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Abstract  
A data-driven Takagi-Sugeno (TS) fuzzy model is 
developed for modeling a real plant with the 
dependent inputs, the nonlinear and the time-varying 
input-output relation.  The collinearity of inputs can be 
eliminated through the principal component analysis 
(PCA).  The TS model split the operating region into a 
collection of IF-THEN rules.  For each rule, the 
premise is generated from clustering the compressed 
input data and the consequence is represented as a 
linear model.  A post-update algorithm for model 
parameters is also proposed to accommodate the time-
varying nature.  Effectiveness of the proposed model 
is demonstrated using real plant data from a 
polyethylene process. 

Keywords: Nonlinear system modeling, principal 
component analysis, Bayesian classification, Takagi-
Sugeno fuzzy method. 

1. Introduction 
Measurement noises and redundancy often exist 

in the process operating data, the former corrupts the 
data quality that reduce the model reliability, the latter 
induces collinearity of the variables that results in 
over-fits.  Principal component analysis (PCA) is a 
popular multivariate statistical method of compressing 
high-dimensional inputs into a few orthogonal 
variables.  It is also advantageous to use compressed 
data for process modeling is that the alarms would be 
triggered when the on-line data are not consistent with 
the reference dataset that was used to construct the 
model.  Thus unreasonable extrapolation will be 
avoided. 

The mixture model is a linear combination of 
priori probabilities and conditional probability density 
functions.  It is used for evaluating the unknown 
probabilities in Bayesian classification.  Generally, the 
maximum likelihood (ML) method is used to estimate 
the parameters of mixture model, the means and 

covariances of each density function and the priori 
probabilities.  Before the new observations are 
classified into the clustered groups, the conditional 
probabilities can be used to evaluate the goodness of 
the data in belonging to the mixture.  An outlier would 
have a low value for any of conditional probability 
density functions [1].  On the contrary, a good data at 
least has a high conditional probability. 

In this paper, historical data are used for building 
a piecewise linear virtual sensor model for inferring 
the final quality using process inputs.  Before building 
inferential model, PCA is applied to remove 
collinearity within inputs and filter out outliers from 
plant data.  The compressed data are then clustered 
using Bayesian classification into antecedents of IF-
THEN rules in a TS fuzzy model to represent different 
operating regions.  A linear prediction model is trained 
as the consequent of each IF-THEN rule.  In on-line 
prediction phase, the process inputs should be within 
the PCA subspace, and belong to the at least one 
known operation regions.  Otherwise, alarms are 
triggered to inform operator about abnormalities 
instead of generating unreliable predictions.  When the 
PCA subspace is reconstructed in order to cover the 
new events, the clusters and the inferential models are 
updated to the new PCA subspace using the proposed 
method. 

2. Basic Theory 

2.1. Principal Component Analysis 
Consider the data matrix ?m n

R!W  with m rows 
of observations and n columns of variables.  Each 
column is normalized to zero mean and unit variance: 
( ) 1!= !X W 1W S  where W  is a mean vector, 1 is a 

column vector that elements are one, and S is a 
diagonal matrix of standard deviations.  The 
eigenvectors (P) of the covariance matrix can be 
obtained from the normalized data.  The score vectors 



(t) are the projection of the data matrix X to each 
eigenvector.  The data matrix X can be decomposed as: 
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with X̂  being the projection of the data matrix X in 
the subspace formed by the first K eigenvectors and E 
being remainder of X that is orthogonal to the 
subspace. 

The statistic Q is defined in order to examine the 
new data can be explained by PCA subspace or not. 
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The confidence limit of Q is defined as follows [2]: 
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The percentile α is the probability of type I error in 
hypothesis testing and c

!
 is the standard normal 

deviate corresponding to the upper (1-α) percentile.  
Another measure of the difference between new data 
and the PCA subspace is the statistic T2.   
 2 1 T T

K K
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The diagonal matrix Ë  is first K terms of eigenvalues.  
The confidence limit is defined as: 
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where 
K,m-1,
F

!  is an F distribution with the degrees of 
freedom K and m-1.  The new data belong to PCA 
subspace within ( )1!"  confidence limits only when 
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2.2. Bayesian Classification 
The priori probabilities that c classes exist are 
1

j
P , j ...c= .  Given the conditional probability density 

functions of xi in class j, ( )i
p j;x è , the joint 

probabilities of xi belonging to class j are: 
 ( ) ( )i j i j

p , j; ,P p j; P=x è x è  (6) 
where è  is the parameter vector of conditional 
probability density function.  The posteriori 
probabilities can be gotten from the total probability 
theorem and Bayes rule. 
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Here ( )2 c
, ,...P P PP
1

=  is the priori probability vector.  
Those parameters can be iterated from Expectation-
Maximization (EM) algorithm. 

2.3. Fuzzy TS Modeling 
Takagi and Sugeno [3] proposed a fuzzy rule-

based model, which decompose a nonlinear system 
into c fuzzy rules: 
 ( ):  i j i ij i jR is A f=If t then y x  (8) 

where tj are the jth inputs, which are the score vectors 
from PCA, Ai and fi respectively are the antecedent 
part and the consequence inferential function of the ith 
rule (Ri), the yij are the outputs estimated from the ith 
rule and the jth inputs.  The antecedent parts of TS 
model are generated from FCM-like algorithm in most 
of fuzzy modeling applications.  However, since that 
the memberships of an observation across all of 
classes must sum to 1.  It forces the new observation 
classifying into groups, even though the outliers were 
observed.  In this paper, the antecedents of TS model 
are generated from Bayesian classification, which 
posteriori probabilities are instead of memberships.  
The advantage is the outliers of new observations can 
be identified from the conditional probabilities of the 
new data, which outliers should be grouped into 
unknown events for next model updating, instead of 
estimating outputs from the current model.  Therefore, 
the antecedent part for each rule can be written as: 

 ( ) ( ){ }i j j thr j thrA p ,i p and P i P= ! !t t t (9) 

where pthr and Pthr respectively are the predefined 
thresholds for the conditional and the posteriori 
probabilities, the former determines the tolerance of 
outliers and the latter represents the share-ability for 
each observation. 

3. Update Inferential Model 
Consider the addition of data of new events to the 

original data matrix.  The numbers of observations are 
increasing from m to m*.  The data matrix 

*T T T

new
! "= # $W W W  is normalized to *

X , which each 

column is with zero mean and unit variance.  The 
mean vector and the standard deviation matrix are 

*

W  
and *

S .  The loading vectors *
P  and correspondingly 

score vectors *
T  can be determined by assuming 

0
*
!E  in the new subspace.  The center (

j
ì ) and the 

covariance (
j

Ó ) of any class j in the original subspace 
can be transferred to the new subspace: 
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The jth center ( *

jì ) and covariance ( *

jÓ ) on the new 
subspace can be obtained through linear operation 
with coordinate rotation (A) and shifting ( * 1 *!

"WS P ), 
without re-clustering the trained data on the new 
subspace. 

There are two steps for adapting the TS model.  
Firstly, the regression matrix Bi of the ith rule is 
updated to the new subspace.  After that, the recursive 
least square algorithm and the additional (m*-m) 
observations are used to correct the regression 
matrices. 

Classify the new quality data 
new
Y  into each class; 

let *

i
Y  be the quality data of the ith class, i.e., 

*T T T

i i i,new
! "= # $Y Y Y .  Assuming that there are mi 

observations in the ith class before adding the new data, 
the regression function is: 
 ( )( ) ( ) ( ) ( )i i i i
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! +Y = T 1ì B E  (11) 

where ( )ii , m
E  is the regression error.  From above 

equation, the regression matrix in the new subspace 
( ( )i

*

i , m
B ) can be derived. 
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where ( )i

*

i , m
C  can be obtained from the previous 

subspace scores and Eq. 10.  Therefore, the regression 
matrix in the new subspace before adding the new 
information can be directly transferred from the 
previous subspace: 
 1
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After updating the TS model to the new subspace, 
the regression matrices need to be corrected using the 
additional data.  Assuming that there are 

i
m!  

observations are added into class i, *

i i i
m m m! " # .  

The matrix is corrected using the new data and the 
recursive least square algorithm [4].  
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where ( *)i

*

i , m
B  and ( )i

*

i , m
B  are the regression matrices 

respectively with *

i
m  and 

i
m  observations. 

4. Illustrative Example 
In this paper, the polyethylene plant is located in 

Kaohsiung, Taiwan.  In Fig. 1, the process flow 
diagram has been shown; the detailed description can 

be found in the previous work [5].  In this paper, 14 
inputs of the process model, which have been chosen 
according to the plant expert’s advices.  The process 
final quality is the laboratory MI that is measured 
every 4 hours.  The data of 14 inputs and 1 output 
were collected in one month for the training dataset.  
There are 150 observations in the dataset, including 
three different production grades, labeled as #1, #2 and 
#3.  There are 145 observations can be explained by 
the PCA subspace, which the captured variances were 
91.68% with 4 PCs, within 99% confidence limits.  
The clustering results of projection of first two score 
vectors are shown in Fig. 2, the solid line for each 
group represents the conditional probabilities equal 

4
10

! , which the conditional probability threshold for 
outlier was set in this study.  The regression matrix for 
each linear model was generated according to the data 
from the group that the posteriori probabilities of 
observations are greater than 0.1.  The relative root-
mean-square errors (RRMSEs) are 9.16% for the 
training dataset using the proposed method, the 
comparisons of regression results of this method and 
partial least squares (PLS) have been shown in Fig. 3.  
It is obvious that only one set of parameters in the PLS 
cannot properly explain outputs with three different 
grades of products, which the RRMSEs are 31.81%. 
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Fig. 1: Process flow diagram of polyethylene process. 

Additional 153 observations in one month 
following the period of the above training data were 
collected for the test dataset.  The statistic Q and T2 of 
new data are shown in Fig. 4, only in the case of the 
Q<Qα and T2<T2

α, the new data belong to the PCA 
subspace within (1-α) confidence limits.  In this 
dataset, there are only 88 observations can be properly 
explained by the PCA subspace.  It is because of that a 
new grade had emerged after the observation number 
113.  The RRMSEs of predictions within the PCA 
subspace are 12.84% for the proposed method and 
53.12% for the PLS.  The new PCA subspace was 
constructed using the training and the test datasets in 
order to explain the data of all events.  The captured 
variances were 90.53% with 4 PCs; there were 290 
observations within the new subspace.  Fig. 5 shows 



the comparisons of regression results with the 
proposed method and the recursive PLS algorithm [6]; 
the RRMSEs respectively are 10.07% and 44.10%.  
The RPLS has reduced the RRMSEs from 53.12% to 
44.10%, showing the model was adapted with the new 
information, but it still cannot tackle the input-output 
nonlinearity. 
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Fig. 2: Clustering results on the t1-t2 of the PCA subspace. 
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Fig. 3: Comparisons of the proposed method and PLS. 
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Fig. 4: Statistic Q and T2 for the test dataset. 
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Fig. 5: Comparisons of the proposed method and RPLS. 

5. Conclusions 
In this study, the collinearity of process inputs is 

eliminated through the PCA; meanwhile outliers of 
input data can be filtered out.  The nonlinear system is 
split into a collection of local linear subsystems that 
were clustered from the compressed data.  Due to the 
time-varying nature of the real plant, the PCA 
subspace has to be reconstructed in order to cover the 
data of new events.  The Bayesian classification and 
the TS model are updated to the new subspace; and the 
consequence functions are corrected with additional 
information.  The proposed method is applied to the 
MI prediction of a polyethylene plant.  Results show 
that nonlinearity and time varying characteristics of 
the polyethylene process plant can be dealt with 
effectively. 
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