Skip to main content
Log in

On Optimal Interpolation by Linear Functions on n-Dimensional Cube

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Let \(n \in N\), and let \({{Q}_{n}}\) be the unit cube \({{[0,1]}^{n}}\). By \(C({{Q}_{n}})\) we denote the space of continuous functions \(f:{{Q}_{n}} \to R\) with the norm \({{\left\| f \right\|}_{{C({{Q}_{n}})}}}: = \mathop {max}\limits_{x \in {{Q}_{n}}} \left| {f(x)} \right|,\) by \({{\Pi }_{1}}\left( {{{R}^{n}}} \right)\) – the set of polynomials of \(n\) variables of degree \( \leqslant 1\) (or linear functions). Let \({{x}^{{(j)}}},\)\(1 \leqslant j \leqslant n + 1,\) be the vertices of an \(n\)-dimnsional nondegenerate simplex \(S \subset {{Q}_{n}}\). The interpolation projector \(P:C({{Q}_{n}}) \to {{\Pi }_{1}}({{R}^{n}})\) corresponding to the simplex \(S\) is defined by the equalities \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{(j)}}}} \right).\) The norm of \(P\) as an operator from \(C({{Q}_{n}})\) to \(C({{Q}_{n}})\) can be calculated by the formula \(\left\| P \right\| = \mathop {max}\limits_{x \in {\text{ver}}({{Q}_{n}})} \sum\nolimits_{j = 1}^{n + 1} {\left| {{{\lambda }_{j}}(x)} \right|} .\) Here \({{\lambda }_{j}}\) are the basic Lagrange polynomials with respect to \(S,\)\({\text{ver}}({{Q}_{n}})\) is the set of vertices of \({{Q}_{n}}\). Let us denote by \({{\theta }_{n}}\) the minimal possible value of \(\left\| P \right\|.\) Earlier the first author proved various relations and estimates for values \(\left\| P \right\|\) and \({{\theta }_{n}}\), in particular, having geometric character. The equivalence \({{\theta }_{n}} \asymp \sqrt n \) takes place. For example, the appropriate according to dimension \(n\) inequalities can be written in the form \(\tfrac{1}{4}\sqrt n \)\( < {{\theta }_{n}}\)\( < 3\sqrt n .\) If the nodes of a projector \(P{\text{*}}\) coincide with vertices of an arbitrary simplex with maximum possible volume, then we have \(\left\| {P{\text{*}}} \right\| \asymp {{\theta }_{n}}.\) When an Hadamard matrix of order \(n + 1\) exists, holds \({{\theta }_{n}} \leqslant \sqrt {n + 1} .\) In the present paper, we give more precise upper bounds of \({{\theta }_{n}}\) for \(21 \leqslant n \leqslant 26\). These estimates were obtained with application of maximum volume simplices in the cube. For constructing such simplices, we utilize maximum determinants containing the elements \( \pm 1.\) Also we systematize and comment the best nowaday upper and low estimates of \({{\theta }_{n}}\) for concrete \(n.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Esipova, E.M., Geometric characteristics of simplices with equisection property, in Sovremennye problemy matematiki i informatiki (Current Problems of Mathematics and Computer Science), Yaroslavl: Yarosl. Gos. Univ., 2017, vol. 17, pp. 49–61.

  2. Kudryavtsev, I. S., Ozerova, E. A., and Ukhalov, A. Yu., New estimates for norms of minimal projectors, in Sovremennye problemy matematiki i informatiki (Current Problems of Mathematics and Computer Science), Yaroslavl: Yarosl. Gos. Univ., 2017, vol. 17, pp. 74–81.

  3. Nevskij, M.V., Orthogonal projection and minimal linear interpolation on an n-dimensional cube, Model. Anal. Inf. Sist., 2007, vol. 14, no. 3, pp. 8–28.

    Google Scholar 

  4. Nevskij, M.V. and Khlestkova, I.V., On minimal linear interpolation, in Sovremennye problemy matematiki i informatiki (Current Problems of Mathematics and Computer Science), Yaroslavl: Yarosl. Gos. Univ., 2008, vol. 9, pp. 31–37.

  5. Nevskij, M.V., On a certain relation for the minimal norm of an interpolational projection, Model. Anal. Inf. Sist., 2009, vol. 16, no. 1, pp. 24–43.

    Google Scholar 

  6. Nevskii, M.V., On a property of n-dimensional simplices, Math. Notes, 2010, vol. 87, no. 4, pp. 543–555.

    Article  MathSciNet  MATH  Google Scholar 

  7. Nevskii, M.V., Geometricheskie otsenki v polinomial’noi interpolyatsii (Geometric Estimates in Polynomial Interpolation), Yaroslavl: Yarosl. Gos. Univ., 2012.

  8. Nevskii, M.V. and Ukhalov, A.Yu., On numerical charasteristics of a simplex and their estimates, Model. Anal. Inf. Sist., 2016, vol. 23, no. 5, pp. 603–619.

    Article  MathSciNet  Google Scholar 

  9. Nevskii, M.V. and Ukhalov, A.Yu., New estimates of numerical values related to a simplex, Model. Anal. Inf. Sist., 2017, vol. 24, no. 1, pp. 94–110.

    Article  MathSciNet  Google Scholar 

  10. Nevskii, M.V. and Ukhalov, A.Yu., On n-dimensional simplices satisfying inclusions S ⊂ [0, 1]nnS, Model. Anal. Inf. Sist., 2017, vol. 24, no. 5, pp. 578–595.

    Article  MathSciNet  Google Scholar 

  11. Nevskii, M.V. and Ukhalov, A.Yu., On minimal absorption index for an n-dimensional simplex, Model. Anal. Inf. Sist., 2018, vol. 25, no. 1, pp. 140–150.

    Article  MathSciNet  Google Scholar 

  12. Szego, G., Orthogonal Polynomials, New York: American Mathematical Society, 1959.

    MATH  Google Scholar 

  13. Suetin, P.K., Klassicheskie ortogonal’nye mnogochleny (Classic Orthogonal Polynomials), New York: American Mathematical Society; Moscow: Nauka, 1979.

  14. Hall, M., Jr., Combinatorial Theory, Waltham (Massachusets)–Toronto–London: Blaisdall Publishing Company, 1967.

  15. Butzer, P.L., Schmidt, M., and Stark, E.L., Observations on the history of central B-splines, Arch. Hist. Exact Sci., 1988, no. 2, pp. 137–156.

  16. Comtet, L., Permutations by number of rises; Eulerian numbers, in Advanced Combinatorics: The Art of Finite and Infinite Expansions, Dordrecht: Reidel, 1974.

    Book  MATH  Google Scholar 

  17. Ehrenborg, R., Readdy, M., and Steingrimsson, E., Mixed volumes and slices of the cube, J. Comb. Theory, Ser. A, 1998, vol. 81, pp. 121–126.

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham, R.L., Knuth, D.E., and Patashnik, O., Concrete Mathematics: A Foundation for Computer Science, Reading, MA: Addison-Wesley, 1994.

    MATH  Google Scholar 

  19. Hudelson, M., Klee, V., and Larman, D., Largest j-simplices in d-cubes: Some relatives of the Hadamard maximum determinant problem, Linear Algebra Appl., 1996, vols. 241–243, pp. 519–598.

    Article  MathSciNet  MATH  Google Scholar 

  20. de Laplace, M., Oeuvres Complétes, Paris: Réédite par Gauthier–Villars, 1886, vol. 7.

  21. Mangano, S., Mathematica Cookbook, Cambridge: O’Reilly Media Inc., 2010.

    Google Scholar 

  22. Nevskii, M., Properties of axial diameters of a simplex, Discrete Comput. Geom., 2011, vol. 46, no. 2, pp. 301–312.

    Article  MathSciNet  MATH  Google Scholar 

  23. Scott, P.R., Lattices and convex sets in space, Quart. J. Math. Oxford (2), 1985, vol. 36, pp. 359–362.

  24. Scott, P.R., Properties of axial diameters, Bull. Austral. Math. Soc., 1989, vol. 39, pp. 329–333.

    Article  MathSciNet  MATH  Google Scholar 

  25. Sommerfeld, A., Eine besonders anschauliche Ableitung des Gaussischen Fehlergesetzes, in Festschrift Ludwig Boltzmann gewidmet zum 60. Geburstage, 20. Februar, 1904, Leipzig: Barth, 1904.

    Google Scholar 

  26. Stanley, R.P., Eulerian partitions of a unit hypercube, in Higher Combinatorics. Proceedings of the NATO Advanced Study Institute, Berlin, West Germany, September 1–10, 1976, Dordrecht-Boston: Reidel, 1977.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Nevskii or A. Yu. Ukhalov.

Additional information

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevskii, M.V., Ukhalov, A.Y. On Optimal Interpolation by Linear Functions on n-Dimensional Cube. Aut. Control Comp. Sci. 52, 828–842 (2018). https://doi.org/10.3103/S0146411618070283

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618070283

Keywords:

Navigation