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Abstract  
In the paper, an algorithm based on Dual-Tree 
Complex Wavelet Transform is proposed for 1/ f  
process denoising. Use the variance of the wavelet 
coefficients at different scales to estimate the 
parameters of 1/ f  process. Adopting Maximum a 
Posteriori estimator estimates the wavelet coefficients 
of 1/ f  process. The simulation results show that the 
method is effective. And comparing with other 
methods this method doesn’t need to know the 
statistical characteristic of the added white noise and 
the parameters of the 1/ f process. 
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1. Introduction 
There are many fractal signals in natural, such as the 
ocean waves, the turbulent flows, and in the pattern of 
errors on communication channels. An important class 
of fractal signals is 1/ f process. 1/ f  process exhibits 
Long-Term Correlation structure and nonstationarity. 
It can not be captured with traditional method for 
processing signals. 
      The emergence of powerful wavelet basis 
representations is important to signal processing. This 
theory arise highly natural and useful representations 
for fractal phenomena. Researchers have proposed 
some methods based on wavelet transform to solve 
this problem. Wornell [1] applied the method of 
Maximum Likelihood in wavelet domain to estimate 
1/ f process; Chen [2] proposed using Multiscale 
Wiener filter for the restoration of fractal signals; He 
Kai [3] use DWT denoising the 1/ f process.   

This paper, according to the wavelet-based 
features of 1/ f process, exploits a new method to 
estimate the parameter of 1/ f process. Consider Dual-
Tree Complex Wavelet Transform as a filter for 
1/ f processes which are embedded in white 
background noise. Then wavelet coefficients of the 
original signal are estimated by Bayesian framework 

with Maximum a Posterior density. Contract with 
other method, this algorithm does not need to know 
the parameter of the fractal signal and the statistical 
characteristic of added white noise. It does well in 
estimating the 1/ f  process from the added white 
noise.  

 

2. Bayesian Denoising 
The term 1/ f  process [4] has been described as the 
form: 
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!  is spectral parameter.  
It is supposed that we have observed ( )r t of a 

1/ f  process ( )x t embedded in zero-mean added 
white noise ( )w t , so: 
                            ( ) ( ) ( )r t x t w t= +                        (2) 
      The aim of denoising is to attain ˆ( )x t , an 
estimation of ( )x t  from the receiving signal ( )r t , 
and let the mean squared error is minimum. 
      Because the Wavelet Transform is linear, in 
wavelet domain wavelet coefficients can be described 
as: 
                              m m m

n n n
r x w= +                             (3) 

m

n
r is the wavelet coefficients vector of the receiving 
signal ( )r t ; m

n
x is the wavelet coefficients vector of 

( )x t  that is going to estimate; m

n
w  is the wavelet 

coefficients vector of the noise ( )w t . 
       There are many methods to estimate m

n
x . The 

Maximum Posteriori estimation (MAP) is the most 
classical.   
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To be estimated ( )x t , noise distribution and 

distribution of ( )x t  should be known. In general, 



 
 
 

( )p x is unknown. Supposed 2( ) ( , )p x N µ !� , 
the MAP estimation for m

n
x  is: 
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3. Wavelet Based features for 1/ f  
Process[4] 

It has been proved that the wavelet coefficients of 
1/ f process in the same scale m are approximately 
stationary random process. The variance of the 
wavelet coefficients m

n
x  is 2

2
m!" #$ [4].  

Let ( )w t be the added white noise. The different 
scales in wavelet transform, the wavelet coefficients 
of ( )w t are respectively j

kw , 1j

kw
+ .  It exhibits that the 

wavelet coefficients of white noise are uncorrelated, 
and the variance of the white noise is still 2

w
! [5]. 
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4. Dual-Tree Complex Wavelet 
Transform 

Approximate shift invariance and good directionality 
of DT CWT can remove “ringing” of the edge. The 
Discrete Wavelet Transform (DWT) is commonly 
used in signal processing. This work is good for 
compression but its use for other signal analysis and 
reconstruction tasks has been hampered by two main 
disadvantages [6]: 

• Lack of shift invariance, which means that 
small shifts in the input signal can cause major 
variations in the distribution of energy 
between DWT coefficients at different scales. 

• Poor direction selectivity for diagonal features, 
because the wavelet filters are separable and 
real. 

The DT-CWT ensures filtering results with no 
distortion and good ability for feature localization. N 
Kingsbury [6] observed that it can be achieved 
approximate shift invariance with a real DWT by 
doubling the sampling rate at each level of the tree. 
The samples must be evenly spaced，such as Tree a in 
fig.1. There are two parallel fully-decimated trees, 
a and b in fig.1, supposed that the delays of filters 
0b

H  and 
1b
H  are one sample offset from the delays 

of  
0a

H  and
1a
H , which ensures that the level 1 down 

samplers in tree b pick the opposite samples to those 
in tree a [5]. We then find that, to get uniform intervals 
between samples from the two trees below level 1, the 

filters in one tree must provide delays that are half a 
sample different from those in the opposite tree. For 
linear phase, it is required that the odd-length filters 
should be in one tree and even-length filters in another. 
We can interpret the outputs of each tree as the real 
part and imaginary part through the complex wavelet 
transform. So in the domain of DT CWT domain, then 
m m m

n n n
r x w= +  can express as: 
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,real m
r  is the real part wavelet coefficients of 

,

c

m n
r , and 

,imag m
r  is the imaginary part wavelet coefficients of 
,

c

m n
r . 
With Formula 7, 8, we can attain Formula 9: 
 

, , ,real m real m real mr x jw= +  
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Using Formula 9 and Formula 5, the estimation for 
real part wavelet coefficients and imaginary part 
wavelet coefficients of ( )x t  can be attained: 
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Complex wavelet coefficients that can express as:  

 
x̂ = ˆ

real
x + ˆ

imag
jx                         (11) 

 
Then reconstruct x̂  and attain the signal after 

denoising the added white noise. 
 
 

 
Fig. 1: DT CWT of 1-D Signal [6]        
 



 
 
 

 
 

5. Estimate 
w

! , !   and 1/ f Process 
The standard deviation 

w
!  has been estimated by a 

robust median estimator. 
( ) 0.675w diagmedian y! =           (12) 

diagy is the coefficient of the direction of 75°  
m

n
r is the wavelet coefficients vector of the 

receiving signal ( )r t  at scale m , 1m

n
r

+  is the wavelet 
coefficients vector of  ( )r t  at scale 1m + . We can 
use m

n
r and  1m

n
r

+  to compute parameter ! . 
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For Formula 13 use logarithm, then parameter 
!  can get though Formula 13. 
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There are m scales, so it can be 
estimated 1m ! ! . We use the average to reflect! . 
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then we can get variance  2!  of original signal as 
follow:  
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As mentioned above, the algorithm to estimate 

1/ f  process can be described as follow: 
• Step1: processing ( )r t with  DT CWT, gain 

the wavelet coefficients of ( )r t ; 
• Step2: using Formula 12, 13, 14 and 15 to 

estimate the variance of noise 2

w
! ,! . 

• Step3: using  Formula 9, 10, 11 and 16  to 
estimate the 1/ f process ( )x t  

• Step4: reconstruct x̂ .  

6. conclusions 
The algorithm carried out by Matlab and Labview. 
The 1/ f process and added white noise come into 
being with Labview by stochastic. Fig.2 is one sample 
in a set of  1/ f  process experiment. The algorithm 
programmed with Matlab. a) 1/ f  fractal single 
brought with Labview, b) receiving signal that has 
been added white noise, c) 1/ f signal that we 
estimated by the program.  

       

 
                                     a) 
 

 
                                    b) 
 

 
                                    c) 
Fig.2: The Result of Experiment 
 

   Fig.3 is the frequency spectrum of the receiving 
signal, the original signal, and the estimation signal in 
Fig.2. It illustrates the frequency spectrum of the 
original signal and the estimation signal is very similar. 
Experimental results show that the method can 
effectively estimate the 1/ f  signal. 
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Fig.3: Frequency Spectrum  
Contract with other method, the method does not 

need to know the parameter of the fractal signal and 
the statistical characteristic of assed white noise. The 
simulation results show that the method is effective 
and simple.  

This work only considers the correlation between 
the scales, and do not consider the correlation in each 
scale. So in future, the work will be in this aspect. For 
the good directionality of DT CWT, the method can be 
used in 2-D image denoising; it will be another key 
work in future. 
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