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Abstract. We consider the polyhedral properties of two spanning tree problems with addi-
tional constraints. In the first problem, it is required to find a tree with a minimum sum of
edge weights among all spanning trees with the number of leaves less or equal a given value. In
the second problem, an additional constraint is the assumption that the degree of all vertices
of the spanning tree does not exceed a given value. The decision versions of both problems are
NP-complete.

We consider the polytopes of these problems and their 1-skeletons. We prove that in both
cases it is a NP-complete problem to determine whether the vertices of 1-skeleton are adjacent.
Although it is possible to obtain a superpolynomial lower bounds on the clique numbers of these
graphs. These values characterize the time complexity in a broad class of algorithms based on
linear comparisons. The results indicate a fundamental difference in combinatorial and geometric
properties between the considered problems and the classical minimum spanning tree problem.

1. Introduction

A significant number of works related to the computational complexity of combinatorial prob-
lems is aimed at the study of geometric objects associated with problems. Usually such objects
are the polytopes of the problems and their 1-skeletons. In particular, the clique number of the
1-skeleton (the size of the maximum clique) of the problem serves as a lower bound on compu-
tational complexity in a broad class of algorithms based on linear comparisons. Moreover, it was
found out that this characteristic is polynomial for known polynomially solvable problems and
superpolynomial for intractable problems (see, for example, [2–4]).

It is well-known that polynomially solvable problems may become NP-complete with the intro-
duction of additional constraints. Sometimes the opposite happens: the problem is NP-complete,
however, the introduction of additional constraints makes it possible to design an effective algo-
rithm for it. In this regard, the question arises: how does the introduction of additional constraints
affect the characteristics of the 1-skeleton of the problem?

We consider the combinatorial optimization problems on graphs that admit the following
formulation: let G = (V,E) be an edge-weighted graph and T be some set of its subgraphs, it is
required to find a subgraph of T , having a minimum (or maximum) possible edge weight.

Minimum spanning tree (MST). In this classical problem it is required to find a spanning
tree with a minimum edge weight in a connected graph G.

The problem is polynomially solvable, for example, by the algorithms of Prim and Kruskal [12].
Leaf-constrained minimum spanning tree (LCMST). Given a connected graph G(V,E)

and a positive integer k < |V |, it is required to find a spanning tree with a minimum edge weight
such that k or less vertices have degree 1.

Restricted-leaf-in-subgraph minimum spanning tree (RLSMST). Let G(V,E) be a
connected graph, U a vertex subset of G, and a positive integer k < |U |, it is required to find a
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spanning tree of G with a minimum edge weight such that the number of leaves belonging to U
is less than or equal to k.

Set version of leaf-constrained minimum spanning tree (SVMST). For a connected
graph G(V,E) and some subset U of its vertices it is required to find a spanning tree of G with
a minimum edge weight such that all leaves belong to the set U .

Degree-constrained minimum spanning tree (DCMST). Given a connected graph
G(V,E) and a positive integer k < |V |, it is required to find a spanning tree with a minimum
edge weight in which no vertex has a degree larger than k.

Unlike the simple spanning tree problem, for all the above problems already the decision
versions (does there exist at least one spanning tree in the graph G that satisfies the additional
constraints) are NP-complete.

A significant number of works are devoted to approximation algorithms for the spanning tree
problems with restrictions on the number of leaves and degree of vertices [6,9,13]. In particular,
a linear 2-approximation algorithm for the dual problem of constructing a spanning tree with a
maximum number of inner vertices [14], and a polynomial time algorithm that returns a spanning
tree with degrees of vertices at most k + 1, and the edge weight not exceeding the weight of the
optimal spanning tree with degrees of vertices at most k [15].

2. Polytope of the problem

We consider the general problem described above on the graph G = (V,E) with the set T of
its subgraphs. Let |V | = n, we denote by d the number of edges of the complete graph:

d = |E| = n(n− 1)

2
.

We consider the space Rd where the coordinates are associated with the edges of G. For each
element t of T , we construct its characteristic vector x = x(t) ∈ Rd where some coordinate is
equal to 1 if the corresponding edge belongs to t, otherwise the coordinate is equal to 0. We
denote the set of all characteristic vectors by X. Let c ∈ Rd be the vector composed of the edge
weights of the graph G, then the problem is to find the maximum of a linear function 〈c, x〉 over
the finite set X.

Let P (X) be the polytope of the problem: P (X) = convX. The skeleton of some polytope
P (also called 1-skeleton) is the graph whose vertex set is the vertex set of P (in this case it is
X) and edge set is the set of 1-faces of P . To study the skeleton of the polytope, the following
assertion is useful (see, for example, [5]).

Lemma 1. Two vertices of the polytope P are adjacent if and only if they are strictly separated
from the rest of the vertices of P . In other words, vertices x and y of the polytope P are nonad-
jacent if and only if some convex combination of x and y coincides with a convex combination of
the rest of the vertices: there exist α ≥ 0, β ≥ 0, γz ≥ 0 for which

αx+ βy =
∑

γzz,

α+ β =
∑

γz = 1,

and the sum is taken over all vertices other than x and y.
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3. Spanning tree polytope

A complete H-representation of the polytopeMSTn of the spanning tree problem in the graph
G(V,E) on n vertices is known and has the form∑

e∈E
xe = n− 1,(1) ∑

e∈E(S)

xe ≤ |S| − 1,∀S ⊂ V ,(2)

xe ≥ 0,∀e ∈ E.(3)

If we introduce some extra variables, then the system (1)-(3) can be rewritten in an equivalent
form with a polynomial (O(n3)) number of constraints, it is called an extended formulation of
MSTn [10]. Thus, the problem can be solved in polynomial time by linear programming.

The skeleton of MSTn is completely described, the exact clique number is given in [1].

Theorem 1. The clique number of MSTn skeleton is polynomial in n:

ω(MSTn) =

⌊
n2

4

⌋
.

4. Leaf-constrained minimum spanning tree

In contrast to the general problem, a complete H-representation of the polytope of the leaf-
constrained minimum spanning tree is not known. Integer programming formulation of the prob-
lem is obtained by supplementing the system (1)-(3) with constraints∑

e∈δv

xe + (|δv| − 1)yv ≤ |δv|, ∀v ∈ V,(4)

xe, yv ∈ {0, 1},∀e ∈ E, v ∈ V,(5)

where δv is the set of edges incident to the vertex v, and the additional variables yv correspond
to the leaves.

This formulation is usually used for the problem of optimizing the number of leaves∑
v∈V

yv → max(min).

A variant of the problem with optimization of the weight of the spanning tree can be obtained
by adding to the system (1)-(5) the inequalities∑

v∈V
yv ≤ k

for the problem with a simple restriction on the number of leaves (LCMSTn,k),∑
v∈U

yv ≤ k

for the problem with a restriction in a subgraph (RLSMSTn,U,k), and

∀v ∈ V \U : yv = 0

for the set version of leaf-constrained minimum spanning tree (SVMSTn,U ).
We consider the minimum spanning tree problem with a restriction on the number of leaves.

Let |V | = n, and k is the permitted number of terminal vertices. We construct a spanning tree
t of a special form. We choose two vertices u, w from V and a set Vuw consisting of k vertices,
where some of them Vu = {v1, . . . , vs} are adjacent to u, while the others {vs+1, . . . , vk} = Vw
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are adjacent to w. The remaining n−k−2 vertices are connected by edges only with each other,
or with vertices u and w so that the result is a spanning tree (Fig. 1).

Figure 1. Spanning tree of a special form with k leaves.

Lemma 2. The graph th, obtained from the tree t by discarding the vertices v1, v2, . . . , vk with
the corresponding edges (vi, u) and (vj , w), is a Hamiltonian path on n− k remaining vertices.

Proof. The graph th is a spanning tree on the vertex set V \Vuw. Therefore, it has at least two
terminal vertices. These vertices can only be u and w, since if any other vertex from V \Vuw is
a leaf in the tree th, then it is a leaf in the tree t as well. But the number of leaves in t cannot
exceed k = |Vuw|. Therefore, th is a spanning tree that has exactly two terminal vertices: u and
w. Thus, th is a simple path passing through all vertices of V \Vuw such that u and w are terminal
vertices. �

We fix the sets Vu and Vw and consider the set Tk of all spanning trees of the form described
above with k leaves. By Lemma 2, every such tree contains a path th with terminal vertices u
and w passing through all vertices of V \Vuw. The converse is also true: for every such path, there
corresponds a tree from Tk. Let HPuw be the convex hull of the characteristic vectors of the
Hamiltonian paths th between the vertices u and w.

Lemma 3. Vertices x and y of the polytope LCMSTn,k that correspond to the trees of Tk are
nonadjacent if and only if the corresponding vertices xh and yh of HPuw are nonadjacent as well.

Proof. We suppose that the vertices xh and yh of the polytopeHPuw are nonadjacent. By Lemma
1, there are nonnegative α, β, γz such that α+ β =

∑
γz = 1 and the following holds:

(6) αxh + βyh =
∑

γzzh, zh ∈ HPuw.

There is a bijection between the Hamiltonian paths of HPuw and the spanning trees of Tk. If
we supplement (6) with equalities for the coordinates that correspond to the edges (vi, u) and
(vj , w), then we obtain

αx+ βy =
∑

γzz, z ∈ Tk,
hence the vertices x and y of the polytope LCMSTn,k are nonadjacent.

Now we suppose that the vertices x and y are nonadjacent, then there are nonnegative α, β, γz
such that α+ β =

∑
γz = 1 and

αx+ βy =
∑

γzz.
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For points x and y, all the coordinates that correspond to the edges incident to the vertices
v1, v2, . . . , vk coincide, since these edges are fixed for spanning trees of Tk, and consequently these
coordinates coincide also at the points z, therefore

αx+ βy =
∑

γzz, z ∈ Tk.

There is a bijection between the spanning trees of Tk and the Hamiltonian paths of HPuw. Thus,

αxh + βyh =
∑

γzzh, zh ∈ HPuw,

and the vertices xh and yh of the polytope HPuw are nonadjacent. �

By Lemma 3, we can transfer the properties of the traveling salesman polytope to LCMSTn,k.
It is sufficient to consider the following simple fact: two vertices of the polytope HPuw of the
Hamiltonian paths are adjacent if and only if the vertices of the traveling salesman polytope that
correspond to the Hamiltonian cycles constructed by merging two terminal vertices into one are
adjacent as well. Thus, from Lemma 3 and the well-known result of Papadimitriou [11], it follows

Theorem 2. The question whether two vertices of LCMSTn,k are nonadjacent is NP-complete.

Despite the complexity of LCMSTn,k skeleton, we can obtain a superpolynomial lower bound
on its clique number.

Theorem 3. The clique number of LCMSTn,k skeleton is superpolynomial in n:

ω(LCMSTn,k) ≥ 2
(
√
bn−k−1

2 c−9)/2.

For the proof of Theorem 3 it suffices to apply Lemma 3 and the lower bound on the clique
number of the skeleton of the traveling salesman polytope TSPn [2, 3]:

ω(TSPn) ≥ 2
(
√
bn2 c−9)/2).

Restricted-leaf-in-subgraph and set version of leaf-constrained minimum spanning tree prob-
lems are considered similarly. In the first case, for RLSMSTn,U,k, it suffices to take the subgraph
on the vertices U instead of the graph G and construct the corresponding spanning tree. In the
second case, for SVMSTn,U , it suffices to identify the set of leaves Vuw with the set U .

Theorem 4. The question whether two vertices of RLSMSTn,U,k are nonadjacent is NP-complete.

Theorem 5. The clique number of RLSMSTn,U,k skeleton is superpolynomial in |U |:

ω(RLSMSTn,U,k) ≥ 2
(

√⌊
|U|−k−1

2

⌋
−9)/2

.

Theorem 6. The question whether two vertices of SVMSTn,U are nonadjacent is NP-complete.

Theorem 7. The clique number of SVMSTn,U skeleton is superpolynomial in n:

ω(SVMSTn,U ) ≥ 2
(

√⌊
n−|U|−1

2

⌋
−9)/2

.

5. Degree-constrained minimum spanning tree

Now we consider the problem of constructing a minimum spanning tree in which no vertex has
a degree larger than k. As for the problem with restriction on the number of leaves, a complete
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H-representation of the polytope DCMSTn,k is not known [9]. Integer programming formulation
of the problem is obtained by supplementing the system (1)-(3) with constraints∑

e∈δv

xe ≤ k,

xe ∈ 0, 1, v ∈ V.

For n > 2 and k > 1 we denote by

s =

⌊
n− 2

k − 1

⌋
and construct a tree t of a special form. We divide the set of vertices into s subsets of the form
Vi = {vi, vi,1, . . . , vi,k−2} with k− 1 vertices. All the remaining vertices, there are from 2 to k+1
of them, are divided into two subsets V0 = {v0, v0,1, ..., v0,p} and Vs+1 = {vs+1, vs+1,1 . . . , vn}.
We consider the tree of the following form: in each subset Vi all vertices are adjacent only with
the vertex vi (Fig. 2). Note that the degrees of the vertices v0 and vs+1 cannot exceed k by
construction.

Figure 2. Spanning tree of a special form with vertex degree not exceeding k.

Lemma 4. The graph th, obtained from the tree t by discarding the vertices v0, vs+1, and vi,j
with the corresponding edges (vi,j , vi), is a Hamiltonian path with terminal vertices v1 and vs.

Proof. By construction, the degrees of the vertices v1 and vs cannot be less than k − 1, and
the degrees of the vertices {v2, . . . , vs−1} less than k − 2. Since the degree of each vertex in the
tree t cannot exceed k, the graph obtained after discarding corresponding vertices can only be a
Hamiltonian path between v1 and vs. �

We consider the collection Tk of all spanning trees of the type described above. By Lemma
4, every tree of Tk contains a path th with terminal vertices v1 and vs passing through vertices
{v2, . . . , vs−1}. The converse is also true: for every such path, there is a tree of Tk. We denote by
HP1s the convex hull of the characteristic vectors of the Hamiltonian paths between the vertices
v1 and vs.

Lemma 5. Vertices x and y of the polytope DCMSTn,k that correspond to the trees of Tk are
nonadjacent if and only if the corresponding vertices xh and yh of HP1s are nonadjacent as well.

The proof is similar to the proof of Lemma 3. As a corollary, we obtain the following assertions.

Theorem 8. The question whether two vertices of DCMSTn,k are nonadjacent is NP-complete.
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Theorem 9. The clique number of DCMSTn,k skeleton is superpolynomial in s:

ω(DCSTn,k) ≥ 2
(
√
b s−1

2 c−9)/2.

6. Conclusion

Thus, the general minimum spanning tree problem and the problems with additional con-
straints on the number of leaves and the degree of vertices have fundamentally different polyhe-
dral characteristics. For the classical problem: polynomial algorithms are known, a complete H-
representation of a polytope with a polynomial number of inequalities is constructed, 1-skeleton
of the polytope is completely described, and it is established that its clique number is polyno-
mial in dimension. At the same time, the problems with additional constraints are intractable,
complete H-representations of the polytopes have not been found, 1-skeletons of the polytopes
are extremely complex: even the vertex adjacency test is an NP-complete problem, the clique
numbers are superpolynomial in dimension.
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