardware design level, parallel computation and data
transmission is connatural.
 Parallel structures are represented mainly with
fork and join nodes in HDG. An example is shown in
Figure 6(a), where A1, A2 and A3 run in parallel. They
all start simultaneously when the fork node is started
up. Once all of them have completed their execution,
the token will be route to the join node.

bodycondition

S

M

body condition

S

M

(a) (b)

 A1 A2 A3

J

F

condition

body body body

S

M

(c) (d)
Fig. 6: (a) Parallel; (b) Branch; (c) while loop structure; (d)
do-while loop structure.

4.3. Branch
Branch is one of the most widely used structures. A
majority of input languages have this structure, in spite
of software languages and hardware languages such as
C and VHDL.
 In HDG, branch structure begins with a select node
and ends with the corresponding merge node, as
illustrated by Figure 6(b). In this definition, the
condition estimation part is not contained in the
branch structure; instead, it only communicates with
the branch by the data input flow of the select node,
which controls the directions in the branch.

4.4. Loop
Loop structure is also a familiar structure in high level
languages, which contain while and do-while two
types. The graph representation for loop is shown in
Figure 6(c) (d). It begins with a merge node and ends
with the corresponding select node. The difference
between while type and do-while type is that the
positions of condition estimation node and loop body
are just opposite.

(1) for (j=0; j<hight; j++){
(2) offs=(width*(j<<1)+j0)+i0;
(3) for(i=0; i<width; i++){
(4) offs++;
(5) blk0[j*16+i]=cur[offs]-pred[offs];
(6) blk1[j*16+i]=cur[offs+width]-pred[offs+width];
(7) }
(8) }

Fig. 7: A section of MPEG as an example.

5. An Experimental Example
To understand the novel model deeply, we choose one
section of MPEG as an example, as shown in Figure 7.
Because the computation for the motion picture is very
large, many optimized process should be done. Several
guidelines should be followed when turning MPEG to
HDG: (1) All possible parallelism operations should
be exposed explicitly using the concurrent-execution
constructs in HDG, such as parallel and pipelining. (2)
Hierarchical nodes should be chosen with appropriate
size and utilized to group related leaf operations,
which are the smallest indivisible units in HDG.

body1

<

S

M

=

body2

j 0

j
hight

<< + * + =
j

1 j0 width i0 offs

C

E

<

++

++

body3

=
i 0

i

offs

width

i

offs

width

blk1

*

+

-
=

[]

j 16

i

cur
pred

predcur

blk1

+
offswidth

*

+

-
=

[]

j 16

i

cur
predblk0
pred

cur

blk0

offs

F

J

Fig. 8: HDG representation for the MPEG example.

Following the two guidelines mentioned above,
we can find that the fourth statement is staggered from
the fifth and sixth statements and they can be
implemented with pipelining. Furthermore, the fifth
and sixth statements also can be operated in parallel
because there are no relations between them. The
corresponding specification with HDG is shown in
Figure 8. There are three hierarchical nodes and three
special structures, pipelining, parallel and loop. If we
adopt CDFG or other models, this character cannot be
expressed. In this figure, the real lines stand for
control flows and broken lines stand for data flows.

6. Advantage compared with CDFG
CDFG is a widely used model which has many same
characters with HDG. For example, they are both
composed with nodes and flows, and data dependency
and control dependency can be represented both in
these two representations.

However, there are two advantages in HDG
compared with CDFG to supply necessary information
for the instruction set customization:

(1) HDG has pipelining and parallel structures
which support the assembly code optimization process.
But this heterogeneous feature does not exist in CDFG.
CDFG can only represent the nonparallel structures.

(2) For the generation of complex instruction set
generation, the intermediate specification should be
able to represent the hierarchical character. HDG
solves this problem very well. As the example shown
in section 5, subset of nodes can be captured into a
hierarchical node. However, CDFG can only represent
the fine-granularity level graph.

From the compare above, we can find that HDG is
a more appropriate choice than CDFG for representing
the instruction set customization process.

7. Conclusion
In this paper, a novel intermediate representation
named as HDG is presented to bridge the gap between
application benchmarks and the process of instruction
set customization. This specification is composed of
nodes, flows and ports, which have four heterogeneous
structures, pipelining, parallel, branch and loop. Those
definitions ensure that it satisfies the requirements of
instruction set customization.

Future work will focus on the automated
conversion from the benchmarks written in high level
languages to this intermediate representation.

8. References
[1] Manoj Kumar Jain, M. Balakrishnan, Anshul

Kumar, “ASIP Design Methodologies: Survey
and Issues”, Proceedings of the International
Conference on VLSI Design, p.76, 2001.

[2] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P.
Ienne and N. Dutt, “Introduction of Local
Memory Elements in Instruction Set Extensions”,
Design Automation Conference (DAC '04), 2004.

[3] Peter Voigt Knudsen and Jan Madsen, “Graph
Based Communication Analysis for HW/SW Co-
design”, Proceedings of the 7th International
Workshop on Hardware/Software Codesign,
Rome, Italy, May 3-5, 1999, pp. 131-135.

[4] Qiang Wu, Yunfeng Wang, Jinian Bian, Weimin
Wu and Hongxi Xue, “A Hierarchical CDFG as
Intermediate Representation for HW/SW Co-
design”, Proceedings of the 2002 International
Conference on Communications, Circuits and
Systems, Chengdu, China, pp.1429-1432, 2002.

[5] http://poppy.snu.ac.kr/CDFG/cdfg.html, CDFG
Toolkit, Seoul National University, Korea.

[6] SPARK 3-Layered Intermediate representation,
http://mesl.ucsd.edu/spark/methodology/HTGs.s
html

[7] Jonathan Alexander, “VHDL Design Tips and
Low Power Design Techniques”, Applications
Consulting Manager, Actel Corporation, 2004.

