
Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 1

Applying a Systematic Literature Review and Content
Analysis Method to Analyse Open Source Developers’
Forking Motivation Interpretation, Categories and
Consequences

Bee Bee Chua
Faculty of Engineering and Information Technology

University of Technology, Sydney

choiceno1@mailcity.com

Ying Zhang

Faculty of Engineering and Information Technology

University of Technology, Sydney

Abstract

In open source (OS) environments, forking is a powerful social collaborative technique that

creates a social coding community and increases code visibility but it has not been adopted by

OS software (OSS) developers. This paper investigates OS forking divergence using contextual

frameworks (systematic literature review and content analysis) to analyse OSS developer

forking motivation, interpretation, categorisation and consequences. We identified five

theoretical forking patterns: 1) forking can revive original project health; 2) few effective

frameworks exist to describe project-to-project developer migration; 3) there is a literature on

social forking community behaviour; 4) poor guidance is a threat to forking; and 5) most

research uses mixed methods. We introduce guidelines for OSS communities to reduce

organisational barriers to developer motivation and highlight the important of understanding

developer forking. The challenge remains to analyse forking and sustainability from a social

community perspective, particularly how programming language, file repositories and

developer interest can predict forking motivation and behaviour for both novice OSS

developers or experienced developers who want to improve forking performance.

Keywords: Open Source, Forking, Motivation, Sustainability, Systematic Literature Review,

Fork Visibility

1 Introduction

GitHub is a hosting website for developing open source software (OSS) through social coding

by multiple developers. GitHub stores projects, files, programing languages, licenses and

developer profiles. In May 2019, GitHub reported having over 37 million users since its

inception, and more than 100 million repositories (including at least 28 million public

repositories), making it the largest global host of open source (OS) code (Gousios et al., 2014).

GitHub currently has 26 million registered developers from 110,000 organisations and an

additional 20 million developers and users visit GitHub daily without registering (Alexa,

2017). GitHub has long-term viability and remains on the cutting edge of technology,

particularly the forking feature, which many developers adopt and use.

Forking is an important feature in GitHub, allowing developers to make a copy of original

source code, download it into their own environment to learn from or make changes, then

submit adapted code back to the project owners (sometimes referred to as ‘upstream’). When

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 2

a file is forked by developers in GitHub, the developer may indirectly adapt it to enhance the

programming language longevity. Developers may download a programming language not

only because the language file repository is interesting and unique but because it also may

have strong compliance and interoperability with local developmental environments.

However, most OS projects do not receive high forking counts and there is currently no reliable

method of determining whether developer motivation behind projects with the most forked

files is ‘genuine’ or ‘non-genuine’. Genuine motivation would be developers who are willing

to contribute, rewrite source codes and submit them upstream for owners to accept and merge;

non-genuine developers would simply retain the code – adapted or not – for their own

purposes, without submitting it upstream. Moreover, programming language use, adoption

and forking varies, based on the number of projects and file repositories, so the evidence base

on developer forking motivation behaviour is unclear.

A project can have one or multiple programming languages to allow one or more developers

to create single or multiple file repositories. GitHub hosts 339 active programming languages

yet less than one twelfth are sustainable or widely adopted in projects by organisations

(Meyerovich & Rabkin, 2013). However, there are other factors beyond popular use that

influence sustainability of a programming language, including organisational and project

boundaries, the programming languages themselves, and above all, social psychology aspects

such as developer motivation, preference and interest. Flexible coding provides many

software development companies and developers the freedom to submit their source codes on

GitHub and allow other developers to respond and fork the code.

Despite a number of published OS forking studies that highlight critical factors attributed to

successful software forking and forking failure (Glass, 2003; Fung, Aurum & Tang, 2012;

Gamalielesson & Lundell, 2013; Fujita & Ikuine, 2014; Jiang, Lo, He, Xia, Singh & Zhang, 2016;

Azarbakht & Jensen, 2017), there has been no systematic study mapping understanding of

forking motivation, interpretation, categorisation and consequences. This paper therefore

presents a systematic review of studies to compare, contrast, summarise and synthesise

existing studies to inform future decisions about OS forking research by providing an

understanding of why some projects are forked more than others, through the lens of project

and programming language characteristics.

To the best of our knowledge, there are currently few studies that have identified or classified

developer forking motivation to enhance forking visibility, and little knowledge about

potential differences in forking motivation between junior and senior developers across

software engineering, computing science and information systems literature. Therefore,

clarifications are required. There is no framework to categorise forking motivation behaviour

and its effect on forking visibility. A methodological framework would be useful for

researchers to implement sustainable ways to motivate developers to fork more programming

language files.

The objective of this research was therefore to identify types of developer forking motivation

and forking consequences cited in the existing OS literature through a systematic literature

review (SLR) adopted from Biolchini, J et al. (2005) of conference papers and literature in

relevant databases. A SLR uses specific search criteria to identify appropriate papers that are

then read and analysed carefully using content analysis (a qualitative research technique) from

Hsieh and Shannon (2016) to extract themes and words, in this instance, describing forking.

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 3

Each paper is scrutinised to understand research methodology, methods of data collection,

units of analysis and conclusions.

The contributions of this paper include: 1) summarising the existing evidence base on forking

motivation and consequences into a methodological framework; 2) providing a reference

check for those interested in conducting research on understanding developer forking

motivation and consequences influencing the ability of projects and organisations to predict

project survivability and sustainability [survivability as in the duration of a programming

language and sustainability as in measuring a programming language’s continued use by

developers]; 3) filling a gap on forking risk literature to inform future research; and 4)

proposing a strategy to map how forking motivation and programming language influence

forking visibility. We aim to support OSS communities and researchers with theoretical

insights on developer forking motivation, consequences and impacts.

The paper is organised as follows: section 2 discusses the research study motivation and

research questions; section 3 describes the SLR, content analysis methods and the proposed

framework; section 4 presents the findings (forking interpretations and response to the

research questions); then section outlines conclusions and possible future research directions.

2 Research Study Motivation and Research Questions

2.1 Research study motivation

This study was designed primarily to contribute to a theoretical understanding of OS forking

and to potentially identify new influencing factors. It is important to address the current

disparity in the literature around a theoretical understanding of what forking features and

functions can offer in OSS, that is, perspectives on interpreting and defining forking as

software, project, file repository and programming language source code. There is also a need

to understand what influencing factors can cause OS project forking to succeed or fail. Forking

activity has been reported using a variety of measures, including activity growth, developer

interest and licensing (Dabbish, Stuart, Tsay & Herbsleb, 2012; Fung et al., 2012; Robles &

Gonzalez-Barahona, 2012; Jiang et al., 2016) but there are few analyses measuring forking

motivation implicitly or explicitly. Moreover, there is limited evidence to confirm forking

activeness in spin-off projects that may be strongly influenced by project topic, organisation

and license, or developer forking motivation (genuine or non-genuine). Further, a myriad of

programming languages have tried to spur developer interest but not all succeed or sustain

developer forking interest. Lastly, there is little evidence on whether genuine developers are

more positively motivated to fork compared with non-genuine developers; for example,

Murgia et al. (2014) noted that developers feel emotions about OSS artefacts, such as joy, love,

anger, surprise, sadness and fear.

2.2 Research questions

Forking is the creation of a new software repository by copying another repository (Jiang et

al., 2016). Software forking is increasingly adopted by many OSS communities for various

reasons, including social and political. For instance, a relational database management system

project – MYSQL, owned by Sun Microsystems – was forked into another project – , called

Maria DB – due to uncertainty whether Oracle stewardship could maintain MYSQL’s

survivability (Wikipedia, 2001).

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 4

For new OS projects, it is critical to seek developers’ participation and collaboration.

Interestingly, most junior developers prefer to fork new projects more than old projects,

despite less involvement from senior developers, and junior developers seem to prioritise

forking in favour of using new programming languages (Meyerovich & Rabkin, 2013). The

number of terminated projects is also increasing due to low sustainable community

participation and collaboration to fix bugs and improve features (Jiang et al., 2016). It is

therefore important to identify types of developer forking motivational behaviour and risk to

prevent project termination due to low developer interest. Identifying forking motivation may

help communities increase sustainability and build more long-term contributors.

Three research questions (RQs) guided this study.

RQ1: How do researchers interpret forking and categorise developer forking motivational behaviour?

Types of developer motivation to fork OSS were captured to address RQ1, referencing a

definition of ‘motivational behaviour’ as a reason or reasons for acting or behaving in a

particular way (Merriam-Webster Dictionary, 1999). As the topic is closely related to the study

of human behaviour, databases spanning a variety of disciplines – such as humanities and

social science, management science, policy, psychology and sociology – were selected to search

for OSS papers.

RQ2: What were the most popular methodologies used to research forking from 1990 to 2017?

The Open Source Software Initiative (OSI) started in 1990 with support from many of the

world’s largest OSS projects and contributors, including Debian, Drupal Association, FreeBSD

Foundation, Linux Foundation, Mozilla Foundation, Wikimedia Foundation and WordPress

Foundation (Open Source Initiative, 1990). The aim was to uphold the OSI’s mission and Open

Source Definition through the OSI Affiliate Agreement (OSI Affiliate Agreement). While the

evolution of forking started in 1990, it is unclear what forking research papers have been

published over the past nearly three decades. Through RQ2 we therefore aim to provide up-

to-date information on forking throughout the period of OS development.

RQ3: What aspects of OS forking have been researched and reported?

Open source forking is not a new topic but has gained popularity in recent years, with many

researchers and communities interested in investigating forking reliability (Jiang et al., 2016;

Fung et al., 2015). When GitHub launched there was an overwhelming response from

researchers investigating forking technique performance to analyse forking in sustainable

projects by programming language committees or version control files (Ernst, Easterbrook &

Mylopoulos, 2010). Unfortunately, research findings remain unclear, particularly a lack of data

to understand possible impacts and consequences of negative forking. Therefore RQ3 sought

to find barriers to forking to better guide further research.

3 Methodology: Systematic Literature Review and Content
Analysis Method

The SLR method was employed to examine and review developers’ motivational forking

behaviour in OS literature as the topic has been published across multiple disciplines for a

number of years. SLR was chosen to provide a rigorous and vigorous literature review, as the

method can synthesise controversial views and dilemmas when discussing different

perspectives on the same topic. SLR is one of the most reliable methods for conducting a

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 5

software engineering literature review and is widely used in computer science, software

engineering, social science and information systems research (Biolchini, Mian, Natali &

Travassos, 2005; Okoli & Schabram, 2010; Salazar, Lacerda, Nunes & von Gresse, 2013).

Software engineering researchers (Kitchenham, 2004; Kitchenham & Charters, 2007;

Kitchenham & Brereton, 2013) even proclaimed that SLR is a form of evidence-based software

engineering that can address many engineering questions posed by researchers. Here we

outline the process for conducting a SLR by specifying research questions, describing the

search and retrieval process, collecting evidence, synthesising the evidence and providing

results.

Applying SLR guidelines provided discrete steps to locate and review appropriate documents

describing OS forking motivation. As the content of each paper was comprehensive the

content analysis method (CAM) was then applied to analyse and interpret articles (Figure 1),

as it is a flexible method for analysing text data, with approaches ranging from impressionistic,

intuitive and interpretive to systematic and strict textual analyses (Cavanagh, 1997;

Rosengren, 1981). Highly cited content analysis researchers Hsieh and Shannon (2016) defined

three approaches: 1) a conventional analysis where coding categories are derived directly from

the text data; 2) a directed approach where user analysis begins with a theory or relevant

research findings as guidance for initial codes; and 3) summative content analysis that involves

counting and comparing keywords or content followed by interpreting the underlying

context.

Here we adopted a summative content analysis of the SLR articles to identify and count

common themes and words used to describe forking motivation and sustainability (Figure 1).

Figure 1. Combined approaches: systematic literature review and content analysis methods

3.1 Systematic literature review search criteria

To ensure the literature search was specific and to identify the most relevant, high-quality

articles, the inclusion criteria were:

1. Peer-reviewed conference or journal papers, published and indexed either in

Google Scholar, ACM, IEEE, Science Direct, Springer or MISQ; AND

2. Written in English; AND

3. Titles or content included phrases “open source forking motivation”, “open source

software forking”, “open source project forking”, “open source social forking”,

Systematic Literature Review

Method

Search Strategy

Papers retrieved from databases

Content Analysis Method

Word Frequency (Title, Abstract and

Introduction)

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 6

“open source code forking”, “open source language forking” OR “file repository

forking”; AND

4. Published from 1990 to 2017; AND

5. Published from top quality Information Systems Conferences or Journals; AND

6. Described the research methodology used – systematic study, stratified sampling,

case study, survey, interview, experiment, quasi-experiment or other study types –

to collect, analyse and interpret results to address research questions in the paper.

This criterion was necessary to determine common and similar research

methodologies used by OSS researchers to inform the methods and reduce bias of

method selection to study forking patterns, frequency, etc.

When searching for quality papers, exclusion criteria were articled that:

1. Were too short (e.g., less than five pages), general, based on a different perspective

or did not include empirical evidence to demonstrate the authors’ claim; OR

2. Did not identify positive and/or negative impacts or consequences of motivating

factors, and did not discuss challenges or barriers, as the objective was to

understand developer forking motivation.

3.2 Search strategy

Two approaches were applied to conduct the SLR search (Figure 2). The first search was

conducted on 1 October 2017 on Google Scholar for the term “open source forking behaviour”,

resulting in 21,200 URLs. Results were then sorted by relevance and filtered for papers

published from 1996 to 2017, resulting in 9,530 URLs. These papers were both peer-reviewed

and non-peer-reviewed, spanning a variety of disciplines, from economics, management and

software engineering through sociology (Biolchini et al., 2005; Okoli & Schabram, 2010; Salazar

et al.; 2013). As each Google Scholar results page lists 10 URLs linking to peer-reviewed articles

cited in databases, the first five pages were reviewed by clicking each link to each URL, and

the summary or abstract and introduction were read to confirm relevancy and suitability. In

total, 13 papers were identified in ACM, IEEE, Science Direct and or MISQ databases plus 8

other relevant papers in other databases (Table 1).

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 7

Figure 2. The systematic literature review search strategy for research papers

Database Number Authors

Google

Scholar
8

Biazzini & Baudry (2014); Moen (1999); Ernst et al. (2010); Ikuine & Fujita

(2014); Fujita & Ikuine (2014); Fung et al. (2012); Gamalielesson & Lundell

(2013); Nyman, Mikkonen, Lindman & Fougère (2012)

ACM 6
Glass (2003); Neville-Neil (2011); Dabbish, et al. (2012); Ray & Kim (2012);

Nyman (2014); Ray, Posnett, Filkov & Devanbu (2014)

IEEE 2 Chua (2015); Cosentino, Javier, Izquierdo & Cabot (2017)

MISQ 1 Krogh, Haefliger, Spaeth & Wallin (2012)

Springer 4
Robles & Gonzalez-Barahona (2012); Azarbakht & Jensen (2017); Jiang et al.

(2016); Nyman & Mikkonen (2011)

Table 1. The systematic literature review identified 21 relevant and suitable papers

3.3 Methodological framework

Of the 21 papers, five focused on forking sustainability, three on forking challenges and 17 on

lessons learnt. Forking motivation, sustainability and lessons learnt were synthesised into a

methodological framework with three steps to address the research questions via retrieval,

categorisation and reporting (Table 2). 1) Identify variables used to define motivation and its

interpretation from both broad and specific perspectives by applying the three RQs via the

SLR to select and review papers. 2) Categorise forking interpretations into three categories (OS

forking motivation, sustainability and lessons learnt) by applying the CAM using the same

theme or word. 3) Group similar keywords and papers that describe the three categories of

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 8

forking motivation, sustainability and lessons learnt. Conclusions were then drawn from these

findings regarding forking challenges and lessons to be learnt.

Purpose Process Outcome

1. Identify variables that describe forking

motivation and its interpretation

Apply SLR to select relevant

papers from selective

databases

Retrieve relevant papers on

forking motivation

2. Categorise forking into motivation,

sustainability and lessons learnt

Apply CAM and classify

common themes or words

Categorise forking

motivation into three classes

3. Group similar keywords to describe OS

developer forking motivation,

sustainability and forking lessons learnt

Analyse word count

frequency (title , abstract and

introduction)

Report forking motivation

factors

Table 2. A forking motivation methodological framework

3.4 Content analysis method

Each of the 21 papers identified was scrutinised for context using content analysis. Papers were

first scanned to confirm the word ‘fork*’ was mentioned and the research evidence was

empirical, then themes and key words were extracted. Next, each title was checked, abstract

read, and adjectives that described ‘fork*’ quantified (Table 3). For example, when reviewing

the papers “Code Forking in Open-Source Software: A Requirements Perspective” (Ernst et

al., 2010) and “Perspective on Code Forking and Sustainability in Open Source Software”

(Nyman et al., 2012) the word ‘code’ occurred twice so ‘2’ was entered under ‘code’ forking

type identified by the Google Scholar search in Table 2. Occurrences of forking motivation

(n=10), forking sustainability (n=4), consequences (n=2), impacts (n=2) and threats (n=1) were

also noted. Paper content was then analysed, noting research method, unit of analysis and

results, then the introduction and conclusion were reviewed in more detail.

Forking type

Paper identified via

TOTAL
ACM IEEE Springer MISQ

Google

Scholar

Open source 1 1

Project 4 1 1 1 7

Software 1 2 3

Social 2 1 2 5

Code 1 2 3

Language 1 1

File repository 1 1

TOTAL 6 2 4 1 8 21

Table 3 Forking interpretation types

Next, papers were grouped into four categories to address RQ1:

1. Developer forking interpretations: 7 interpretations of forking (Table 2).

2. Developer motivation and reasons: a subset of papers reported similar variables (Table

3). For instance, Krogh et al. (2012), Fung et al. (2012), Glass (2013) and Jiang et al.

(2016) reported divergent specialisation, objective misalignment, poor governance

and leadership and culture.

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 9

3. Forking sustainability: four groups of researchers (Ernst et al., 2010; Nyman et al.,

2012; Gamalielesson et al 2013; Jiang et al., 2016) undertook real-world projects,

comparing original versus forked projects (Table 3). Successful and sustainable

projects included community-level projects, such as MariaDB forked by MYSQL,

the software level of MS Word and LibreOffice and ecosystem levels of LibreOffice

forked from OpenOffice.

4. Forking lessons learnt on project compatibility issues: 19 papers cited forking lessons

and seven described more than one type of forking reason, including no guidance

or direction, copyright, licensing conflict, project ownership or dividing the forking

community (Moen, 1999; Glass, 2003; Neville-Neil, 2011; Ikuine & Fujita, 2014;

Fujita & Ikuine, 2014; Cosentino et al., 2017; Azarbakht & Jensen, 2017). Neville

(2011) pointed out that technical developers’ roles are becoming specialised.

4 Forking Motivation Interpretations

Although a number of motivating factors identified in previous OS studies are applicable in

the forking context, a number of diverse forking motivation factors were detected in this

literature review, including project revival and alignment, culture traits, divergent

specialisation, individual ownership, license and software compliance, community

disintegration, community practice and extending community social coding development.

Therefore prior to investigating forking motivation factors, an additional research question

was posed.

4.1 How do researchers interpret developer forking and categorise forking
motivational behaviour?

These findings reveal a diversity of forking interpretations (Table 3), with project forking most

common (7 papers), and OS, programming language and file repository the least (1 each).

However fork type was interpreted differently by different researchers, due to the metadata

of the dataset they downloaded from the hosting server. For example, GitHub was the only

hosting server to categorise file repository forking. To further understand the forking

interpretation each paper, the categories were defined in more detail (paper classifications

shown in Table 4).

4.1.1 Open source forking

The early 1990s saw a proliferation of research on OS motivation. Krogh and colleagues (2012)

reviewed seven years of publications and identified 40 papers that focused on OS developer

motivation, including Hars (2002), Stewart & Gosain (2006), Hertel et al. (2003), Lerner & Tirole

(2002) and Shah (2006). They synthesised findings across these papers into three classes of

motivation: intrinsic, internalised intrinsic and extrinsic. Intrinsic motivation included

ideology, altruism, kinship and fun, and can drive developers to fork software. Internalised

intrinsic motivation included reputation, reciprocity, learning and own-use. Extrinsic

motivation may include being paid for the work or finding a career in coding. Hippel & Krogh

(2003) and Goode (2005; 2014) studied organisational information sharing in adopters and

non-adopters of OSS and innovation models as influencing factors on motivation. They found

more reputable organisations and innovative projects are more likely to attract OSS developer

attention to download or copy repository files.

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 10

4.1.2 Project forking

Nyman and Mikkonen (2011) defined that a project fork takes place when software developers

copy source code from one software package and use it to begin an independent development

work. In general, forking results in an independent version of the system that is maintained

separately from its origin. Nyman and Mikkonen (2011) looked at forking behaviour in the

context of forked project survivability, quantifying project forking as the number of original

projects forked by developers and comparing the number of original projects versus forked

projects in GitHub. Many researchers seek to understand how forking impacts an original

forked project and Nyman and Mikkonen provided real-life examples of current high profile

OS projects that either started from a fork or were common targets for forking.

4.1.3 Software forking

Ikuine and Fujita (2014) referred to software forking as the continuous development of

software, by the original developer or others. When other developers take over, the original

developer must share the source code. Software forking focuses on the product itself, such as

Microsoft software, Facebook software and email applications.

4.1.4 Social forking

Fung, Aurum and Tang (2012) defined social forking in their study of nine JavaScript

development communities in GitHub, with the highest amount of forks to identify the

relationships within them and study how forks are used to facilitate OSS development. In their

analysis, almost 7,000 developers made approximately 8,000 forks in different communities,

with the most active developers making contributions to multiple communities. Their research

indicated that forks are actively used by the development community to fix defects and to

experiment with new features. What separates these forks from normal branching is that the

changes do not necessarily need to be promoted to the original project upstream and can live

in a separate fork that can still take any changes and improvements from the original project

as updates. What separates a fork from a branch even more is that a fork can originate from

either a subset of the forked predecessor’s artefacts or from multiple predecessors’ artefacts.

A branch in turn is a copy of all the predecessor’s artefacts (Fung et al., 2012).

4.1.5 Code forking

Code forking is defined as a forked project copied from existing code base and moved in a

direction different from the project leadership. Forking the code base allows developers to

leverage existing functionality while also addressing new requirements. Although flexible,

forking has inherent difficulties, such as maintenance, evolution, and social factors concerning

the development community. A broad definition of a code fork is when the code from an

existing program serves as a fork (Nyman et al., 2014); it is the basis for a new version of the

program, more specifically, a version that seeks to continue to exist apart from the original.

4.1.6 Programming language forking

Chua (2015) examined language forking from the perspective of programming language

adoption by project owners, finding three projects where Apache, Mozilla and Ubuntu

Javascript languages were actively forked by developers. Chua and Zhang (2019) then

proposed three forking pattern types (‘once-only’, intermittent or steady) and potential

reasons behind short-lived programming languages.

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 11

4.1.7 File repository forking

A file repository fork is mainly used to make contributions to original repositories and is

beneficial for the OSS community (Jiang et al., 2016). Actions such as submitting pull requests,

fixing bugs, adding new features and keeping copies are motivations for developers to fork

repositories. A repository written in a developer’s preferred programming language is more

likely to be forked and developers mostly fork repositories from creators. Attractive repository

owners include organisations, as they have more followers.

Type Interpretation Studies
Citing authors

within paper set

Forking motivation

Coding for

revising

requirements

Requirement change Ernst et al. (2010) Ernst et al. (2010)

cited by Fung et

al. (2012); Jiang et

al. (2016)

Seeking a coding

job

Recruitment of

contributors

Biazzini & Baudry (2014) Nil

Licensing

compliance

Licensing compliance Biazzini & Baudry (2014); Dabbish et al.

(2012); Jiang, et al. (2016)

Nil

Software

compliance

Software

interoperability

Krogh et al. (2012); Meyerovich, & Rabkin

(2013); Nyman (2014); Tegawendé,

Bissyandé, Thung, Lo, Jiang & Réveillère

(2013)

Nil

Reviving original

project

development

duration

Cessation of original

project

Nyman (2014); Robles & Gonzalez-

Barahona (2012); Ray & Kim (2012);

Tegawendé et al. (2013); Chua (2015)

Nyman (2014)

cited by Jiang et

al. (2016)

Extending

community social

coding

development

More community

driven development

Dabbish et al. (2012) Ray et al. (2014)

cited by Jiang et

al. (2016)

Ownership

implication

Legal implication on

ownership and

conflict over brand

ownership

Fung, Aurum & Tang et al. (2012); Nyman

(2014); Nyman & Mikkonen (2011); Ray &

Kim (2012)

Business strategy

risk

Commercial strategy

forks

Dabbish et al. (2012)

Team coding skill

inequality

Differences among

developer team

Nyman (2014)

Community

socialisation

Building new

community through

social interaction,

sharing and

collaboration

Dabbish et al. (2012); Fung et al. (2012);

Robles, & Gonzalez-Barahona (2012)

Coding by

socialising

Social network

coding

Jiang et al. (2016); Fung et al. (2012)

Divergent

specialisation

New specialisation,

divergent technical

views

Nyman (2014); Nyman & Mikkonen (2011);

Ray & Kim (2012)

Nil

Objective

misalignment

Different technical

objectives

Poor leadership Poor project

governance

Nyman (2014); Nyman & Mikkonen (2011);

Robles & Gonzalez-Barahona (2012)

Culture trait Cultural differences

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 12

Type Interpretation Studies
Citing authors

within paper set

Software activity Project specialty to

generate commits

Ray & Kim (2012); Tegawendé et al. (2013)

Ecosystem System between

system sharing

resources and

infrastructure

Forking sustainability

Community

activity

Communities

retention

Ernst, et al. (2010); Gamalielesson &

Lundell (2013). Jiang et al. (2016); Nyman

et al. (2012); Azarbakht & Jensen (2017);

Cosentino et al. (2017)

Ray et al. (2014)

cited by Jiang et

al. (2016);

Gamalielesson &

Lundell (2013)

Forking lessons learnt

No formal

process

No guidance/

direction

Ikuine & Fujita (2014); Fujita & Ikuine

(2014); Azarbakht & Jensen (2017)

Nil

Legal implication Copyright Glass (2003); Azarbakht & Jensen (2017)

Licensing conflict Moen (1999); Azarbakht & Jensen (2017)

Transfership Project ownership Ikuine & Fujita (2014); Fujita & Ikuine

(2014); Cosentino et al. (2017); Azarbakht &

Jensen (2017)

Product expertise

shortage

Technical developers

become product

expert

Neville-Neil (2011)

Upgrade of

developer role to

product role

Role movement Glass (2003); Ikuine & Fujita (2014);

Cosentino et al. (2017)

Glass (2003) cited

by Fung et al.

(2012)

Community

divide

Divide community

fork

Azarbakht & Jensen (2017); Cosentino et al.

(2017)

Nil

Table 4. Fork categorisation, sustainability and lessons learnt

4.2 What were the most popular methodologies used by forking researchers
from 1990 to 2017?

Figure 4 presents data relating to methodologies across the 21 papers after they were carefully

reviewed for study type, research methodology and data collection methods and type.

Thirteen of the 21 papers were qualitative with data collection methods including stratified

sampling (n=8), systematic study (n=5), qualitative interview (n=2), qualitative case study

(n=2), survey and interview (n=1), stratified sampling and survey (n=2) and qualitative

interview and survey (n=1).

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 13

Figure 3. Data collection methods in the 21 papers

4.3 What aspects of OS forking have been researched and reported?

Figure 4 shows the units of analysis used in the 21 papers. In seven papers this was a

comparison between non-forking and forking projects. Of the remaining 14 papers, six papers

focused on the forking relationship on software releases, version control files and file

repository and eight focused on OS project interactions with components, such as popular

programming languages, the product and the successful system, and analysing forking

behaviour between the manager, developer, and end user (GitHub versus non-GitHub).

Figure 4. Units of analysis in the 21 papers

0 2 4 6 8 10

Stratified sampling

Systematic study

Qualitative interview

Qualitative case study

Stratified sampling and survey

Survey and interview

Qualitative interview and survey

Single Method Mixed Method

0 2 4 6 8

Project

Software releases

File respository

Version control

Product

System

Programming language

Manager

Developer

GitHub end users

Non-GitHub end user

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 14

Figure 5 shows eight types of forking lessons learnt on project compatibility issues that were

identified in the 21 papers. In order of decreasing frequency of reporting, these were: no project

ownership (n=4), no project guidance and the developer role becoming specialised (n=3);

copyright, licensing and the software less likely to become proprietary, and a split community

(all n=2 each). There was also one paper on losing developers as technical developers become

product experts.

Figure 5. Forking lessons learnt across the 21 papers

5 Conclusions and Future Work

Forking is one of the most critical technique in OS research today. Our analysis of 21 papers

can help the OS community – educators, academicians, developers, project investors – to

improve awareness of forking as a sustainable way to revive project health. The categories of

forking lessons learnt highlight that forking consequences are likely to continue and remain a

survival challenge to OSS developers. For example, if forking life span becomes short-lived

developers could close the project or terminate the file repository.

To the best of our knowledge, there is no research discussing how a lack of sustainable

programming languages could reduce forking sustainability and viability. Programming

language attractiveness drives and motivates developer desire to fork, helping to maintain

forking health and activity. The usefulness of a programming language is the likelihood a fork

can be generated effectively by developers. We strongly believe it is important to investigate

how competitive programming languages can impact forking sustainability and to seek ways

to prevent low forking performance, if necessary.

This paper provides a quick reference for OSS researchers to understand categories of

developer forking motivation, introduce guidelines for OSS communities on ways to reduce

organisational barriers to developer motivation, and, most importantly, highlight that new or

existing project sponsors should focus on understanding developer forking motivation, to

positively influence achieving a healthy source code.

This study also identifies some challenging areas for future work.

0 2 4 6

Project ownership

No guidance

Role becomes very specalised

Copyright

Licensing

Never make the software become proprietary

Community divide

Technical developers become a product expert

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 15

1. Append new findings into the body of knowledge on OS forking behaviour.

Applying the combined approaches of SLR and CAM revealed seven forking types

interpreted by academic researchers and the latest interpretation found is file

language repository fork. This novel insight will assist researchers on how forking

is presented and interpreted and industry practitioners in reviewing project

forking health, especially projects with programing language file repositories that

are less adopted or forked by developers.

2. Understanding forking consequences. Case studies are an important way to

highlight lessons learnt by researchers. This paper identified forking impacts and

consequences, with one of the worst impacts being a political strategy that divides

a project community and forms a new community. Forming a new community

results in less contributions by developers to the original file repository, bug fixes

or feature enhancement. Allowing accumulated bugs and feature enhancements to

remain unfixed for a period of time can affect project health risk.

3. More research is required on forking sustainability. Reviewing these 21 papers

revealed the importance of forking sustainability investigation as a top priority

with two specific areas of interest.

A. Analysing forking from a social community perspective. For instance, Azarbakht

& Jensen (2017) adopted a developer-oriented statistical approach to

determine what causes people in complex software development networks

to decide to fork (break away), and what changes a community goes

through when deciding to divide Different or conflicting goals,

communication styles, or values can positively or negatively influence

community interactions.

B. Understanding the relationship between programming languages, repositories and

developer forking interest to more accurately predict OSS forking motivation

and behaviour.

4. Studying forking sustainability using a SLR for software development with

GitHub. Valentio, Javier, Izquierdo and Cabot (2017) used a SLR to show that

forking is a good indicator of project longevity and the chance of forking is highly

dependent on the project, where developers provide additional contact

information (e.g., emails, personal website URLs that are clearly active or aligned

with popular project owners) to increase social connections between a project

owner and forker, and increase developer community size for medium-size

projects and projects that are written in a forker’s preferred programming

language. Future work could include developing a prediction model for fork

effectiveness from forking motivation classifications in response to language

repository files, where programming language survival time is critical to an OS

projects’ health and survivability.

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 16

References

Alexa, (2017). https://www.alexa.com/siteinfo. (Accessed on 1 October 2017)

Azarbakht, A.E., & Jensen, C. (2017). Longitudinal analysis of the run-up to a decision to break-

up (fork) in a community. Proceedings of the IFIP International Conference on Open Source

Systems. OSS 2017, Springer.

Biazzini, M., & Baudry, B. (2014). “May the fork be with you”: novel metrics to analyze

collaboration on GitHub. Proceedings of the 5th International Workshop on Emerging Trends

in Software Metrics, June 2014, Hyderabad, India.

Biolchini, J., Mian, P. G., Natali, A. C., & Travassos, G. H. (2005). Systematic Review in Software

Engineering. Technical Report RT-ES 679/05, COPPE/UFRJ, Rio de Janeiro, Brazil.

Cavanagh, S. (1997). Content analysis: concepts, methods and applications. Nurse Researcher

4(3), 5–16.

Chua, B. (2015). Detecting sustainable programming languages through forking on open

source projects for survivability. Proceedings of the IEEE International Symposium on

Software Reliability Engineering (ISSRE) 2015 in conjunction with a WOSAR workshop, IEEE,

Gaithersburg, USA. 120–124.

Chua, B. (2017). A survey paper on open source forking motivation reasons and challenges.

Proceedings of the Pacific Asia Conference of Information Systems (PACIS), July Malaysia,

Langakawi

Chua, B and Zhang Y. (2019). Predicting open source repository by programming language

survivability from forking data. The 15th International Symposium on Open Collaboration

(Opensym), August 20–22, 2019, Skövde, Sweden. Association for Computing Machinery

(ACM).

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012). Social coding in GitHub: transparency

and collaboration in an open software repository. Proceedings of the ACM 2012 Conference

on Computer Supported Cooperative Work

Ernst, N. A., Easterbrook, M. A., & Mylopoulos, J. (2010). Code forking in open-source

software: a requirements perspective. CoRR, abs/1004.2889.

Fujita, H., & Ikuine, F. (2014). Open source, a phenomenon of generation changes in software

development: the case of Denshin 8 Go. Annals of Business Administrative Science, 13(1),

1–15.

Fung, K. H., Aurum, A., & Tang, D. (2012). Social forking in open source software: an empirical

study. CAiSE Forum, 50–57.

Gamalielesson, J., & Lundell, B. (2013). Sustainability of open source software communities

beyond a fork: how and why has the LibreOffice project evolved? Journal of Systems &

Software, 89, 128–145.

Glass, R. L. (2003). A sociopolitical look at open source. Communications of the ACM 46(11), 21–

23.

Goode, S. (2005). Something for nothing: management rejection of open source software in

Australia’s top firms. Information & Management, 42(5), 669–681.

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 17

Goode, S. (2014). Exploring organizational information sharing in adopters and non-adopters

of open source software: Evidence from six case studies. Knowledge and Process

Management, 21(1), 78–89.

Gousios, Georgios; Vasilescu, Bogdan; Serebrenik, Alexander; Zaidman, Andy. (2014) Lean

GHTorrent: GitHub Data on Demand. The Netherlands: Delft University of Technology &

Eindhoven University of Technology.

Hars, S. O. (2002). Working for free? Motivations for participating in open-source projects.

International Journal of Electronic Commerce, 6(3), 25–39.

Hippel, E. V., & Krogh, G. V. (2003). Open source software and the “private-collective”

innovation model: Issues for organization science. Organizational Science, 14(2), 209–223

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in open

source projects: An internet-based survey of contributors to the Linux Kernel. Research

Policy, 32(7), 1159–1177.

Hsiu-Fang H., & Shannon, S. E. (2016). Three approaches to qualitative content analysis.

Journal of Qualitative Health Research, 15(9), 1277–1288.

Ikuine, F., & Fujita, H. (2014). How to avoid fork: the guardians of Denshin 8 Go, Japan. Annals

of Business Administrative Science, 13, 283–298.

Jiang, J., Lo, D., He, J. J., Xia, X, Singh P. K., & Zhang, L. (2016). Why and how developers fork

what from whom in GitHub. Journal of Empirical Software Engineering, 100(21), 1–32.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews, Technical Report. TR/SE-

0401, Department of Computer Science, Keele University, Keele, UK.

Kitchenham, B., & Brereton, P. (2013). A systematic review of systematic review process

research in software engineering. Information & Software Technology, 55(12), 2049–2075.

Kitchenham, B., & Charters, S. (2007). Guidelines for Performing Systematic Literature Reviews in

Software Engineering, Joint Report EBSE 2007-001, Keele University and Durham

University.

Krogh, V. G., Haefliger, S., Spaeth, S., & Wallin, M. W. (2012). Carrots and rainbows:

motivation and social practice in open source software development. MIS Quarterly,

36(2), 649–676.

Lerner, J., & Tirole, J. (2002). Some simple economics of open source. Journal of Industrial

Economics, 50(2), 197–234.

MariaDB. In Wikipedia. https://en.wikipedia.org/wiki/MariaDB. Retrieved 17 February 2017.

Meyerovich, L. A., & Rabkin, A.S. (2013). Empirical analysis of programming language

adoption. Proceedings of the 2013 ACM SIGPLAN International Conference on Object

Oriented Programming Systems Languages & Applications, October 29–31, 2013.

Indianapolis, Indiana, USA.

Moen, R. (1999). Fear of Forking. http://linuxmafia.com/faq/Licensing_and_Law/forking.

html. Retrieved 22 November 2016.

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 18

Murgia, A., Tourani P., Adams, B., & Ortu, M. (2014). Do developers feel emotions? An

exploratory analysis of emotions in software artifacts. Proceedings of the 11th Working

Conference on Mining Software Repositories, 262271.

Neville-Neil, G. V. (2011). Kode vicious: think before you fork. Communication of the ACM (54),

34–35. doi: 10.1145/ 1953122.1953137

Nyman, L. (2014). Hackers on forking. Proceedings of the International Symposium on Open

Collaboration, ACM, New York, NY, USA, ISBN: 978-1-4503 30169. 4–12.

Nyman, L., & Mikkonen, T. (2011). To fork or not to fork: fork motivations in SourceForge

projects. International Journal of Open Source Software & Processes, 3(3), 1–9.

Nyman, L., Mikkonen, T., Lindman, J., & Fougère, M. (2012). Perspective on code forking and

sustainability in open source software. Proceedings of the IFIP International Conference on

Open Source Systems, Open Source Systems: Long-Term Sustainability, 274–279.

Okoli, C., & Schabram, K. (2010). A guide to conducting a systematic literature review of

information systems research. Available at SSRN: dx.doi.org/10.2139/ssrn.1954824

Open Source Initiative. (1990). https://opensource.org/node/755. Retrieved 25 November 2016.

Open Source Initiative Affiliate Agreement. (1998) www.opensource.org. Retrieved 25 November

2016.

Ray, B., & Kim, M. (2012). A case study of cross-system porting in forked project. Proceedings

of the 20th ACM SIGSOFT International Symposium on the Foundation of Software

Engineering. November 2012.

Ray, B., Posnett, D., Filkov, V., & Devanbu, P. (2014). A large scale study of programming

languages and code quality in GitHub. Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, November 16–21 2014.

Hong Kong, China.

Ray, B., Wiley, C., & Kim, M. (2012). Repertoire: a cross-system porting analysis tool for forked

software project. Proceedings of the 20th ACM SIGSOFT International Symposium on the

Foundation of Software Engineering, November 2012.

Robles, G., & Gonzalez-Barahona, M. (2012). A comprehensive study of software forks: dates,

reasons and outcomes. Open source systems: long-term sustainability. IFIP Advances in

Information & Communication Technology, 378(1), 1–14.

Rosengren, K. E. (1981). Advances in Scandinavia content analysis: an introduction. In

Advances in Content Analysis, K. E. Rosengren (ed.), Beverly Hills, CA: Sage, 9–19.

Salazar, L. H. A., Lacerda, T., Nunes, J. V., & von Gresse, C. (2013). Systematic literature review

on usability heuristics for mobile phones. International Journal of Mobile Human Computer

Interaction, 5(2), 12–22.

Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in open source

software development. Management Science, 52(7), 1000–1014.

Stewart, K. J., & Gosain, S. (2006). The impact of ideology on effectiveness in open source

software development teams. MIS Quarterly, 30(2), 291-314

Australasian Journal of Information Systems Chua & Zhang
2020, Vol 24, Research Article Open Source Developers & Forking

 19

Tegawendé, F., Bissyandé, T., Thung, F., Lo, D., Jiang, L.X., & Réveillère, L. (2013). Popularity,

interoperability, and impact of programming languages in 100,000 open source projects.

Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual

Conference 23-26 July, Kyoto, Japan

Valentio. C, Javier, L. Izquierdo, C. Cabot, J. (2017). A systematic mapping study of software

development with GitHub. Access IEEE, 5(1), 7173–7192.

Copyright: © 2020 Chua & Zhang. This is an open-access article distributed under the terms

of the Creative Commons Attribution-NonCommercial 3.0 Australia License, which permits

non-commercial use, distribution, and reproduction in any medium, provided the original

author and AJIS are credited.

doi: https://doi.org/10.3127/ajis.v24i0.1714

http://creativecommons.org/licenses/by-nc/3.0/au/

