Skip to main content
Log in

Poisson Flows with Alternating Intensity and Their Application

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Poisson flow of arrivals is considered in a case when flow intensity is an inconstant value. It is supposed that a random environment exists in which the flow operates. The environment is described as alternating Markov chain. The sojourn times in the alternating two states are independent random variables having the exponential distributions with known parameters. The intensity of the flow equals λi, i = 1, 2, if the i-th state of the random environment takes place. The following indices of the flow are considered: the distribution, the expectation and the variance of the number of arrivals on a given interval; the correlation of the numbers of arrivals for two adjacent intervals, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Gnedenko, B.V., Belyaev, Yu.K., and Solovyev, A.D., Mathematical Methods of Reliability, New York: Academic Press, 1969.

    Google Scholar 

  2. Kijima, M., Markov Processes for Stochastic Modeling, Cambridge, UK: Univ. Press, 1997.

    MATH  Google Scholar 

  3. Kitaev, M.Yu. and Rykov, V.V., Controlled Queueing Systems, Boca Raton, NY–London–Tokyo: CRC Press, 1995.

  4. Ross, Sh.M., Applied Probability Models with Optimization Applications, New York: Dover Publ., Inc., 1992.

    MATH  Google Scholar 

  5. Çinlar, E. and Özekici, S., Reliability of complex devices in random environments, Probab. Eng. Inf. Sci., 1987, vol. 1, pp. 97–115.

    MATH  Google Scholar 

  6. Çinlar, E., Shaked, M., and Shanthikumar, J.G., On lifetimes influenced by a common environment, Stochastic Process., 1989, vol. 33, pp. 347–359.

    MathSciNet  MATH  Google Scholar 

  7. Singpurwalla, N.D. and Youngren, M.A., Multivariate distributions induced by dynamic environments, Scand. J. Stat., 1993, vol. 20, pp. 251–261.

    MathSciNet  MATH  Google Scholar 

  8. Singpurwalla, N.D., Survival in dynamic environments, Stat. Sci., 1995, vol. 10, pp. 86–103.

    MATH  Google Scholar 

  9. Özekici, S., Optimal maintenance policies in random environments, Eur. J. Oper. Res., 1995, vol. 82, pp. 283–294.

    MATH  Google Scholar 

  10. Du, Q., A monotonicity result for a single-server queue subject to a Markov-modulated Poisson process, J. Appl. Probab., 1995, vol. 32, pp. 1103–1111.

    MathSciNet  MATH  Google Scholar 

  11. Fischer, W. and Meier-Hellstern, K., The Markov modulated Poisson process cookbook, Perform. Eval., 1992, vol. 18, pp. 149–171.

    MathSciNet  MATH  Google Scholar 

  12. Özekici, S. and Soyer, R., Semi-Markov modulated Poisson process, probabilistic and statistical analysis, Math. Methods Oper. Res., 2006, vol. 64, pp. 125–144.

    MathSciNet  MATH  Google Scholar 

  13. Özekici, S. and Soyer, R., Reliability modeling and analysis under random environments, in Mathematical Reliability: An Expository Perspective, Soyer, R., Mazzuchi, T.A., and Singpurwalla, N.D., Eds., Boston, MA: Kluwer, 2004, pp. 249–273.

    MATH  Google Scholar 

  14. Durand, J.B. and Gaudoin, O., Software reliability modelling and prediction with hidden Markov chains, Stat. Model, 2006, vol. 5, pp. 75–93.

    MathSciNet  MATH  Google Scholar 

  15. Andronov, A.M. and Vishnevsky, V.M., Markov-modulated continuous time finite Markov chain as the model of hybrid wireless communication channels operation, Autom. Control Comput. Sci., 2016, vol. 50, no. 3, pp. 125–132.

    Google Scholar 

  16. Vishnevsky, V.M. and Andronov, A.M., Estimating the throughput of wireless hybrid systems operating in a semi-Markov stochastic environment, Autom. Remote Control, 2017, vol. 78, no. 12, pp. 2154–2165.

    MathSciNet  MATH  Google Scholar 

  17. Dalinger, I., A system of data processing as two-phase queuing system, Proc. 18th International Conference on Reliability and Statistics in Transportation and Communication, Riga, 2018, pp. 259–264.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Andronov or I. M. Dalinger.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDIX

APPENDIX

Lemma. Let X, Y, and Z are independent random variables, Z be a Boolean variable, P{Z = 1} = q; X and Y have the expectation E(X) and E(Y), the variances Var(X) and Var(Y), the densities of distributions \({{h}_{X}}\left( t \right)\) and \({{h}_{Y}}\left( t \right)\) correspondingly. Then random variable \(S = ZX + \left( {1 - Z} \right)Y\) has the variance

$$Var\left( S \right) = qVar\left( X \right) + \left( {1 - q} \right)Var\left( Y \right) + q\left( {1 - q} \right){{\left( {E\left( X \right) - E\left( Y \right)} \right)}^{2}}.$$

Proof. Because Z 2 = Z, E(Z 2) = q, \(E\left( {Z\left( {1 - Z} \right)} \right) = 0\), then

$$Var\left( S \right) = Var\left( {ZX + \left( {1 - Z} \right)Y} \right) = E\left( {{{{\left( {ZX + \left( {1 - Z} \right)Y} \right)}}^{2}}} \right) - {{\left( {E\left( {ZX + \left( {1 - Z} \right)Y} \right)} \right)}^{2}}$$
$$ = ~\,\,E\left( {{{{\left( {ZX} \right)}}^{2}}} \right) + E\left( {{{{\left( {\left( {1 - Z} \right)Y} \right)}}^{2}}} \right) + 2E\left( {ZX\left( {1 - Z} \right)Y} \right) - {{\left( {E\left( {ZX + \left( {1 - Z} \right)Y} \right)} \right)}^{2}}$$
$$\begin{gathered} = qE\left( {{{X}^{2}}} \right) + \left( {1 - q} \right)E\left( {{{Y}^{2}}{{\;}}} \right) - {{\left( {qE\left( X \right) + \left( {1 - q} \right)E\left( Y \right)} \right)}^{2}} \\ = qE\left( {{{X}^{2}}{{\;}}} \right) \mp qE{{\left( {X{{\;}}} \right)}^{2}} + \left( {1 - q} \right)E\left( {{{Y}^{2}}} \right) \mp \left( {1 - q} \right)E{{\left( Y \right)}^{2}} \\ \end{gathered} $$
$$ - \left( {{{{\left( {qE\left( X \right)} \right)}}^{2}} + {{{\left( {\left( {1 - q} \right)E\left( Y \right)} \right)}}^{2}} + 2qE\left( X \right)\left( {1 - q} \right)E\left( Y \right)} \right)$$
$$ = \left( {qE\left( {{{X}^{2}}{{\;}}} \right) - qE{{{\left( {X{{\;}}} \right)}}^{2}}} \right) + \left( {\left( {1 - q} \right)E\left( {{{Y}^{2}}} \right) - \left( {1 - q} \right)E{{{\left( {Y~} \right)}}^{2}}} \right)$$
$$~ + \,\,\left( {qE{{{\left( {X{{\;}}} \right)}}^{2}} - {{{\left( {qE\left( X \right)} \right)}}^{2}}} \right) + \left( {\left( {1 - q} \right)E{{{\left( {Y{{\;}}} \right)}}^{2}} - {{{\left( {\left( {1 - q} \right)E\left( Y \right)} \right)}}^{2}}} \right)$$
$$ - \,\,~2q\left( {1 - q} \right)E\left( X \right)E\left( Y \right) = qVar\left( X \right) + \left( {1 - q} \right)Var\left( Y \right) + q\left( {1 - q} \right){{\left( {E\left( X \right) - E\left( Y \right)} \right)}^{2}}.$$

The Lemma is proved.

Setting Z \(~ = 1,\,~{\text{if}}~\,J\left( t \right) = i,~\) and \(Z = 0,~\) otherwise; \(X = ~N\left( {t,t{\text{*}}} \right)~\) with the condition \(J\left( t \right) = i;~Y = N\left( {t,t{\text{*}}} \right)~\) with the condition \(J\left( t \right) \ne i,\) we have formula (19).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronov, A.M., Dalinger, I.M. Poisson Flows with Alternating Intensity and Their Application. Aut. Control Comp. Sci. 54, 403–411 (2020). https://doi.org/10.3103/S0146411620050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411620050028

Keywords:

Navigation