Skip to main content
Log in

Quantum-dot cellular automata serial decimal subtractors

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Two designs for quantum-dot cellular automata serial decimal subtractors are proposed for a nanocomputer. The 5-bit Johnson-Mobius code is used to encode decimal digits. The first design leverages the complement addition method, while the second design uses the direct subtraction method. The proposed subtractors are compared to the existing quantum-dot cellular automata decimal adders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourianoff, G., The Future of Nanocomputing, Computer, 2003, vol. 36, no. 8, pp. 44–53.

    Article  Google Scholar 

  2. Walus, K., Jullien, G.A., and Dimitrov, V.S., Computer Arithmetic Structures for Quantum Cellular Automata, Proc. 37th Asilomar Conf. on Signals, Systems and Computers, 2003, vol. 2, pp. 1435–1439.

    Google Scholar 

  3. Niemier, M.T. and Kogge, P.M., Exploring and Exploiting Wire-Level Pipelining in Emerging Technologies, Proc. 28th Ann. Int. Symp. on Computer Architecture, 2001, pp. 166–177.

  4. Lent, C.S. and Tougaw, P.D., A Device Architecture for Computing with Quantum Dots, Proc. IEEE, 1997, vol. 85, no. 4, pp. 541–557.

    Article  Google Scholar 

  5. Kenney, R.D. and Schulte, M.J., High-Speed Multioperand Decimal Adders, IEEE Trans. Computers, 2005, vol. 54, no. 8, pp. 953–963.

    Article  Google Scholar 

  6. Gladshtein, M.A., Selection of Fundamental Information Principles for Construction of a Universal Digital Nanocomputer, Avtomat. Vychisl. Tekhn., 2005, vol. 39, no. 1, pp. 3–14.

    Google Scholar 

  7. Gladshtein, M.A., Improving the Structure of a Serial Decimal Processor Element for a Universal Digital Nanocomputer, Avtomat. Vychisl. Tekhn. 2006, vol. 40, no. 2, pp. 3–14.

    Google Scholar 

  8. Gladshtein, M.A., Quantum-Dot Cellular Automata Serial Decimal Adder, IEEE Trans. Nanotechnol., 2011, vol. 10, no. 6, pp. 1377–1382.

    Article  Google Scholar 

  9. Richards, R.K., Arithmetic Operations in Digital Computers, New York: Van Nostrad, 1955.

    Google Scholar 

  10. Walus, K. and Jullien, G.A., Design Tools for an Emerging SoC Technology: Quantum-Dot Cellular Automata, Proc. IEEE, 2006, vol. 94, no. 6, pp. 1225–1244.

    Article  Google Scholar 

  11. Taghizadeh, M., Askari, M., and Fardad, K., BCD Computing Structures in Quantum-Dot Cellular Automata, Proc. Int. Conf. Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008, pp. 1042–1045.

  12. Kharbash, F. and Chaudhry, G.M., The Design of Quantum-Dot Cellular Automata Decimal Adder, Proc. 12th IEEE Int. Multitopic Conf., 2008, pp. 71–75.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gladshtein.

Additional information

Original Russian Text © M.A. Gladshtein, 2012, published in Avtomatika i Vychislitel’naya Tekhnika, 2012, No. 6, pp. 5–16.

About this article

Cite this article

Gladshtein, M.A. Quantum-dot cellular automata serial decimal subtractors. Aut. Control Comp. Sci. 46, 239–247 (2012). https://doi.org/10.3103/S0146411612060041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411612060041

Keywords

Navigation