Skip to main content
Log in

Design and Development of Constrained Next-Generation Controller with and without Event Triggered Mechanism for Single Link Robot Arm

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Automation of the industrial sector is increasing rapidly. Many industrial applications involve robotic manipulators in a networked environment with sensor and an actual plant via a communication channel. Control of the robot manipulator is a challenging task due to its nonlinearity and parameter uncertainty. However, due to the necessity of lesser bandwidth allocation and to eliminate network congestion, this paper focuses on the development of an event-triggered constrained next-generation robustness, tracking, disturbance rejection and, overall aggressiveness (RTDA) controller for a single link robot arm. The constraints on torque input and torque rate are considered and incorporated in the optimization problem using the Lagrange multiplier method. The proposed event-trigger based next-generation controller has simplicity, flexibility in tuning, and closed form solution similar to PID controllers and superior performance like predictive controllers. In addition, the incorporation of event-triggered mechanism has improved the bandwidth utilization. The performance of the proposed RTDA controller with and without event-triggered mechanism is compared with constrained DMC controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Jiang, Y., Yu, D., and Wang, H.X., Multi-model backstepping sliding mode control of robotic manipulators, in The 26th Chinese Control and Decision Conf. (2014 CCDC), Changsha, China, 2014, IEEE, 2014, pp. 524–529. https://doi.org/10.1109/CCDC.2014.6852204

  2. Kim, H. and Parker, J.K., Artificial neural network for identification and tracking control of a flexible joint single-link robot, in 1993 (25th) Southeastern Symp. on System Theory, Tuscaloosa, Ala., 1993, IEEE, 1993, pp. 233–237. https://doi.org/10.1109/SSST.1993.522777

  3. Dixon, W.E., de Queiroz, M.S., Zhang, F., and Dawson, D.M., Tracking control of robot manipulators with bounded torque inputs, Robotica, 1999, vol. 17, no. 2, pp. 121–129. https://doi.org/10.1017/S0263574799001228

    Article  Google Scholar 

  4. Rocco, P., Stability of PID control for industrial robot arms, IEEE Trans. Rob. Autom., 1996, vol. 12, no. 4, pp. 606–614. https://doi.org/10.1109/70.508444

    Article  Google Scholar 

  5. Soylemez, M.T., Gokasan, M., and Bogosyan, O.S., Position control of a single-link robot-arm using a multi-loop PI controller, Proc. 2003 IEEE Conf. on Control Applications, Istanbul, 2003, IEEE, 2003, vol. 2, pp. 1001–1006. https://doi.org/10.1109/CCA.2003.1223147

  6. El-Nagar, A.M., El-Bardini, M., and EL-Rabaie, N.M., Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller, Alexandria Eng. J., 2013, vol. 53, pp. 23–32.  https://doi.org/10.1016/j.aej.2013.11.006

    Article  Google Scholar 

  7. Wu, Ya. and Wu, Yi., A novel predictive control scheme with an enhanced smith predictor for networked control system, Autom. Control Comput. Sci., 2018, vol. 52, pp. 126–134.  https://doi.org/10.3103/S0146411618020098

    Article  Google Scholar 

  8. Fan, T. and de Silva, C.W., Dynamic modelling and model predictive control of flexible-link manipulators, Int. J. Rob. Autom., 2008, vol. 23, no. 4, pp. 227–234.

    Google Scholar 

  9. Dubay, R., Hassan, M., Li, C., and Charest, M., Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator, ISA Trans., 2014, vol. 53, no. 5, pp. 1609–1619.  https://doi.org/10.1016/j.isatra.2014.05.023

    Article  Google Scholar 

  10. Boucetta, R., Generalized predictive control for a flexible single-link manipulator, in Computer Information Systems and Industrial Management. CISIM 2013, Saeed, K., Chaki, R., Cortesi, A., and Wierzchoń, S., Eds., Lecture Notes in Computer Science, vol. 8104, Berlin: Springer, 2013, pp. 499–510.  https://doi.org/10.1007/978-3-642-40925-7_46

    Book  Google Scholar 

  11. Grimm, G., Messina, M.J., Tuna, S.E., and Teel, A.R., Model predictive control: for want of a local control Lyapunov function, all is not lost, IEEE Trans. Autom. Control, 2005, vol. 50, no. 5, pp. 546–558. https://doi.org/10.1109/TAC.2005.847055

    Article  MathSciNet  MATH  Google Scholar 

  12. Copp, D.A. and Hespanha, J.P., Nonlinear output feedback model predictive control with moving horizon estimation, in 53rd IEEE Conf. on Decision and Control, Los Angeles, 2014, IEEE, 2014, pp. 3511–3517. https://doi.org/10.1109/CDC.2014.7039934

  13. Ogunnaike, B.A. and Mukati, K., An alternative structure for next generation regulatory controllers: Part I: Basic theory for design, development and implementation, J. Process Control, 2006, vol. 16, no. 5, pp. 499–509. https://doi.org/10.1016/j.jprocont.2005.08.001

    Article  Google Scholar 

  14. Sendjaja, A.Y., Ng, Z.F., How, S.S., and Kariwala, V., Analysis and tuning of RTD-A controllers, Ind. Eng. Chem. Res., 2011 vol. 50, no. 6, pp. 3415–3425. https://doi.org/10.1021/ie102154y

    Article  Google Scholar 

  15. Srinivasan, K. and Anbarasan, K., Fuzzy scheduled RTDA controller design, ISA Trans., 2013, vol. 52, no. 2, pp. 252–267.https://doi.org/10.1016/j.isatra.2012.11.008

    Article  Google Scholar 

  16. Anbarasan, K. and Srinivasan, K., Design of RTDA controller for industrial process using SOPDT model with minimum or non-minimum zero, ISA Trans., 2015, vol. 57, pp. 231–244.  https://doi.org/10.1016/j.isatra.2015.02.016

    Article  Google Scholar 

  17. Haseena, B.A. and Srinivasan, K., Development of mixed constrained RTDA controller for industrial applications, ISA Trans., 2018, vol. 81, pp. 197–209. https://doi.org/10.1016/j.isatra.2018.07.005

    Article  Google Scholar 

  18. Sreenivas, Y., Yeng, T.W., Rangaiah, G.P., and Lakshminarayanan, S., A comprehensive evaluation of PID, cascade, model-predictive, and RTDA controllers for regulation of hypnosis, Ind. Eng. Chem. Res., 2009, vol. 48, no. 12, pp. 5719–5730.  https://doi.org/10.1021/ie800927u

    Article  Google Scholar 

  19. Roy, A.K. and Srinivasan, K., Development of event-triggered-based minimum variance recursive estimator for the NLNS using multi-model approach, IET Signal Process., 2019, vol. 13, no. 9, pp. 767–777.  https://doi.org/10.1049/iet-spr.2018.5546

    Article  Google Scholar 

  20. Sun, J., Yang, J., Li, S., and Zheng, W.X., Output-based dynamic event-triggered mechanisms for disturbance rejection control of networked nonlinear systems, IEEE Trans. Cybern., 2020, vol. 50, no. 5, pp. 1978–1988.  https://doi.org/10.1109/TCYB.2018.2877413

    Article  Google Scholar 

  21. Berkel, F. and Liu, S., An event-triggered output-based model predictive control strategy, IEEE Trans. Control Network Syst., 2019, vol. 6, no. 2, pp. 822–832.  https://doi.org/10.1109/TCNS.2018.2878506

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, M.K., Park, J.B., and Joo, Y.H., Robust stabilization for uncertain Markovian jump fuzzy systems based on free weighting matrix method, Fuzzy Sets Syst., 2015, vol. 277, pp. 81–96.  https://doi.org/10.1016/j.fss.2015.02.004

    Article  MathSciNet  MATH  Google Scholar 

  23. Hildreth, C., A quadratic programming procedure, Nav. Res. Logistics Q., 1957, vol. 4, no. 1, p. 79–85.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Srinivasan.

Ethics declarations

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haseena, B.A., Srinivasan, K. Design and Development of Constrained Next-Generation Controller with and without Event Triggered Mechanism for Single Link Robot Arm. Aut. Control Comp. Sci. 55, 407–418 (2021). https://doi.org/10.3103/S0146411621050035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411621050035

Keywords:

Navigation