Skip to main content
Log in

A New Approach for Nonlinear Multivariable Fed-Batch Bioprocess Trajectory Tracking Control

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a new control law based on linear algebra. This technique allows nonlinear path tracking in multivariable and complex systems. This new methodology consists in finding the control action to make the system follow predefined concentration profiles solving a system of linear equations. The controller parameters are selected with a Monte Carlo algorithm so as to minimize a previously defined cost index. The control scheme is applied to a fed-batch penicillin production process. Different tests are shown to prove the controller effectiveness, such as adding parametric uncertainty, perturbations in the control action and in the initial conditions. Moreover, a comparison with other controllers from the literature is made, showing the better performance of the present approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petre, E. and Selisteanu, D., A multivariable robust-adaptive control strategy for a recycled wastewater treatment bioprocess, Chem. Eng. Sci., 2013, vol. 90, pp. 40–50.

    Article  Google Scholar 

  2. Chung, H., Yang, J.E., Ha, J.Y., Chae, T.U., Shin, J.H., Gustavsson, M., et al., Bio-based production of monomers and polymers by metabolically engineered microorganisms, Curr. Opin. Biotechnol., 2015, vol. 36, pp. 73–84.

    Article  Google Scholar 

  3. Mohammadi, M., Najafpour, G.D., Younesi, H., Lahijani, P., Uzir, M.H., and Mohamed, A.R., Bioconversion of synthesis gas to second generation biofuels: A review, Renewable Sustainable Energy Rev., 2011, vol. 15, pp. 4255–4273.

    Article  Google Scholar 

  4. Ashoori, A., Moshiri, B., Khaki-Sedigh, A., and Bakhtiari, M.R., Optimal control of a nonlinear fed-batch fermentation process using model predictive approach, J. Process Control, 2009, vol. 19, pp. 1162–1173.

    Article  MATH  Google Scholar 

  5. Liang, J. and Chen, Y., Optimization of a fed-batch fermentation process control competition problem using the NEOS server, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2003, vol. 217, pp. 427–432.

    Google Scholar 

  6. Wang, L., Ridgway, D., Gu, T., and Moo-Young, M., Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations, Biotechnol. Adv., 2010, vol. 23, pp. 115–129.

    Article  Google Scholar 

  7. Hecklau, C., Pering, S., Seibel, R., Schnellbaecher, A., Wehsling, M., Eichhorn, T., et al., S-sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity, J. Biotechnol., 2016, vol. 218, pp. 53–63.

    Article  Google Scholar 

  8. Jin, H., Chen, X., Yang, J., Wu, L., and Wang, L., Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process, ISA Trans., 2014, vol. 53, pp. 1822–1837.

    Article  Google Scholar 

  9. De Battista, H., Picó, J., and Picó-Marco, E., Nonlinear PI control of fed-batch processes for growth rate regulation, J. Process Control, 2012, vol. 22, pp. 789–797.

    Article  MATH  Google Scholar 

  10. Arpornwichanop, A. and Shomchoam, N., Control of fed-batch bioreactors by a hybrid on-line optimal control strategy and neural network estimator, Neurocomputing, 2009, vol. 72, pp. 2297–2302.

    Article  Google Scholar 

  11. Chen, J. and Lin, Y.-H., Multibatch model predictive control for repetitive batch operation with input-output linearization, Ind. Eng. Chem. Res., 2012, vol. 51, pp. 9598–9608.

    Article  Google Scholar 

  12. Honda, H. and Kobayashi, T., Fuzzy control of bioprocess, J. Biosci. Bioeng., 2000, vol. 89, pp. 401–408.

    Article  Google Scholar 

  13. Pantano, M.N., Serrano, M.E., Fernandez, M.C., Rossomando, F.G., Ortiz, O.A., and Scaglia, G.J.E., Multivariable control for tracking optimal profiles in a nonlinear fed-batch bioprocess integrated with state estimation, Ind. Eng. Chem. Res., 2017, vol. 56, no. 2, pp. 6043–6056.

    Article  Google Scholar 

  14. Rómoli, S., Serrano, M.E., Ortiz, O.A., Vega, J.R., and Scaglia, G.J.E., Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology, ISA Trans., 2015, vol. 57, pp. 162–171.

    Article  Google Scholar 

  15. Imtiaz, U., Jamuar, S.S., Sahu, J., and Ganesan, P., Bioreactor profile control by a nonlinear auto regressive moving average neuro and two degree of freedom PID controllers, J. Process Control, 2014, vol. 24, pp. 1761–1777.

    Article  Google Scholar 

  16. Aiba, S., Review of process control and optimization in fermentation, Biotechnology and Bioengineering, No. 9 Computer Applications in Fermentation Technology; 2nd International Conference, Philadelphia, PA, August 28–30, 1978, New York, 1979, pp. 269–281.

    Google Scholar 

  17. Cuthrell, J.E. and Biegler, L.T., Simultaneous optimization and solution methods for batch reactor control profiles, Comput. Chem. Eng., 1989, vol. 13, pp. 49–62.

    Article  Google Scholar 

  18. Wang, L. and Feng, Q., Application of fuzzy control simulation human intelligence controller in ferment process of supplying sugar, Appl. Mech. Mater., 2014, vols. 668–669, pp. 441–444.

    Google Scholar 

  19. Klebanov, N. and Georgakis, C., Dynamic response surface models: A data-driven approach for the analysis of time-varying process outputs, Ind. Eng. Chem. Res., 2016, vol. 55, pp. 4022–4034.

    Article  Google Scholar 

  20. Georgakis, C., Design of dynamic experiments: A data-driven methodology for the optimization of time-varying processes, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 12369–12382.

    Article  Google Scholar 

  21. Ochoa, S., A new approach for finding smooth optimal feeding profiles in fed-batch fermentations, Biochem. Eng. J., 2016, vol. 105, pp. 177–188.

    Article  Google Scholar 

  22. Martinez, E.C., Cristaldi, M.D., and Grau, R.J., Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning, Comput. Chem. Eng., 2013, vol. 49, pp. 37–49.

    Article  Google Scholar 

  23. Riaskos, C.A. and Pinto, J.M., Optimal control of bioreactors: A simultaneous approach for complex systems, Chem. Eng. J., 2004, vol. 99, pp. 23–34.

    Article  Google Scholar 

  24. Balsa-Canto, E., Banga, J.R., Alonso, A.A., and Vassiliadis, V.S., Efficient optimal control of bioprocesses using second-order information, Ind. Eng. Chem. Res., 2000, vol. 39, pp. 4287–4295.

    Article  Google Scholar 

  25. Luus, R., On the application of iterative dynamic programming to singular optimal control problems, IEEE Trans. Autom. Control, 1992, p. 1802.

    Google Scholar 

  26. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Upper Saddle River, NJ: Prentice-Hall, Inc., 1996.

    MATH  Google Scholar 

  27. Tokat, S., Sliding mode controlled bioreactor using a time-varying sliding surface, Trans. Inst. Measur. Control, 2009, vol. 31, no.5.

    Google Scholar 

  28. Strang, G., Linear Algebra and Its Applications, 2006, 4th ed.

    MATH  Google Scholar 

  29. Scaglia, G., Rosales, A., Quintero, L., Mut, V., and Agarwal, R., A linear-interpolation-based controller design for trajectory tracking of mobile robots, Control Eng. Practice, 2010, vol. 18, pp. 318–329.

    Article  Google Scholar 

  30. Scaglia, G., Quintero, O., Mut, V., and di Sciascio, F., Numerical methods based controller design for mobile robots, IFAC World Congress, 2008.

    Google Scholar 

  31. Scaglia, G., Montoya, L.Q., Mut, V., and di Sciascio, F., Numerical methods based controller design for mobile robots, Robotica, 2009, vol. 27, pp. 269–279.

    Article  Google Scholar 

  32. Wang, C.-J. and Kao, M.-Y., Optimal search for parameters in Monte Carlo simulation for derivative pricing, Proceedings of the 2014 IEEE Conference on Computational Intelligence for Financial Engineering and Economics (CIFEr), 2014, pp. 384–390.

    Chapter  Google Scholar 

  33. Morzfeld, M., Implicit sampling for path integral control, Monte Carlo localization, and SLAM, J. Dyn. Syst., Measur. Control, 2015, vol. 137, p. 051016.

    Article  Google Scholar 

  34. Heyvaert, M. and Onghena, P., Randomization tests for single-case experiments: State of the art, state of the science, and state of the application, J. Contextual Behav. Sci., 2014, vol. 3, pp. 51–64.

    Article  Google Scholar 

  35. Tempo, R. and Ishii, H., Monte Carlo and Las Vegas randomized algorithms for systems and control: An introduction, Eur. J. Control, 2007, vol. 13, pp. 189–203.

    Article  MATH  Google Scholar 

  36. Calafiore, G.C., Distributed randomized algorithms for probabilistic performance analysis, Syst. Control Lett., 2009, vol. 58, pp. 202–212.

    Article  MathSciNet  MATH  Google Scholar 

  37. Dimov, I., Maire, S., and Sellier, J.M., A new Walk on Equations Monte Carlo method for solving systems of linear algebraic equations, Appl. Math. Modell., 2015, vol. 39, no. 15, pp. 4494–4510.

    Article  MathSciNet  Google Scholar 

  38. Mohammadi, Y., Pakdel, A.S., Saeb, M.R., and Boodhoo, K., Monte Carlo simulation of free radical polymerization of styrene in a spinning disc reactor, Chem. Eng. J., 2014, vol. 247, pp. 231–240.

    Article  Google Scholar 

  39. de Oliveira, L.P., Verstraete, J.J., and Kolb, M., A Monte Carlo modeling methodology for the simulation of hydrotreating processes, Chem. Eng. J., 2012, vol. 207, pp. 94–102.

    Article  Google Scholar 

  40. Cheein, F.A. and Scaglia, G., Trajectory tracking controller design for unmanned vehicles: A new methodology, J. Field Rob., 2014, vol. 31, pp. 861–887.

    Article  Google Scholar 

  41. Wechselberger, P., Seifert, A., and Herwig, C., PAT method to gather bioprocess parameters in real-time using simple input variables and first principle relationships, Chem. Eng. Sci., 2010, vol. 65, pp. 5734–5746.

    Article  Google Scholar 

  42. George, J., On adaptive loop transfer recovery using Kalman filter-based disturbance accommodating control, IET Control Theory Appl., 2014, vol. 8, no. 4, pp. 267–276.

    Article  MathSciNet  Google Scholar 

  43. Müller, M.M. and Hausmann, R., Regulatory and metabolic network of rhamnolipid biosynthesis: Traditional and advanced engineering towards biotechnological production, Appl. Microbiol. Biotechnol., 2011, vol. 91, pp. 251–264.

    Article  Google Scholar 

  44. Åström, K.J. and Hägglund, T., Control PID Avanzado, Madrid: Pearson, 2009.

    Google Scholar 

  45. Alford, J.S., Bioprocess control: Advances and challenges, Comput. Chem. Eng., 2006, vol. 30, pp. 1464–1475.

    Article  Google Scholar 

  46. Rivadeneira, P.S. and Adam, E.J., Suboptimal control strategies for finite-time nonlinear processes with input constraints, J. Nonlinear Dyn., 2013, vol. 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cecilia Fernández.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, M.C., Rómoli, S., Pantano, M.N. et al. A New Approach for Nonlinear Multivariable Fed-Batch Bioprocess Trajectory Tracking Control. Aut. Control Comp. Sci. 52, 13–24 (2018). https://doi.org/10.3103/S0146411618010030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618010030

Keywords

Navigation