Skip to main content
Log in

Linear Interpolation on a Euclidean Ball in ℝn

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract—

For \({{x}^{{(0)}}} \in {{\mathbb{R}}^{n}},R > 0\), by \(B = B({{x}^{{(0)}}};R)\) we denote the Euclidean ball in \({{\mathbb{R}}^{n}}\) given by the inequality \(\left\| {x - {{x}^{{(0)}}}} \right\| \leqslant R\), \(\left\| x \right\|: = \mathop {\left( {\sum\nolimits_{i = 1}^n x_{i}^{2}} \right)}\nolimits^{1/2} \). Put \({{B}_{n}}: = B(0,1)\). We mean by \(C(B)\) the space of continuous functions \(f:B \to \mathbb{R}\) with the norm \({{\left\| f \right\|}_{{C(B)}}}: = ma{{x}_{{x \in B}}}\left| {f(x)} \right|\) and by \({{\Pi }_{1}}\left( {{{\mathbb{R}}^{n}}} \right)\) the set of polynomials in \(n\) variables of degree \( \leqslant 1\), i. e., linear functions on \({{\mathbb{R}}^{n}}\). Let \({{x}^{{(1)}}}, \ldots ,{{x}^{{(n + 1)}}}\) be the vertices of \(n\)-dimensional nondegenerate simplex \(S \subset B\). The interpolation projector \(P:C(B) \to {{\Pi }_{1}}({{\mathbb{R}}^{n}})\) corresponding to \(S\) is defined by the equalities \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{\left( j \right)}}}} \right)\) from C(B) into C(B). Let us define \({{\theta }_{n}}(B)\) as minimal value of \({{\left\| P \right\|}_{B}}\) under the condition \({{x}^{{(j)}}} \in B\). In the paper we obtain the formula to compute \({{\left\| P \right\|}_{B}}\) making use of \({{x}^{{(0)}}}\), \(R\), and coefficients of basic Lagrange polynomials of \(S\). In more details we study the case when \(S\) is a regular simplex inscribed into \({{B}_{n}}\). In this situation, we prove that \({{\left\| P \right\|}_{{{{B}_{n}}}}} = \max\{ \psi (a),\psi (a + 1)\} ,\) where \(\psi (t) = \tfrac{{2\sqrt n }}{{n + 1}}{{(t(n + 1 - t))}^{{1/2}}} + \left| {1 - \tfrac{{2t}}{{n + 1}}} \right|\) \((0 \leqslant t \leqslant n + 1)\) and integer \(a\) has the form \(a = \left\lfloor {\tfrac{{n + 1}}{2} - \tfrac{{\sqrt {n + 1} }}{2}} \right\rfloor .\) For this projector, \(\sqrt n \leqslant {{\left\| P \right\|}_{{{{B}_{n}}}}} \leqslant \sqrt {n + 1} \). The equality \({{\left\| P \right\|}_{{{{B}_{n}}}}} = \sqrt {n + 1} \) takes place if and only if \(\sqrt {n + 1} \) is an integer number. We give the precise values of \({{\theta }_{n}}({{B}_{n}})\) for \(1 \leqslant n \leqslant 4\). To supplement theoretical results we present computational data. We also discuss some other questions concerning interpolation on a Euclidean ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Nevskij, M.V., Inequalities for the norms of interpolating projections, Model. Anal. Inf. Sist., 2008, vol. 15, no. 3, pp. 28–37.

    Google Scholar 

  2. Nevskij, M.V., On a certain relation for the minimal norm of an interpolational projection, Model. Anal. Inf. Sist., 2009, vol. 16, no. 1, pp. 24–43.

    Google Scholar 

  3. Nevskii, M.V., On a property of n-dimensional simplices, Math. Notes, 2010, vol. 87, no. 4, pp. 543–555.

    Article  MathSciNet  Google Scholar 

  4. Nevskii, M.V., Geometricheskie otsenki v polinomial’noi interpolyatsii (Geometric Estimates in Polynomial Interpolation), Yaroslavl: Yarosl. Gos. Univ., 2012.

  5. Nevskii, M.V. and Ukhalov, A.Yu., New estimates of numerical values related to a simplex, Autom. Control Comput. Sci., 2017, vol. 51, no. 7, pp. 770–782.

    Article  Google Scholar 

  6. Nevskii, M.V. and Ukhalov, A.Yu., On optimal interpolation by linear functions on an n-dimensional cube, Autom. Control Comput. Sci., 2018, vol. 52, no. 7, pp. 828–842.

    Article  Google Scholar 

  7. Nevskii, M.V., On some problems for a simplex and a ball in ℝn , Model. Anal. Inf. Sist., 2018, vol. 25, no. 6, pp. 680–691.

    Article  MathSciNet  Google Scholar 

  8. Szegő, G., Ortogonal Polynomials, New York: American Mathematical Society, 1959.

    Google Scholar 

  9. Suetin, P.K., Klassicheskie ortogonal’nye mnogochleny (Classical Ortogonal Polynomials), Moscow: Nauka, 1979.

  10. Hall, M., Jr., Combinatorial Theory, Waltham (MA)–Toronto–London: Blaisdall Publishing Company, 1967.

    MATH  Google Scholar 

  11. Hedayat, A. and Wallis, W.D., Hadamard matrices and their applications, Ann. Stat., 1978, vol. 6, no. 6, pp. 1184–1238.

    Article  MathSciNet  Google Scholar 

  12. Horadam, K.J., Hadamard Matrices and Their Applications, Princeton University Press, 2007.

    Book  Google Scholar 

  13. Hudelson, M., Klee, V., and Larman, D., Largest j-simplices in d-cubes: Some relatives of the Hadamard maximum determinant problem, Linear Algebra Appl., 1996, vols. 241–243, pp. 519–598.

    Article  MathSciNet  Google Scholar 

  14. Nevskii, M. and Ukhalov, A., Perfect simplices in ℝ5, Beitrage Algebra Geom., 2018, vol. 59, no. 3, pp. 501–521.

    MathSciNet  MATH  Google Scholar 

  15. Wellin, P., An Elementary Introduction to the Wolfram Language, Wolfram Media, Inc., 2017.

    Google Scholar 

  16. Wolfram, S., Essentials of Programming in Mathematica, Cambridge University Press, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Nevskii or A. Yu. Ukhalov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

Mikhail V. Nevskii, orcid.org/0000-0002-6392-7618, Doctor of Science.

Ukhalov Alexey Yurievich, orcid.org/0000-0001-6551-5118, PhD.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevskii, M.V., Ukhalov, A.Y. Linear Interpolation on a Euclidean Ball in ℝn . Aut. Control Comp. Sci. 54, 601–614 (2020). https://doi.org/10.3103/S0146411620070172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411620070172

Keywords:

Navigation