
Achieving Efficient Pathname LOOKUP in File Server
Group

Feng-jung Liu1 Chu-sing Yang2 Yao-kuei Lee3
1 Dept. of Management Information Systems, Tajen University, 907 Pingtung, Taiwan

2 Dept. of Computer Science and Information Engineering, National Cheng Kung University, Tainan, 701, Taiwan
3 Dept. of Marketing & Distribution Management, Tajen University, 907 Pingtung, Taiwan

Abstract
With the increasing growth of Internet users and the Web
contents, it has led to much attention on scalability and
availability of file system. Hence the ways to improve the
reliability and availability of system, to achieve the expected
reduction in operational expenses and to reduce the
operations of management of system have become essential
issues. In FSG system, it improved the reliability of file
system through replication to handle the effects of failures.
An efficient consistency control protocol is previously
proposed to ensure the consistency among replicas. In this
paper, we leveraged the concept of intermediate file handle
to cover the heterogeneity of file system and designed a
mechanism, named Multi-component LOOKUP to solve the
inefficiency problem of full pathname LOOKUP, to reduce
the number of RPC requests going across the network and to
allow a client to resolve a full path name in one operation.
Above all, simplicity is our main design consideration.

Keywords: File Server Group, file handle, Multi-
component LOOKUP.

1. Introduction
A basic technique for improving reliability of file
system is to mask the effects of failures by replication.
Many distributed File Systems, such as intermezzo[1],
Coda[2], Deceit[3], RNFS[4], Pangaea[5] and
FSG[6,8,9,16] implemented reliable file system
services through software replication approach Within
them, the FSG, RNFS and Deceit are NFS-based
systems. JetFile[7], Coda and FSG are the instances of
multicast-based file systems. Due that NFS client
accesses a file using a file handle obtained from the
server as a result of a LOOKUP operation. Thus, how
to lookup the pathname efficiently becomes an
essential issue for improving the efficiency.

Many reports such as NFSv4[13] and
WebNFS[14, 15] have been proposed to solve the
inefficiency problem of full pathname LOOKUP. It is
named multi-component LOOKUP, MCL. With such
a mechanism, file servers allow a client to resolve a

full path name in one operation to reduce the number
of RPC calls going in the network. Normally the NFS
(v2 and v3) LOOKUP request takes a directory
fHandle along with a directory name, and returns the
fHandle of each subdirectory name. If a client needs to
evaluate a pathname that contains a sequence of
components, then beginning with the directory
fHandle of the first component it must issue a series of
LOOKUP requests one component at a time. For
instance, on evaluation of the path "a/b/c", the system
will generate separate LOOKUP requests for each
component of the pathname "a", "b", and "c". The
server is expected to evaluate the entire pathname and
return a fHandle for the final component “c”.

2. Overview of File Server Group
The implementation of the file server group, FSG
[6,8,9,16] is based on NFS and interacts by underlying
IP multicasting. In designing system, the collection of
replicated servers is treated as a group. Each group is
assigned a group IP address. The IP address will be
used by the underlying multicast protocol to deliver
messages to all servers in this group. With multicast
communication [10,11,12] it is possible to implement
distributed systems without any explicit need to know
the precise location of data. Instead, peers find each
other by communicating over agreed upon
communication channels. To find a particular data
item, it is sufficient to make a request for the data on
the agreed upon multicast channel and any node that
holds a replica of the data item may respond to the
request. This property makes multicast communication
an excellent choice for building a system that
replicates data.

As shown in Fig. 1, it illustrates the system model
of FSG. A user on the client machines uses the
"mount" command to connect to the sever group as the
general UNIX mount command. The only difference
between a UNIX mount and the proposed “mount”
command is that the "host:pathname" parameter is
replaced by "multicast IP address:pathname". The
nodes in this model are not limited to be homogeneous
processors.

Web Server

(w3)
NFS Client

File server group 1 File server group 2

Web Server
(w2)

NFS Client

Web Server
(w1)

NFS Client

Fig. 1: System Model.

mount

mountd

nfsd

NFS client

NFS server

File Server Group

1

2

5

6

3 4

mountd

nfsd

NFS server

Client System

7
3 4

Multicast

Unicast

Mapping table

Mapping table

7

2

5

Fig. 2: The scenario of a mount procedure in FSG.

In Fig. 2, it illustrates the executions of a mount
procedure in FSG. Within the executions, the concept
of the I_fHandle will be discussed in the incoming
section. The scenario is explained below:

1. The client generates an I_fHandle for mount point.
2. The client sends the mount request, carried

I_fHandle to server group.
3. Each server in that same group creates a fHandle

for the mount point.
4. The mountd process in server sends I_fHandle and

fHandle to nfsd process.
5. The mountd process replies "ok" to client.
6. This I_fHandle is handed over to NFS client.
7. The client issue RPC calls to server/server group.

On server side, the server transforms the I_fHandle
into the real fHandle before executing the request.

2.1. Intermediate File Handle
NFS file handles, fHandle, are normally created

by the server and used to identify uniquely a particular
file or directory on the server. The client does not
normally create file handles or have any knowledge of
the contents of a fHandle. The traditional content of a
file handle is composed of device number, the inode
number, and a generation number for the inode.

Clearly, it is machine-dependent, so the concept of
intermediate file handles, I_fHandle, is proposed
previously in [6,8,9] to mask the heterogeneity of file
systems. The I_fHandle consists of 4 items, client's IP
address, a mount number, a sequence number and an
incremental number. The Client_IP_addr is used to
distinguish different clients. The Seq_number and the
Mount_number respectively represent different files in
the mount directory and the different mount. The
Inc_number is to support the multi-component
LOOKUP operation [13,14,15].

//The structure of I_fHandle
struct I_fHandle {

unsigned long Client_IP_addr; // Client IP address
unsigned int Mount_number; // the order of
different mount
unsigned long Seq_number;// different files in the
mount directory.
unsigned int Inc_number; //different components in
MCL
char dummy[20]; // Dummy

}

 For the consistency of I_fHandle in server group
and the generation of the unique I_fHandle in each
server, each client must acquire a token from the
sequencer before issuing a LOOKUP request to the
server group.

2.2. The Mapping Table
In order to provide the mapping between the fHandle
and the I_fHandle, each server in the FSG has to
maintain its own mapping table. To the client, the
replicated servers are grouped as a server machine
with highly reliable disk storage. When a client would
like to access these files in the server group, it uses the
I_fHandle instead of fHandle to identify the object that
the operations are applied to and multicast its request
to the server group. While a server receives this
request, the I_fHandle is retrieved from the message
and is translated into the actual fHandle available to
itself through a mapping table.
 Each server in the same FSG maintains a mapping
table to map I_fHandle into corresponding fHandle.
While a client tries to mount a remote directory, it has
to issue firstly a mount command to the server group.
As receiving the mount request from a client, the
server creates an Entry Table for the client as shown at
the most left hand side of Fig. 3. Within the Entry
Table, the LOOKUP column is used to keep the latest
token for LOOKUP requests. To ensure that the
unique and consistent I_fHandle be generated in each
server, the LOOKUP operations must be performed
sequentially.

As to the mapping table for each client in the
middle of Fig. 3, it contains two items, I_fhandle and
fhandle. In general, a file server uses the fhandle to
locate the corresponding information in the target table.
A file server used the Out_Token field within the
target table to keep the latest updated tokens of each
files and the name field to represent the file/directory
name. The Done_Token field is deployed to record the
maximum token of completed requests for the
implementation of consistency control scheme. The
related details were discussed in the paper [9].

Intermediate
I_fh1
I_fh2
I_fh3

Real
fh1
fh2
fh3

Intermediate
I_fh1
I_fh2
I_fh3

Real
fh4
fh5
fh6

Intermediate
I_fh1
I_fh2
I_fh3

Real
fh1
fh2
fh4

A Target Table for real file handle

A Mapping Table for each Client

Clients

140.117.58.1

140.117.58.2

140.117.58.3

Lookup

7

8

4

Pointer

0

1

2

An Entry Table

fhandle
fh1
fh2
fh3
fh4
fh5
fh6

name
/

#1/home
#2/joo

#3/text1.dat
#3/text2.dat
#3/text3.dat

Out_Token
1
2
3
18
15
7

Done_Token
1
2
3
16
15
7

Fig. 3: The structure of a Mapping Table.

2.3. The Ordering Control Scheme
In the FSG system, the client multicasts update

requests to these servers in the server group. Since
multiple clients might issue requests to the same file at
the same time, the "dual-counter" synchronization
mechanism [6] is proposed to manage concurrent
updates before. And, the variants were proposed in
[8,9,16] to improve the efficiency of FSG.
Within each server group, a server is designated as a
"sequencer". The sequencer is responsible for
assigning a unique token, Out_Token, for each update
requests. The Out_Token consists of 2 Tokens, one for
the turn and the other for the dependency. A token
consists of the generation number, major sequence
number and minor sequence number. The generation
number is used to distinguish from different
generation of sequencer. The major sequence number
is subject to different GETTOKEN request and the
minor sequence number represents the number of
tokens that works along with the major sequence
number for a GETTOKEN request. Studies [8,9,16]
have shown the related discussions. For space
limitation, the details do not be repeated here.
While a client receives an update request including
LOOKUP request, it first multicasts the GETTOKEN
request to get a token from the sequencer. In order to
make the GETTOKEN request idempotent, we added
a redundancy field to prevent the duplicated
GETTOKEN request. This redundancy field keeps the
last token, which the client required recently. Because

the GETTOKEN procedure is stop-and-wait method,
the sequencer can distinct from these duplicated
LOOKUP requests by this field.

2.4. Multi-component LOOKUP
Operation

Firstly, let’s consider the proposed Reliable File
Server Group (FSG) Session without Multi-component
LOOKUP, MCL, support. An example of a client
reading the /web/index.html file in the exported
directory /pub is shown below. It needs 8 RPC calls
for resolving the /web/index.html pathname besides
the mount command is necessary.

Client
(READ /mnt/web/index.html)

File Server Group
(export /pub)

mount /pub /mnt

return I_fHandle for mount point

GETTOKEN for LOOKUP

Reply a token

LOOKUP for web

Return I_fHandle for web

Reply a token

GETTOKEN for LOOKUP

LOOKUP for index.html

Return I_fHandle for index.html

READ (I_fHandle)

Fig. 4: An example of a FSG Session without Multi-
component LOOKUP.

mount /pub /mnt

return I_fHandle for mount point

GETTOKEN for LOOKUP

Reply a token.

LOOKUP for web/index.html

Return I_fHandle for web/index.html

READ (I_fHandle)

Client
(READ /mnt/web/index.html)

File Server Group
(export /pub)

LOOKUP web,
LOOKUP index.html

Fig. 5: An example of a FSG Session with Multi-component
LOOKUP support.

As to the construction of the I_fHandles for the
MCL operation, the Seq_number item of the
I_fHandle is assigned with the token number and the
Inc_number item of the I_fHandle, initialized with 0,
increases for each component LOOKUP. As shown in
Fig. 5, the “web” and “index.html” objects own the
same Seq_number but different Inc_number, 0 and 1
separately. With such a MCL mechanism, the number
of RPC calls to resolve the pathname is reduced to 4.

3. Conclusions and Future Works
Previously, the concept of intermediate file handle is
proposed to cover the heterogeneity of replicated file
system. In this paper, we follow the concept of
intermediate file handle to improve the efficiency of
FSG with the feature of multi-component LOOKUP,
MCL. With MCL mechanism, file servers allow a
client to resolve a full path name in one operation. It is
able to reduce the number of RPC calls and to achieve
efficient pathname LOOKUP in the FSG.

4. References
[1] Peter J. Braam, “File Systems for Clusters from a

Protocol Perspective”, http://www.inter-
mezzo.org

[2] M. Satyanarayanan, J.J. Kistler, P.Kumar, M.E.
Okasaki, E.H. Siegel and D.C.Steere "Coda: A
highly available file system for a distributed
workstation environment" IEEE Transactions on
Computers, 39(4), pp.447-459, April 1990

[3] A. Siegel, K. Birman and K. Marzullo. "Deceit:
A flexible distributed file systems" In Summer
1990 USENIX Conference, pages 51-61,
Anaheim, CA, June 1990

[4] M.M. Leboute and Taicy Weber, “A reliable
distributed file system for UNIX based on NFS“,
UFRGS, Brazil, IFIP International Workshop on
Dependable Computing and Its Applications
(DCIA 98) January 12 - 14, 1998, Johannesburg,
South Africa

[5] Yasushi Saito and Christos Karamanolis,
“Pangaea: a symbiotic wide-area file system,”
ACM SIGOPS European Workshop, Sep 2002.

[6] C. S. Yang, S. S. B. Shi and F. J. Liu, “The
Design and Implementation of a Reliable File
Server”, Newsletter of the Technical Committee
on Distributed Processing, summer 1997.

[7] Bjorn Gronvall, Assar Westerlund, and Stephen
Pink. “The design of a multicast-based
distributed file system”. In Proc. of Operating
Systems Design and Implementation, pages 251-
264, 1999.

[8] F.J.Liu and C.S.Yang, “THE DESIGN AND
ANALYSIS OF A HIGHLY-AVAILABLE
FILE SERVER GROUP”, IEICE Transactions
on Information and System, Vol.86-E, No.11, pp.
2291-2299, 2003

[9] F.J.Liu, C.S.Yang and Y.K.Lee, "The Design of
An Efficient and Fault-tolerant Consistency
Control Scheme in File Server Group", IEICE
Transactions on Information and System,
Vol.E87-D No.12, pp.2697-2705, 2004.

[10] S.Deering, Host Extensions for IP Multicasting,
RFC 1112, Internet Engineering Task Force,
1989.

[11] S.Floyd, V. Jacobson, C.Liu, S. McCanne,
L.Zhang, A Reliable Multicast Framework for
Light-weigh Sessions and Application Level
Framing, IEEE/ACM Transactions on
Networking, 5(6), Dec. 1997.

[12] K.Birman, A.Schiper, P.Stephenson, Light-
weight Causal and Atomic Group Multicast,
ACM Transactions on Computer Systems, 9(3),
Aug. 1991.

[13] The NFS Version 4 Protocol.
[14] Callaghan, B., “WebNFS Client Specification,”

RFC 2054, October 1996.
http://www.ietf.org/rfc/rfc2054.txt

[15] Callaghan, B., “WebNFS Server Specification,”
RFC 2055, October 1996.
http://www.ietf.org/rfc/rfc2055.txt

[16] Fengjung Liu and Chu-sing Yang, “Improving
Concurrent Write Scheme in File Server Group”,
(ICA3PP-2005) Lecture Notes in Computer
Science, pp.1-10, Vol. 3719, 2005.

