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Designing Visual Analytics Methods for Massive
Collections of Movement Data

Natalia Andrienko and Gennady Andrienko
Fraunhofer Institute IAIS / Schloss Birlinghoven / Germany

Abstract

Exploration and analysis of large data sets cannot be carried out using purely visual means but require the involvement of
database technologies, computerized data processing, and computational analysis methods. An appropriate combination
of these technologies and methods with visualization may facilitate synergetic work of computer and human whereby the
unique capabilities of each ‘‘partner’’ can be utilized. We suggest a systematic approach to defining what methods and
techniques, and what ways of linking them, can appropriately support such a work. The main idea is that software tools
prepare and visualize the data so that the human analyst can detect various types of patterns by looking at the visual
displays. To facilitate the detection of patterns, we must understand what types of patterns may exist in the data (or, more
exactly, in the underlying phenomenon). This study focuses on data describing movements of multiple discrete entities
that change their positions in space while preserving their integrity and identity. We define the possible types of patterns
in such movement data on the basis of an abstract model of the data as a mathematical function that maps entities and
times onto spatial positions. Then, we look for data transformations, computations, and visualization techniques that can
facilitate the detection of these types of patterns and are suitable for very large data sets – possibly too large fora
computer’s memory. Under such constraints, visualization is applied to data that have previously been aggregated and
generalized by means of database operations and/or computational techniques.

Keywords: geovisualization, visual analytics, aggregation, data mining, movement data

Résumé

L’exploration et l’analyse de larges ensembles de données ne peuvent pas s’effectuer seulement avec des moyens visuels.
Elles nécessitent l’emploi de technologies sur les bases de données, le traitement informatisé des données et le recours à
des méthodes d’analyse informatique. Ces technologies et ces méthodes, associées à la visualisation, facilitent le travail
synergique de l’ordinateur et de l’humain, qui repose sur les capacités uniques de chaque « partenaire ». Nous suggérons
une démarche systématique pour déterminer les méthodes et les techniques appropriées, et établir un lien entre elles, afin
de faciliter ce travail. Les outils informatiques devraient servir à préparer et à visualiser les données de manière à ce que
l’analyste humain puisse détecter des types de séquences en les examinant. Pour faciliter cette détection, il faut
comprendre quels types de séquences se trouvent dans les données (ou, plus précisément, dans les phénomènes sous-
jacents). L’étude porte sur des données décrivant les mouvements de multiples entités discrètes qui changent de position
dans l’espace tout en préservant leur intégrité et leur identité. Nous déterminons les types de séquences possibles dans ces
données, en nous basant sur un modèle abstrait de fonction mathématique qui reflète les entités et le temps dans des
positions spatiales. Puis, nous examinons des techniques de transformation, de calcul et de visualisation des données qui
peuvent faciliter la détection des séquences et sont utiles pour de très grands ensembles de données – probablement trop
grands pour la mémoire d’un ordinateur. En présence de telles contraintes, on se sert de techniques informatiques ou
d’opérations sur les bases de données pour regrouper et généraliser les ensembles de données.

Mots clés : géovisualisation, analyse visuelle, regroupement, exploration des données, données du mouvement
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Introduction

It is commonly recognized that interactive and dynamic
visual representations are essential for understanding
spatial and spatiotemporal data and underlying phenom-
ena. However, visualizations alone may be insufficient
when massive data collections need to be explored and
analysed. This is not only a matter of technical limitations,
such as screen size and resolution or speed of rendering,
but also a question of the natural perceptual and cognitive
limitations of the humans who need to view and interpret
the visual displays. Hence, there is a need to combine
visualization with computational analysis methods, data-
base queries, data transformations, and other computer-
based operations. The goal is to create visual analytics
environments in which humans and computers can work
in synergy to solve complex problems, whereby the
computational power amplifies human capabilities such
as pattern recognition, imagination, association, and
analytical reasoning and is, in turn, directed by the
human user’s background knowledge and insights gained.
This goal closely corresponds to the definition of visual
analytics (Thomas and Cook 2005).

The present study focuses on massive movement data and,
more specifically, data about multiple discrete entities
changing their spatial positions over time while preserving
their integrity and identity (i.e., the entities do not split or
merge). Such data present an appropriate target for
human–computer synergy. On the one hand, purely
computational methods of analysis are insufficient
because they operate with numbers and symbols, which
cannot adequately represent a continuous two- or three-
dimensional space with its heterogeneity and the multi-
tude of spatial relations. On the other hand, purely visual
methods fail when data reflect the movements of many
entities and/or refer to many time points. Even two
trajectories represented on a map or in a space–time cube
may be difficult to analyse if they have common locations
or segments (or even a single long trajectory with loops or
repeated segments), and a display of 10 trajectories may
be completely illegible. Moreover, real-life problems may
generate data sets that do not fit into the computer’s
memory.

The aim of this article is to define a set of visual analytics
tools suitable for massive collections of movement data.
To do this in a systematic manner, we begin by
considering the structure and properties of movement
data and identifying the characteristics and aspects that
require analysis. On this basis, we define potentially
significant types of patterns that an analyst may be
interested to detect and investigate. Next we try to
discover what kind of tool could support the detection
and investigation of each pattern type. Wherever the
existing techniques and approaches are insufficient, we try
to infer what would be suitable.

Prior to presenting our study, we review related work on
the visualization and analysis of movement data. Since
our target is massive movement data, we have limited the
scope of our review to work addressing movements of
multiple entities or very long movement trajectories of
single entities. We omit those techniques and approaches
based on visual representation of individual movement
data.

Related Works

Most techniques and tools designed for visual examina-
tion of large collections of movement data involve data
aggregation. Another approach is filtering, whereby only
data subsets satisfying user’s queries are visualized. Both
aggregation and filtering are intended to reduce the data
set to a manageable size.

A series of papers written by David Mountain and others
describes several techniques suggested to support the
investigation of very long movement trajectories of single
entities (Mountain and Raper 2001; Mountain and Dykes
2002; Dykes and Mountain 2003; Mountain 2005a,
2005b). One of these techniques is the temporal
histogram, which represents the data aggregated by time
intervals, for example, the number of locations visited or
the distance travelled. The data can also be aggregated
spatially by imposing a regular grid over the territory and
counting the trajectory points fitting in each cell. The
resulting densities are visually represented by colouring or
shading the grid cells on a map display. The densities
counted for consecutive time intervals can be shown on
an animated map display. A grid with densities can be
treated as a surface, which may contain various features
such as peaks (maxima), pits (minima), channels (linear
minima), ridges (linear maxima), and saddles (channels
crossing ridges). There are computational methods for
detecting such features, which can then be visualized on
a map.

By analogy to density surfaces, it is possible to build
surfaces representing other movement-related character-
istics. An isochrone surface is a series of concentric
polygons, centred on a selected location, representing
the areas accessible from this location within specified
‘‘time budgets’’ (e.g., 3 minutes, 6 minutes, 9 minutes,
etc.). An accessibility surface is a grid wherein each cell
represents the travel time from the selected location.
Besides the techniques involving aggregation and compu-
tations, Mountain and others describe tools for spatial,
temporal, and attribute filtering.

In fact, the techniques that Mountain and others applied
to long trajectories of a single entity are also applicable to
trajectories of multiple entities. Thus, Pip Forer and Otto
Huisman (2000) aggregate such data into a surface by
computing the total number of person-minutes spent in
each cell of a regular grid. Other characteristics of
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multiple movements may be summarized and visualized
in a similar way. Unfortunately, summarizing movement
data into surfaces severely alters their nature, so that one
can no longer see the changes in spatial position of entities
that are the very essence of movement. In specific cases,
when the trajectories of different entities are similar, it is
possible to use methods of summarization that give a
better idea of the collective movement. Ronald Buliung
and Pavlos Kanaroglou (2004) used computational
methods of ArcGIS to build a convex hull containing all
trajectories, computed the central tendency and disper-
sion of the paths, and represent the results on a map as the
averaged path of all entities. Leland Wilkinson (1999)
describes a representation of the northerly migration of
Monarch butterflies on a map by means of ‘‘front lines’’
corresponding to different times. However, the applic-
ability of such methods is quite limited.

A possible approach to the aggregation of arbitrary
movement data is to count, for each pair of locations,
how many entities moved from the first to the second
between two time points. Of course, this is possible when
there are not too many different locations. If this is not
the case, the space is divided into regions, and all locations
within one region are treated as the same. The resulting
counts may be visualized as a transition matrix wherein
the rows and columns correspond to the locations and
symbols in the cells or cell colouring or shading encode
the counts (Guo and others 2006). For more than one
pairs of time moments, one would need to build several
transition matrices, which could then be compared.
However, the limitations of this approach with respect
to the length of the time series of movement data are
evident. Another problem is that such a visualization lacks
spatial context.

To preserve spatial information, it is appropriate to
visualize aggregated transition data as Igor Drecki and Pip
Forer (2000) did in their poster presentation about
tourism in New Zealand. This presentation contained,
among other things, the visualization shown in Figure 1,
which represents the major movement flows of tourists
during the first six days of their holidays in New Zealand;
to summarize individual data, the travel times of different
tourists have been transformed from the absolute time
scale (i.e., calendar dates) to a relative one starting from
the day of each tourist’s arrival in New Zealand. The
diagram consists of six parallel planes, shown in a
perspective view, with a map of New Zealand depicted
on each plane. The planes correspond to the days of the
tourists’ travel. The movements of the tourists are
represented as lines connecting the locations of the
major tourist destinations on successive planes. The
brightness of a line corresponds to the number of
people moving from its origin location (on the upper
plane) to the destination location (on the lower plane)
between the days corresponding to the upper and lower

planes. To make the view clearer, the authors omitted
minor flows.

While this visualization has obvious advantages over a
transition matrix, we are not aware of any software tools
that would be able to convert movement data into such
displays. As a result of the ingenious and masterly work of
expert cartographers, however, the diagram and the entire
poster may serve as a source of ideas and inspiration for
designers of computer-based tools for the visual analysis
of movement data.

Analysis and representation of movement data have long
been the focus of the research work of Waldo Tobler (e.g.,
1987, 2005). To visualize numbers of entities or volumes
of materials that moved from one place to another, Tobler
builds discrete or continuous flow maps. A discrete map
represents the movements by means of bands or arrows,
whose widths are proportional to the volumes moved (see
Figure 2). For better legibility of such a map when the
number of locations is large, minor flows may be omitted.
Continuous flow maps use vector fields or stream lines to
show continuous flow patterns (see Figure 3). According
to Tobler, in a vector field the structure is immediately
obvious, adjacent vectors being clearly correlated in length
and direction. Conversely, if this is not the case, then that
is also obvious. Continuous flow maps are, in principle,
not limited with respect to the number of different
locations present in the original data. However, producing
such maps from discrete data is computationally inten-
sive. This puts practical limitations to building animated
flow maps or sequences of flow maps, which could
represent movements during time intervals.

In the research discussed so far, aggregation helps to
reduce data volume. Another approach is based on
filtering: visualization is applied to a data subset selected
according to a user-specified query. In this case,
individual rather than aggregated data are shown.
Researchers pursuing this approach focus mainly on
advancing query and search techniques (Kapler and
Wright 2005; Yu 2006), which are outside the scope of
our study. The visualization techniques currently used are
quite traditional for individual movement data: lines on a
map or in a space–time cube and animation with moving
icons representing the entities. It should be noted that
approaches based on selection and visualization of small
data subsets do not support an overall view of the
collective behaviour of all entities.

Besides aggregation and filtering, which can be carried out
by applying database technologies, large data sets can also
be explored using data-mining techniques. It is commonly
recognized that proper visualization of data-mining
outcomes is essential for a human analyst to be able to
interpret them. Most data-mining techniques deal with
data represented as vectors in a multidimensional abstract
space, as sequences of symbols, or as logical expressions;
hence, for such a technique to be applied to movement

Designing Visual Analytics Methods
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Figure 1. Visualization of major flows of tourists in New Zealand by Drecki and Forer (2000). Reproduced by permission.
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data, the data need to be encoded in one of these forms.
An example of using data mining for movement data is
the work of Patrick Laube, Stephan Imfeld, and Robert
Weibel (2005), who analyse the movements of football
players during a game. Their approach is to divide the
whole time into short intervals and encode the move-
ments of the entities (players) during these intervals by
means of symbols representing movement directions or
other movement characteristics. Laube and others suggest
computational methods that can search through the
resulting symbol sequences for certain specific types of
collective movement patterns, such as synchronous
movement and ‘‘trend setting’’ (i.e., the movements of
some entity are repeated by other entities after a time lag).

In discussing the visualization of the New Zealand
tourism data (Figure 1), we noted that the time in the
data was transformed from absolute to relative: calendar
dates were replaced by day numbers starting from
tourists’ arrival to New Zealand. The spatial component
of movement data can also undergo various transforma-
tions, depending on the purposes of the analysis. Thus,

Mei-Po Kwan and Jiyeong Lee (2004) build surfaces of
summary characteristics of movements not in the
geographical space but in an abstract space where the
dimensions are the time of day and the distance from
home.

In general, not much research has been published on
visualization-supported analysis of large collections of
movement data. Can the existing techniques and
approaches satisfy the needs of potential analysts? In
order to answer this question and identify what sorts of
techniques are missing (if any), we need to find out what
an analyst may look for in movement data. If the major
value of visualization is that it can expose patterns in data,
we need to understand what types of patterns can exist in
movement data. Then we will be able to determine which
of the patterns types can be exposed using the existing
techniques and think about appropriate methods for
revealing the remaining types of patterns.

The following section looks at the structure and
characteristics of movement data in order to gain a clear
understanding of what is analysed. This will help us to
define the types of patterns an analyst may look for in
movement data.

Problem Statement

The ultimate goal of our study is to define a set of visual
analytics methods to support the analysis of large
collections of data about movements of multiple entities.
The focus of the analysis is the collective movement
behaviour of the entities rather than the behaviours of
individual entities. In our search for methods, we had a
special requirement: we want the methods to work even in
a situation when the full data set does not fit in the
computer’s memory. Hence, besides visual representation
of data, the methods must involve some data-manipula-
tion techniques aimed at reducing the data set to a
manageable size. These may be database operations such
as aggregation, sampling, and filtering or other computa-
tional methods such as clustering.

Figure 3. Continuous flow maps (Tobler 1987, 2005). Reproduced by permission.

Figure 2. A discrete flow map (Tobler 1987, 2005).
Reproduced by permission.

Designing Visual Analytics Methods
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According to the functional view of a data set (Andrienko
and Andrienko 2006), movement data can be treated as a
function matching pairs (entity, time moment) with
positions in space. This is an abstraction from real data,
which have to be finite and, hence, cannot contain the
position of each possible pair of entity and time.
However, this abstract model is convenient and sufficient
for the purpose of defining the possible tasks of data
analysis and types of patterns that may exist in movement
data.

From the positions of entities at different moments, other
movement characteristics can be derived: speed,
direction, acceleration (change of speed), turn (change
of direction), and so on. We call these derivative

movement characteristics.

The changes in position and other movement character-
istics of an entity over time form the individual movement

behaviour (IMB) of this entity (illustrated in Figure 4,
left), where behaviour is a synoptic concept differing from
the simple sequence of values of the characteristics
attained at all time moments (see Andrienko and
Andrienko 2006 for a more detailed explanation of the
term). An IMB has its own characteristics, such as
the path, or trajectory, travelled by the entity in the space;
the distance travelled; the movement vector (direction
from initial to final position); and the variation of speed
and direction. When an analyst compares the IMBs of
different entities or of the same entity at different time
intervals, he or she looks for similarities and differences in
terms of these synoptic characteristics.

Similarly, it is possible to look at the movement
characteristics of a set of entities at some single time
moment. The corresponding synoptic concept can be
called the momentary collective behaviour (MCB) of this
set of entities (illustrated in Figure 4, right). An MCB has
such synoptic characteristics as the distribution of the
entities in the space, the spatial variation of the derivative
movement characteristics, and the statistical distribution
of the derivative characteristics over the set of entities.
These synoptic characteristics are compared when we
need to find and measure similarities and differences

between MCBs at different time moments or between
MCBs of different groups of entities.

The concept corresponding to a holistic view of the
movement characteristics of multiple entities over a
certain time period (i.e., multiple time moments) can be
called dynamic collective behaviour (DCB). We assume
that the DCB is the focus of interest when data about
movements of multiple entities are analysed. That is, the
goal of the analysis of movement data is to describe, in a
parsimonious way, the DCB of all entities during the
whole time period the data refer to. In addition, or in
order to do this, the analyst may need to compare
different DCBs: DCBs of different groups of entities
during the same period, DCBs of the same group of
entities during different periods, and DCBs of different
entity groups during different periods.

Moreover, it is usually not sufficient just to describe the
behaviour. An analyst strives to establish links between the
behaviour and other potentially relevant phenomena in
order to explain the behaviour or to predict how it can
develop in the future. Various factors may influence
movement characteristics and behaviours:

1. Properties of space
� Altitude, slope, aspect, and other characteristics

of the terrain
� Accessibility with respect to various constraints

(obstacles, availability of roads, etc.)
� Character and properties of the surface (land or

water, concrete or soil, forest or field, etc.)
� Objects present in a location (buildings, trees,

monuments, etc.)
� Function or means of use (e.g., housing, shop-

ping, industry, agriculture, transportation)
� Specific meaning of a place for a moving entity

(e.g., home, work, place for sports or for leisure)
2. Properties of time
� Temporal cycles (yearly, weekly, daily, etc.)
� Physical characteristics: presence, intensity, and

duration of daylight
� Meaning in terms of typical activities: working

day vs. weekend or holiday, day vs. night

Figure 4. An illustration of the notions of individual movement behaviour (IMB) of a selected entity ei (left) and momentary
collective behaviour (MCB) at a selected moment tj (right).
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3. Properties and activities of the moving entities
� Individual properties: age, gender, health condi-

tion, occupation, marital status, and so on (for
people)

� Way of movement (free movement, by roads, by
water, by air, etc.)

� Means of movement (e.g., vehicles)
� Purposes and/or causes of the movement
� Activities performed during the movement

4. Various spatial, temporal, and spatiotemporal
phenomena: climate and weather, sport and cul-
tural events, legal regulations and established
customs, road tolls and oil prices, shopping actions
and traffic incidents, and so on.

Thus, the goals of analysing movement data referring to
multiple entities may be formulated as follows: describe
and compare dynamic collective behaviours and relate them

to properties of space, properties of time, properties and

activities of the moving entities, and relevant external

phenomena. Consequently, the goal of our study is to
define a set of instruments that will allow an analyst to
achieve these goals.

How is the definition of the goals of analysing movement
data related to the view of analysis as search for patterns?
To answer this question, we need to define the notion of
pattern.

Patterns in Movement Data

As is explained in our previous work (Andrienko and
Andrienko 2006), a pattern is a description or, more
generally, a representation of a behaviour. A pattern may
be viewed as a statement in some language (Fayyad,
Piatetsky-Shapiro, and Smyth 1996). The language may be
chosen quite arbitrarily (e.g., natural language, mathema-
tical formulas, graphical language); therefore, the syntac-
tic and morphological features of a pattern are irrelevant
to data analysis. What is relevant is the meaning, or
semantics. It is natural to assume that representations of
the same behaviour in different languages have a common
meaning. Hence, the constructs of the different languages
refer to the same system of basic language-independent
elements, from which various meanings can be composed.
By analogy with meanings of words in a natural language,
we can posit that the basic semantic elements for building
various patterns include general pattern types and pattern

properties. A specific pattern is an instantiation of one or
more pattern types. This is analogous to the specialization
of a general notion by means of appropriate qualifiers. In
the case of patterns, the qualifiers are specific values of the
pattern properties. For example, the pattern ‘‘entities e1,
e2, . . ., en moved together during the time period T’’
instantiates the pattern type ‘‘joint movement’’ by
specifying what entities and when moved in this manner.

It is quite reasonable to assume that general pattern types
exist in the mind of a data analyst as mental schemata.
Moreover, it is quite likely that these schemata drive the
process of visual data analysis, which is commonly
believed to be based on pattern recognition: the analyst
looks for constructs that can be associated with known
pattern types. Once such a construct is detected, the
analyst observes and measures the values of the pattern
properties. Visual analytics methods should be designed
so as to facilitate the detection of instances of the possible
pattern types. Therefore, in order to design proper visual
analytics methods for movement data, we must first
define the pattern types relevant to such data.

For this purpose, let us have a closer look at what we call
dynamic collective behaviour, or DCB. A DCB can be
viewed from two different perspectives:

� As a construct formed from the IMBs of all entities
(i.e., the behaviour of the IMB over the set of
entities)

� As a construct formed from the MCBs at all time
moments (i.e., the behaviour of the MCB over time)

These two views are called aspectual behaviours (a term
introduced in Andrienko and Andrienko 2006). Aspectual
behaviours exist in multidimensional data (i.e., data
having two or more referential components, or indepen-
dent variables). Movement data have two referential
components, entity and time (recall the abstract model of
movement data introduced in the previous section),
which yield two aspectual behaviours. The aspectual
behaviours are essentially different and must be described
in terms of different types of patterns.

Our previous work (Andrienko and Andrienko 2006)
introduces the basic (most general) types of patterns:
similarity, difference, arrangement, and summary. Here,
we specialize these basic types for movement data. We
omit the type ‘‘summary,’’ which corresponds to the
summarization of multiple characteristics by means of
statistics or other computational methods, and focus on
pattern types whose instances can be detected visually.

The behaviour of the IMB over the set of entities can be
described by means of similarity and difference patterns,
that is, as groups of entities having similar IMBs that
differ from the IMBs of other groups of entities. It may
happen that some entities have quite peculiar IMBs that
differ from the IMBs of all other entities. Such peculiar
IMBs are also described by means of difference patterns.
Arrangement patterns are not relevant to the behaviour of
the IMB over the set of entities because the set of entities
has no natural ordering and no distances between the
elements (see Andrienko and Andrienko 2006).

What does it mean that the IMBs of several entities are
similar? There are many possible meanings, and all of

Designing Visual Analytics Methods
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them are relevant:

1. Similarity of overall characteristics (geometric
shapes of the trajectories, travelled distances,
durations, movement vectors, etc.)

2. Co-location in space (i.e., the trajectories of the
entities consist of the same positions or have some
positions in common):
� ordered co-location: the common positions are

attained in the same order
� order-irrelevant co-location: the common posi-

tions may be attained in different orders
� symmetry: the common positions are attained in

opposite orders
3. Synchronization in time:
� Full synchronization: similar changes of move-

ment characteristics occur at the same times
� Lagged synchronization: changes of the move-

ment characteristics of entity e1 are similar to
changes of the movement characteristics of entity
e0 but occur after a time delay �t

4. Co-incidence in space and time:
� Full co-incidence: the same positions are attained

at the same time
� Lagged co-incidence: entity e1 attains the same

positions as entity e0 but after a time delay �t

All these types of similarity are possible specializations of
the general notion of a similarity pattern.

Let us now consider the other aspectual behaviour, that is,
the behaviour of the MCB over time. Mathematically,
time is a continuous set where ordering and distances
exist between the elements (i.e., time moments). Hence,
besides similarity and difference patterns, arrangement
patterns are relevant. An arrangement pattern describes
changes in the MCB with respect to the ordering and
distances between the corresponding time moments – for
example, an increase in the number of entities in some
part of the space and a decrease in other parts. Here are
the pattern types for describing the behaviour of the MCB
over time (we note in parentheses the basic pattern types
that have been specialized):

1. Constancy (similarity): the MCB is the same or
changes insignificantly during a time interval

2. Change (difference): the MCB changes significantly
from moment t1 to moment t2

3. Trend (arrangement): consistent changes in the
MCB during a time interval

4. Fluctuation (arrangement): irregular changes in the
MCB during an interval

5. Pattern change or pattern difference (difference):
the behaviour of the MCB during time interval T1

differs from that during time interval T2. The term
‘‘pattern change’’ applies when T1 and T2 are
adjacent. For example, a trend can change for

constancy or for a different trend. The term
‘‘pattern difference’’ applies to non-adjacent time
intervals.

6. Repetition (similarity): occurrences of the same
patterns of types 1, 3, or 4 or the same pattern
sequences at different time intervals

7. Periodicity, or regular repetition (similarity and
arrangement): occurrence of the same patterns or
pattern sequences at regularly spaced time intervals

8. Symmetry (similarity and arrangement): opposite
trends or pattern sequences where the same patterns
are arranged in opposite orders

The pattern types listed above can be called ‘‘descriptive,’’
since they can be used to describe a DCB. Behaviours
corresponding to some of these pattern types can be seen
in the visualization partly reproduced in Figure 5.

The visualization represents the movements of a number
of white storks during two migration seasons: more
specifically, movement speeds aggregated temporally by
months and spatially by cells of a regular grid. The upper
left map demonstrates similarities and differences between
IMBs. There are two groups of birds with different IMBs:
some birds fly on the west, while the other group flies on
the east. An ordered spatial co-location exists between the
movements of the birds in each group. The sequence of
maps in each row demonstrates changes in the MCB over
time. Moreover, there are vivid trends: consistent shifts in
the positions of the birds to the south at the beginning of
the migration season and to the north at the end of the
season. A symmetry pattern can be seen between the
southward movement trend in August and September and
the northward movement trend in March and April.
Comparison of the migration movements in different
seasons reveals periodicity patterns, despite the presence
of certain difference patterns between the seasons.
Unfortunately, Figure 5 provides very limited possibilities
for comparisons, as it includes, for space saving reasons,
maps for four only selected months in two selected
seasons.

Relations between the DCB and properties of space, time,
entities, external phenomena, and events need to be
described in terms of different types of patterns:
correlation, influence, and structure (Andrienko and
Andrienko 2006). We use the term ‘‘correlation’’ in a
more general sense than statistical correlation between
numeric variables; it may also denote co-occurrence of
any characteristics, in particular spatial and qualitative,
and co-occurrence of behavioural patterns. Influence

means that some things or phenomena produce effects
on others. Viewed from the opposite direction, influence
may also be called dependency. Structure is the composi-
tion of a complex behaviour from simpler ones, as the
visible movement of the planets is a composite of their
own movements and the movement of the Earth.
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Correlation, influence, and structure are collectively called
connectional patterns.

To analyse movement data, an analyst needs tools and
methods that facilitate the discovery of all types of
patterns, both descriptive and connectional. However, the
design of such tools and methods faces a number of
challenges that can be quite difficult to overcome.

Challenges

Irrespective of the size of a data set, movement data are
difficult to visualize and analyse because of the quite
complex data structure, which involves time, space,
multiple entities, and multiple movement characteristics.
Is there any way to display all this information so that the
representation is comprehensible to a human viewer? The
representation of two-dimensional space requires two
display dimensions. Time may be represented by means of
the third spatial dimension, as in a space–time cube, also
called a space–time aquarium (Hägerstrand 1970; Kraak
2003), or by means of the temporal dimension in an
animated display (Andrienko, Andrienko, and Gatalsky

2000, 2005). There are also other ways of representing
time in combination with space (Vasiliev 1997), but they
are much more limited with respect to the number of
different values that can be discernibly shown in a display.

From a representation of individual trajectories by means
of lines in an interactive 3D display, it is possible to
estimate the positions, speeds, directions, and other
movement characteristics at different times. Similarities
and differences between IMBs are noticeable. The use of a
movable plane, as suggested by Menno-Jan Kraak (2003),
helps in exploring the MCBs at different moments and the
behaviour of the MCB over time. However, all these
benefits fade away with an increase in the number of
moving entities, the length of the time period, or the
geometric complexity of the trajectories. The data do not
need to be very numerous: a space–time cube with only
10 trajectories will already look like a bowl of spaghetti,
from which one can extract hardly any useful informa-
tion. Similarly, an animated display of individual move-
ments (in particular, the ‘‘time window’’ mode of
animation as described by Andrienko and others 2000,
2005) is quite appropriate when the entities are few and

Figure 5. Visualization of aggregated movement speeds of white storks during two migration seasons: 1999/2000 (top) and
2000/2001 (bottom). The first two maps in each row correspond to August and September, respectively, and the second two
maps to March and April, respectively. The maps corresponding to the intermediate months have been omitted for reasons of
space.
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the time period not very long but decreases in utility with
increasing numbers of moving entities or time moments
in the data. The upper limit may be higher for an
animated display than for a space–time cube: in an
animated display, the information is presented in
portions, which makes the display at any given moment
simpler and easier to perceive than a space–time cube,
which portrays all information at once. However, this
slight increase in the applicability limit does not solve the
problem in general. Besides, the portion-wise representa-
tion of information has clear disadvantages: no overview
of the whole data set is possible, nor is any comparison
between states at different moments.

Data-size limitations on visual displays arise long before
the size becomes too big for the computer’s memory.
Therefore, some methods for reducing the size of the data
set must be applied prior to the visualization. Possible
approaches include aggregation, filtering, and clustering.
When the data set is too big for human perception but not
yet too big for the computer, high interactivity may
compensate for the inevitable information losses resulting
from data reduction. Suppose, for example, that the
visualization shown in Figure 1 is an interactive display on
the computer screen that allows the user to click on the
lines in order to select the corresponding entities. In
response, the movements of the selected entities are
shown in the display as lines of a different colour.
Through further interaction with the display, the user
may modify the selection and immediately receive visual
feedback. Moreover, several displays of aggregated data
providing complementary views of the data set may be
linked by means of brushing, similarly to the linked
histograms in Attribute Explorer (Spence and Tweedy
1998; Spence 2001). For example, the display with tiered
maps, as in Figure 1, may be linked to a bar chart showing
the numbers of tourists coming from different countries.
When the user selects a subset of tourists through the
tiered map display, the bar chart shows how many of these
tourists come from each country by means of special
colouring of the corresponding bar segments. The user
may also select the tourists coming from a particular
country by clicking on the respective bar chart. In
response, the tiered map display will show the flows of
these tourists.

Things become much more complicated when the
original data cannot be stored and processed in the
computer’s memory. This means that aggregation, filter-
ing, clustering, selection, and brushing cannot be done
without the involvement of database operations, which
may take a great deal of time. Hence, the visual displays
can no longer be interactive in the same way as with
smaller data sets. It is necessary to devise new methods of
interaction that can still perform reasonably well when
data sets are huge.

Because of the challenges arising from large data volumes,
Daniel Keim (2005) argues that Ben Shneiderman’s
Information Seeking Mantra – ‘‘Overview first, zoom
and filter, and then details-on-demand’’ (1996) – should
be replaced by a Visual Analytics Mantra (VAM):
‘‘Analyse First – Show the Important – Zoom, Filter and
Analyse Further – Details on Demand.’’ The VAM stresses
the fact that fully visual and interactive methods do not
work with large data sets. It is necessary to start with
database operations and computations (‘‘Analyse1 First’’)
and apply visualization to the results obtained (‘‘Show the
Important’’). The user may interact with the visualization
and the secondary data it represents (i.e., the outcomes of
the analysis but not the original data), in particular by
zooming and filtering, and may trigger further analysis,
which, again, requires visualization of the results. In this
way, visual analytics is an iterative process involving three
major steps: computational analysis, visualization of the
results of the computational analysis, and interactive
visual analysis of these results. A detailed consideration
(‘‘Details on Demand’’) is possible for small data portions
when they require, for some reason, special attention from
the analyst. This does not necessarily happen at the end of
the process.

Thus, visual analytics tools for movement data need to be
designed in accord with the VAM, whereby database
technologies and computational analysis are applied prior
to visualization and iteratively reapplied during the
process of data analysis. Let us now examine what
methods for data manipulation, computational analysis,
visualization, and interaction might be suitable to support
the analyst in detecting the diverse types of patterns in
massive movement data.

Supporting Pattern Detection: A Road Map

DATA MANIPULATION

Aggregation

One of the most important data-manipulation methods is
aggregation. Like any other method of data reduction, it
involves substantial information loss but also has a
positive side, in this case the ability to generalize
(i.e., omit ‘‘high-detail noise’’ and focus on characteristic
features of the phenomenon under study). The degree of
data aggregation and generalization matters greatly in
data analysis. What matters is not only the size of the
resulting data set and the amount of information lost but
also the scale at which the data are considered. Depending
on the scale, the analyst sees the data differently and
detects different patterns. Thus, in movement data, there
may be local patterns, such as a flock (synchronous
movement of multiple entities having close positions and
the same speed) or larger-scale patterns such as massive
movement toward industrial or commercial areas each
morning or, on a yet larger scale, the difference of
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collective movement patterns on weekdays and weekends,
and so on.

Hence, the appropriate degree of data aggregation and
generalization is not determined simply by finding a good
trade-off between the simplification gained and the
amount of information lost. The aggregation must be
adequate to the goals of the analysis (i.e., the scale at
which the analyst seeks to detect patterns). If the interests
of the analyst include patterns at different scales, it is
necessary to consider the data at different levels of
aggregation. Tools for visual analysis must therefore
enable the user to do this.

Aggregation consists of two operations: (1) grouping
individual data items (i.e., dividing the data into subsets);
and (2) deriving characteristics of the subsets from the
individual characteristics of their members. Typically,
various statistical summaries are used as characteristics of
the subsets: number of elements, mean, median, mini-
mum, maximum values of characteristics, mode, percen-
tiles, and so on. It is also important to know the degree of
variation of the characteristics within the aggregates. For
this purposes, such statistical measures as variance (or
standard deviation) or inter-quartile distance are com-
puted. Aggregates with high variation of characteristics
among members should not be used in data analysis, since
they may lead the analyst to incorrect conclusions about
the data.

Methods for grouping/dividing movement data
Grouping/division may be necessary not only for data
aggregation but also for other kinds of data processing,
such as clustering. Movement data involve two referential
components: the set of entities and the time. Grouping/
division may be applied to either or both. The time may
be divided into equal-length intervals (e.g., 10 minutes,
one hour, one week); depending on the data and analysis
goals, it may also be useful to divide the time into slightly
unequal intervals corresponding to calendar units, such as
months, quarters, or years, or to apply other division
principles (e.g., to divide a school year into semesters and
breaks). Furthermore, it may be reasonable to divide the
time into subsets consisting of non-contiguous intervals,
in particular, according to one or more of the temporal
cycles; the user may wish to group all Mondays, all
Tuesdays, and so on. Hence, the data analytics toolkit
should include a tool for time partitioning whereby the
user can flexibly define the principles of division.

A similar tool is needed for dividing the set of entities.
This set has no distances that can provide a basis for
division, as in the case of time. It can instead be divided
on the basis of the characteristics of the entities (e.g., age
or occupation, in the case of people) or characteristics of
their movement (e.g., position in space, speed, direction).
This means that entities with similar values for the
selected characteristics are grouped together. For the

purposes of this grouping, either computational methods
(clustering) or interactive techniques can be applied. The
groups (clusters) of entities resulting from computational
methods may be quite difficult to interpret. An appro-
priate visualization of the characteristics of the entities
forming the clusters may be helpful.

For interactive grouping, the user chooses the character-
istics and specifies equivalence classes between their values
(i.e., which values must be treated as similar). The method
of defining equivalence classes depends on the type of a
characteristic. Thus, for numeric values, the user divides
the whole value range into intervals. If the values of a
qualitative characteristic are not too numerous, groups
are formed from entities with equal values; otherwise, the
user may wish to divide the values into classes according
to their semantic closeness. For positions in space, the
user may divide the space into compartments. In
particular, these may be cells of a regular grid, with the
cell size and, possibly, shape (e.g., rectangular or
hexagonal) chosen by the user. These may also be units
of an administrative or other existing territorial division
or regions specified interactively according to any
appropriate criteria such as surface type, way of use,
accessibility, or other relevant properties of the space (see
the list given under ‘‘Problem Statement’’ above). The
visual analytics tools should support such arbitrary
divisions of the space. Thus, the user may define space
compartments by interacting with a map display or by
applying database search operations such as retrieving the
locations of schools, shops, and so on.

As mentioned above, entities may be grouped according
to values of their movement characteristics. Since these
values change over time, interactive grouping can be
carried out on the basis of values at selected moments or
on the basis of aggregated values over time intervals.
Unfortunately, selection of each additional time moment
or interval multiplies the number of groups and causes
difficulties for the visualization and visual exploration of
the results of the aggregation.

Besides values at selected moments, entities can also be
grouped on the basis of changes in the values occurring
between two moments in time. A change involves several
aspects:

� the original value and the resulting value
� the amount or degree of change, that is, the absolute

or relative distance between the original and
resulting values (in a case when distances between
the values exist)

� the direction of change: increase or decrease for
numeric or ordinal values; spatial direction for
positions

Any of these aspects may be taken as the basis for
aggregation. Suppose, for example, that the user wishes to
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aggregate entities according to changes in their speed
from moment tx to moment ty. The user may divide the
whole range of speeds into intervals (say, three intervals:
low, medium, and high speed) and build aggregates on
the basis of all possible pairs (i.e., low/low, low/medium,
low/high, medium/low, etc.). The user may also find the
range of speed change, that is, from the maximum
decrease (taken as a negative number) to the maximum
increase, and aggregate the entities by dividing this range
into suitable intervals. Or, again, user may divide the
entities into three groups depending on whether their
speed has increased, decreased, or remained the same. It is
clear that these approaches to aggregation are not
equivalent in terms of the information that may be
gained as a result. By analogy to the example of speed,
grouping the entities according to changes in their spatial
position may be done on the basis of possible pairs
composed of a source position and a destination position,
on the basis of the distances between original and final
positions, or on the basis of the spatial direction in which
the destination lies with respect to the source position.
Methods for dividing (grouping) movement data are
summarized in Table 1.

Change computation: Transformations of space and time

Aggregation is not the only useful data transformation,
and we shall briefly discuss some other data-manipulation
techniques that may increase the comprehensiveness of

analysis and give additional insights into the data. One of
them is the computation of the amount or degree and the
direction of change, which is valuable not only for
grouping of the entities by also in itself. Thus, it may be
useful to look at change maps portraying (in a generalized
manner) changes in MCB from one moment to another.

Among the possible methods, the most useful may be
transformations of space and time from absolute to
relative. Similarities between temporally or spatially
separated behaviours can more easily be detected when
these behaviours are somehow aligned in time or in space.
To align behaviours in time, the ‘‘objective,’’ absolute
time of each behaviour (i.e., calendar date and time) is
ignored and only its ‘‘internal’’ time is considered
(i.e., the time relative to the moment when this behaviour
began). An example is the representation of tourist
movements in New Zealand (Figure 1). The tourists
come to New Zealand on different days; however, the data
are presented as though all the tourists arrived simulta-
neously. For this purpose, the designers of the visualiza-
tion transformed the absolute dates into day numbers
starting from the day of arrival to New Zealand.

In this example, the analysts superposed the starting times
of the IMBs of different tourists. It may also be useful to
superpose both starting and ending times. In this case, the
absolute time moments in each IMB are transformed into
their distances from the starting moment and divided by
the duration of the behaviours (i.e., the lengths of the

Table 1 Methods of dividing/grouping movement data

What Is Divided/Division Principle Method of Division Examples

Time / inherent ordering and distances Regular intervals 10 minutes, 2 hours
Existing division Days, months
Temporal cycles Time of day, day of week
‘‘Semantic’’ division Day and night; workday and weekend

Entities / numeric characteristics Regular intervals Speed: 0–10, 10–20, . . . , 190–200 km/hour
‘‘Semantic’’ intervals Age: 0–15, 16–24, 25–64, 65þ

Entities / qualitative characteristics Individual values Vehicle type: bike, motorbike, car, truck
‘‘Semantic’’ groups of values Travel purpose: business (work, study), shopping

and services, leisure (sports, walk,

entertainment)
Entities / spatial positions Regular sections Rectangular grid

Existing division Administrative districts, cities
Space properties Water, forest, field, built-up area
‘‘Semantic’’ division City centre, residential area, shopping area,

industrial area
Entities / changes Original and resulting values From France to Germany, from Germany to

France, from France to the United Kingdom,
from the United Kingdom to France (see

Figure 2)
Amount or degree of change Distance travelled: 0–0.01 km (no change), 0.01–

100 km, 100–500 km
Direction of change North, north-east, east
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intervals between the starting and ending moments). This
facilitates the detection of similarities between movements
performed at different speeds. Such an approach could be
useful, for example, in comparing the movements of
migratory animals in different years.

Moreover, there may be cases when non-uniform
transformation of the time of each IMB is reasonable.
For example, an analyst exploring the daily movements of
people may be interested in excluding the times when
these people stay in the same place for an extended period
(e.g., at work, in a shop, at home) and adjusting the times
when they move. In this case, time transformation is
performed separately for each interval of movement.

Analogous ideas can be applied for spatial alignment of
IMBs initially disjoint in space. An analyst may try to
bring a set of IMBs (trajectories) to a common origin and
search for coincidences between them. Furthermore, the
analyst may be interested in disregarding the direction of
movement and considering only changes in direction
(turns). For this purpose, the trajectories are ‘‘rotated’’
until the initial movement directions coincide.
Coincidences between further trajectory fragments indi-
cate similarities. It may also be useful to ‘‘stretch’’ or
‘‘shrink’’ the trajectories to adjust their lengths.

In looking for co-location of trajectories where positions
are specified as points in space, it may be reasonable to
apply a kind of ‘‘spatial coarsening,’’ that is, to replace the
original points with regions (areas), for example, circles
with some chosen radius around the points. The resulting
trajectories are treated as similar when there is an overlap
between their ‘‘expanded’’ positions, even though there
may be no sharp co-incidence between the original
positions.

In studying MCBs and their behaviours over time, it may
be appropriate to treat the space as a discrete set of
coarsely defined ‘‘places’’ rather than as a continuous set
consisting of dimensionless points. For this purpose, one
uses space partitioning, which has been discussed before
in relation to data aggregation. Such a transformation
may be called ‘‘space discretization.’’ Furthermore, it may
be useful to transform the geographical space into a kind
of ‘‘semantic’’ space consisting of such locations as home,
workplace, shopping site, and sport facility. Each
trajectory is then transformed into a sequence of move-
ments between pairs of these locations, and the analyst
looks for similar sub-sequences occurring in different
trajectories.

Table 2 indicates what types of patterns various data
transformations may help to detect.

When we say that the analyst looks for similarities
between IMBs, we do not really mean that the IMBs are
presented to the analyst as individual items, without
aggregation or generalization. As discussed above, the
large size of the data set precludes this method of analysis.
Therefore, similarities between IMBs need to be detected
somehow without the analyst’s seeing the IMBs. This can
only be done by using methods of computational analysis,
as discussed in the next subsection.

EXPLORING THE BEHAVIOUR OF IMBS OVER THE SET OF ENTITIES

Clustering of IMBs

In order to analyse IMBs without seeing them, the analyst
can apply clustering methods, which divide entities into
groups so that the entities within each group are as similar
as possible and differ as much as possible from the entities

Table 2 Some types of patterns in movement data and data transformations that may support pattern detection

Pattern Type Data Transformations

Full synchronization of IMBs (same changes at same times) Change computing: original values transformed into changes of
position, speed, direction

Lagged synchronization of IMBs Change computing (see above)
Temporal alignment: superposition of the starting moments

Order-irrelevant co-location of IMBs Spatial coarsening (disregards minor differences in positions)
Co-incidence in space and time
Lagged co-incidence of IMBs Spatial coarsening

Temporal alignment: superposition of the starting moments
Ordered co-location of IMBs Spatial coarsening

Temporal alignment: superposition of the starting and ending
moments (disregards differences in speed)

Geometrically similar trajectories Spatial alignment: superposition of origins and destinations
Spatial coarsening
Temporal alignment: superposition of starting and ending

moments
Constancy, change, trend in the MCB Change computing

Space discretization
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in the other groups. If a clustering method can group the
moving entities according to similarities and differences
in their IMBs, the analyst can then look at various
aggregated characteristics and aggregated behaviours of
the groups instead of looking at the individual behaviours.

A clustering method computes numeric values expressing
the degree of similarity between entities. These values are
usually called ‘‘distances’’ (in an abstract sense): the
smaller the distance, the more similarity exists between
the entities. Thus, to group moving entities according to
their IMBs, it is necessary to find a way to express
numerically the degree of similarity between two IMBs,
or, in other words, to define a method for computing
distances between IMBs. Such a method will be referred to
here as a ‘‘distance function.’’

As we have noted, two or more IMBs may be similar in
various diverse ways, and any type of similarity may be of
interest. Each type of similarity requires a different
distance function. Thus, the degree of spatial and
temporal co-incidence is computed from the distances
between the spatial positions at the corresponding
moments. The same function would be suitable for
lagged co-incidence after applying temporal alignment to
the IMBs (see Table 2). The degree of order-irrelevant co-
location may be computed from the distances between
each position on one trajectory and the nearest position
on the other trajectory. For the degree of ordered co-
location, the corresponding function must find common
(overlapping) positions and check whether they were
reached in the same order. This method is also suitable for
estimating the degree of similarity of trajectory shapes
after the trajectories have been spatially aligned.

Hence, it is reasonable to devise a clustering tool where
the distance function is replaceable. In this case, the
analyst could choose the appropriate distance function,
depending on his or her current interests, and let the
clustering tool run with the use of this function. A library
of appropriate distance functions can be created in
advance, as well as a library of data-transformation
methods.

It should be also borne in mind that the existence and the
types of similarity patterns between IMBs depend on the
temporal resolution chosen for looking at the data. Thus,
fine movements of entities, which are made at the scale
of minutes or hours, may be quite different, yet there may
be a clear similarity between the behaviours of the same
entities considered at the scale of days or weeks. It makes
sense, therefore, to run a clustering method several times
with the same distance function but different degrees
of aggregation and generalization of the data with respect
to time (i.e., with the time partitioned into intervals
of different lengths).

A serious technical problem in applying clustering
algorithms is that they can work effectively only when

the data are resident in computer memory. The reason for
this is the necessity for numerous and repeated distance
computations. Not only do pair-wise distances between
entities need to be computed but also, as clusters are built,
the distances between the current clusters (which change
over time) and those entities that have not yet been
attached to any cluster must be computed as well. When
the data set is too big for the computer’s memory,
clustering may require too much time.

One possible way to cope with this problem is based on
sampling. The idea is that a subset of entities is sampled
from the whole set of entities so that the corresponding
movement data set is of a size suitable for effective
clustering. Depending on the specifics of the data and the
goals of the analysis, it may also be reasonable to sample
fragments of IMBs. For example, from data about people’s
movements over many days, fragments corresponding to
one-day movements of individuals can be sampled.

Once a manageable subset of IMBs or fragments of IMBs
has been extracted, clustering is applied to this subset.
After the clusters are built, the distances between them
and each of the remaining IMBs or fragments can be
computed, using the same distance function as for the
clustering. This requires a single run through the
database. On this basis, each IMB or fragment is attached
to the closest cluster or, if it is too distant from all clusters,
selected for further application of clustering or for
detailed consideration by the user (this may be an
anomalous behaviour).

Visualization of clustering results

After the clustering is done, the results need to be
visualized so that the analyst can interpret and investigate
them. The visualization must allow the user to see the
common features of the IMBs in each cluster as well as the
degree of variation. Unfortunately, clustering algorithms
do not provide any general description of the clusters
built. The clusters are defined extensionally, that is, by
listing the elements they consist of. Hence, any informa-
tion about the common features of the IMBs in each
cluster must be extracted from the data as the input of the
clustering method. A realistic way to do this is to obtain
various statistics about the movement characteristics of
the members of a cluster by means of database operations
and to visualize these statistics. By comparing the statistics
for different clusters, the analyst can understand what the
members of each cluster have in common and how they
differ from the members of other clusters. Andrienko and
Andrienko (2006) demonstrates how histograms can be
used to interpret clusters built on the basis of numeric
characteristics of entities. In the case of movement data,
appropriate statistics and visualizations are chosen
depending on how the similarity between the IMBs has
been defined for the clustering operation (i.e., what kind
of distance function has been used).
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Thus, when IMBs have been clustered on the basis of the
co-location of trajectories, a suitable visualization would
be a map which, for each location in space (real space or,
if there are too many locations in the source data, the
results of space discretization), shows how many trajec-
tories it appears in. Graduated symbols or graduated
shading would be suitable for this purpose. A separate
map is built for each cluster, which enables comparison of
the clusters.

For ordered co-location and for spatiotemporal co-
incidence, it is reasonable to compute, for each pair of
locations x and y and time interval T, how many cluster
members moved from x to y during the interval T, where
T results from an appropriate partitioning of the time
(which may be previously transformed, as discussed in the
previous section). A good way to visualize such statistics is
using tiered maps, as in Figure 1. In the case of ordered
co-location, the third (temporal) dimension reflects the
temporal order; in the case of spatiotemporal co-
incidence, either full or lagged, the third dimension also
reflects temporal distances.

Another possible way to visualize results of clustering is to
portray the individual trajectories, possibly transformed,
if data transformation has been used for the clustering
operation. Since the trajectories are supposed to be close
and similar, the resulting display is less likely to resemble a
bowl of spaghetti and may be quite comprehensible. If the
trajectories are represented by semi-transparent lines,
darker shades will emerge where many lines overlap, in
this way indicating the common features of the trajec-
tories. However, this idea needs to be verified by
implementing and testing both clustering methods and
visualization.

When clustering is used to group IMBs according to
derivative movement characteristics rather than positions,
other types of visualization are appropriate. For example,
variation in speed may be shown on a time graph, while a
segmented bar chart might represent the distribution of
movement directions at each time moment.

Besides the features of the IMBs of cluster members, the
analyst should be informed about the number of members
in each cluster and the statistics of their static character-
istics, if these are available in the data. The analyst should
also be able to obtain any statistics concerning the
movement of the entities, such as average and maximal
speed or total distance travelled.

Apart from computational clustering and visual examina-
tion of the results, the user may be interested in a close
look at subsets of IMBs with specific features (e.g., the
trajectories whereby entities move toward the city centre
in the morning and away from the city centre in the
evening). For this purpose, interactive query tools are
necessary. A challenge is to design effective methods for
data retrieval and visualization to ensure an acceptable

reaction time. It is also important to design a proper user
interface, taking into account that quite perceptible delays
are unavoidable with large data sets, especially when the
data are not memory resident. Thus, the principle of the
dynamic query (Ahlberg, Williamson, and Shneiderman
1992), whereby the tool immediately reacts to any slight
user interaction with the query device, such as moving a
slider by one pixel, is not applicable to this case. However,
the tool should enable the user to work by refining the
query interatively, depending on the results of the
previous stage, as well as by formulating a complete
query all at once.

EXPLORING THE BEHAVIOUR OF THE MCB OVER TIME

In order to explore the behaviour of the MCB over time,
the analyst needs visualizations that show him or her the
MCB at different time moments or, in a summarized way,
at different intervals into which the whole time of
movement is divided. There are two basic ways to do
this: an animated display (map, diagram, or graph,
depending on the information to be portrayed) and
multiple uniform displays, or ‘‘small multiples,’’ in the
terms of E.R. Tufte (1983; see illustration in Figure 5). We
will not discuss here the advantages and disadvantages of
each approach (in our opinion, they are complementary
and should be used in combination); instead we will focus
on the content of a single animation frame or a single
display in small multiples, which corresponds to the MCB
at a single time moment or during a single interval.

In order to look at the spatial distribution of the moving
entities at a selected time moment (interval), it is natural
to use a map. Since the entities are very numerous, their
positions must be shown in an aggregated manner (i.e., as
densities). Some approaches visualize densities as smooth
surfaces, built using kernel methods or other computa-
tional techniques. Such surfaces are represented by
colouring or shading, by contour lines (isolines), or in
3D views, which are rather appealing visually. Another
approach is ‘‘binned’’ visualization of densities, whereby
the map area is divided into regular ‘‘bins’’ or cells
(e.g., squares) and the number of entities fitting into each
cell is shown by colouring, shading, or graduated symbols
(see Figures 5 and 6). Such a visualization can be built
using database operations. The user can vary the size of a
cell in order to look at the data at different levels of
aggregation (of course, re-aggregation of a large database
may require some time).

Maps are suitable for showing not only the positions of
the entities but also various movement characteristics
associated with these positions, such as speed and
direction of movement. Again, in the case of large data
sets, these characteristics need to be aggregated.
The ‘‘binning’’ approach is appropriate here: it is possible
to compute and visualize various summary statistics for
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each cell, such as average, minimum, and maximum
speeds or the number of entities moving in each direction.
A single value (such as average speed) may be represented
by colouring, shading, or graduated symbols, as in
Figures 5 and 6. Prevailing movement directions can be
indicated by arrows, as in Figure 3 (left). Several values
(e.g., numbers of entities moving in different directions)
require the use of diagrams. The sizes of the diagrams
should not exceed the sizes of the cells where they are
placed, and therefore the cells must be large enough for
the diagrams to be legible. Representations of average,
median, or most frequent values should be accompanied
by the display of appropriate statistics expressing the
degree of variance. An example is given in Figure 7, where
triangle symbols are used to represent both the mean
values and the variances of the values in the cells.

As a complement to maps and perspective views of the
(geographical) space, non-cartographic displays are used
to look at the statistical distribution of various movement
characteristics at different time moments or over different
intervals. Frequency histograms provide aggregated infor-
mation about the statistical distribution of numeric
values; statistics about qualitative values can be shown

by bar charts in which each bar corresponds to one value
and the size of the bar is proportional to the number of
occurrences of this value. For statistics about movements
in different directions, it may be convenient to use radial
bar charts, wherein the orientation of the bars corre-
sponds to spatial directions: north, north-east, east, and
so on. By analogy to the spatial views, such displays are
built for each moment (interval) in time and presented
simultaneously as small multiples or in temporal sequence
(animation).

Another possibility is to represent the time using one of
the display dimensions, as in a time graph. For example,
this might be a display wherein the horizontal dimension
represents the whole time period divided into intervals;
for each interval there is a segmented bar showing the
frequencies of different values of some movement
characteristic, that is, the number of occurrences of each
value (for qualitative values) or the number of occur-
rences of values from each of the intervals previously
specified by the user (for numeric values).

To facilitate detection of significant changes in the MCB,
it is useful to compute and visualize the changes that take
place from one moment (interval) to another, in

Figure 6. A display of vehicle movement data aggregated by spatial cells.
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particular, changes with respect to the previous moment
or interval. For example, with ‘‘binned’’ maps, the
differences between the values in the cells at consecutive
moments (intervals) may be computed and represented
by cell colouring. It is reasonable to use a diverging colour
scale (Brewer 1994) on which one hue represents decrease
and another represents increase. It is also useful to
compute changes in the movement characteristics of the
individual entities and represent them in an aggregated
way on maps and non-cartographic displays. For example,
the visualization technique using temporally ordered
segmented bars, discussed above, may be used to
represent changes in speed: how many entities decreased
their speed (by more than x%, by x1 to x2%, etc.), how
many entities kept the same speed, and how many entities
increased their speed (by more than x%, by x1 to x2%,
etc.). While the primary focus of the analysis is the
collective movement behaviour rather than individual
movements, significant changes in the statistical or spatial
distribution of individual movement characteristics may
indicate changes in collective behaviour.

It should be noted that aggregated displays can be used
not only for viewing the data but also as direct
manipulation query devices: the user can select subsets
of data by selecting the aggregates representing them
(e.g., cells on a map, bars in a histogram, or segments in
segmented bars). To support such interaction, the displays
must ‘‘remember’’ how each aggregate has been produced
and be able to transform user actions into appropriate
database queries. However, it must be taken into account
that noticeable time may be needed to fulfil queries in the
case of massive data sets. Therefore, immediate reaction of
the tool to any user click or slight mouse movement may
be inappropriate. Instead, the user should be able to make

and modify selections without triggering any queries and,
when the selection process is finished, to signify this
explicitly.

LOOKING FOR CONNECTIONAL PATTERNS

Interactive techniques

Direct-manipulation query interfaces are especially con-
venient for brushing, where the user interactively selects a
subset of data and, in response, graphical elements in
different displays corresponding to this subset are
similarly marked (highlighted). Brushing helps the analyst
to establish links between two or more displays providing
complementary information. This, in turn, may be helpful
in a search for connectional patterns (i.e., correlations,
influences, and structural links between characteristics,
phenomena, processes, events, etc.).

For example, the analyst may use a map to select areas
with a high density of moving entities at some time
moment t1. From maps corresponding to other moments,
the analyst will learn whether the densities are always
higher in these areas than in the remaining territory,
which may indicate a link between the number of moving
entities and the properties of the space where they move.
From speed histograms, the analyst may see whether there
is any relation between the areas of high density and the
variation of the speed of movement, such as high speeds
of the entities before entering the areas of high density,
low speeds inside these areas, and high speeds after exiting
these areas. Furthermore, simultaneously with the displays
of the movement data, the statistical distribution of the
static properties of the moving entities or their activities,
by time intervals, may be visualized. Then the analyst can
discern whether the entities in the areas of high density

Figure 7. The heights and the widths of the triangle symbols encode the mean values and the variances, respectively,
computed for the cells.
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have any particular properties or perform any particular
activities. If a display of various events is available (this
may be a map display if the events are spatially located, or
a calendar display otherwise), the analyst can see whether
the times and places of high density are related to any
events.

It should be noted that direct manipulation and brushing,
while convenient and easy to use, are not strictly necessary
for such an analysis. Other query interfaces are also
possible. However, a disadvantage of using queries to
search for connectional patterns is that each query
provides information about one subset of the data,
which means that the procedure must be repeated for
other subsets. In our example, the analyst would have to
select other places on the same map, the same places on
maps corresponding to other time moments, and other
places on other maps. Moreover, data subsets can be
selected using various criteria (space, time, speed,
direction, means of the movement, activity, etc.) and
combinations of criteria, so that the number of possible
selections is infinite. Hence, the use of querying is
reasonable when it is necessary to investigate particular
cases, especially outliers such as extreme values or extreme
changes.

A better way to search for correlations and dependencies
is to divide the whole data set into subsets (rather than
selecting a single subset) on the basis of various
characteristics and to obtain, for each of these subsets,
appropriate statistics of other characteristics. These
statistics are then compared, possibly visually; significant
differences between them may indicate the presence of
links between the two (groups of) characteristics. For
example, all movements may be partitioned into subsets
according to their positions within a temporal cycle, such
as the days of the week. Then the analyst can look at
visualizations of aggregated positions, speeds, movement
directions, and so on in each subset in order to see
whether the movement characteristics are related to
temporal cycles. Another example is dividing entities
according to their static characteristics or their activities
and looking at statistics of their movement characteristics.
Such divisions, as well as computation of statistics, can be
done by means of database operations.

We have also mentioned another method of division:
division of the set of entities into groups according to
similarity of their IMBs by means of clustering. After the
application of clustering, it is useful to look at various
statistics for the resulting clusters in order to judge, for
example, whether there are any links between the
properties or activities of the entities and the features of
their IMBs.

Visual techniques
There are also purely visual methods to search for links.
For example, overlaying several information layers on a

map may support the detection of links between the
movement characteristics and various properties of the
underlying territory, as well as spatial and spatiotemporal
phenomena and spatially located events. Figure 5 provides
an example of overlaying the representation of aggregated
movement characteristics on a satellite image. This allows
the viewer to notice, in particular, that storks do not fly
straight from Europe to Africa but skirt the sea, which
demonstrates the dependence of the movement on the
character of the underlying surface. It is also possible to
establish links by comparing two or more map displays
presenting different information related to the same
territory; however, it may be more difficult to detect
correspondences than where all information is presented
in the same display.

In order to detect links between movements and temporal
cycles, it is useful to look at small multiples representing
movements at different times and arranged according to
the temporal cycles, as illustrated in Figure 5. To detect
links with various temporal events, these events can be
indicated on displays of movement data according to the
times of their occurrence. For example, small multiples or
animation frames corresponding to these times may be
specially labelled or marked. On displays representing the
time as one of the display dimensions, the times of events
can be marked at the corresponding positions within this
dimension.

A classical visualization technique that supports detection
of correlations between numeric or ordinal variables is the
scatter plot. For massive data sets, a modification of this
technique known as the binned scatter plot may be used.
The area of the plot is divided into regular compartments,
or bins. Within these compartments, the frequencies of
corresponding value combinations are shown by symbol
sizes, shading, or colouring. In particular, one axis in such
a scatter plot may represent absolute or relative
(transformed) time or positions within a temporal cycle.

Figure 8 demonstrates three variants of a binned scatter
plot summarizing the stork movement data mentioned in
Figure 5; the variants differ in the form of the graduated
symbols drawn in the bins. The division of the horizontal
axis corresponds to the months of eight different
migration seasons, from August to May. The division of
the vertical axis corresponds to 20 equal intervals in which
the range of speed variation has been divided. For each
combination of month x and speed interval from y to z,
the number of occurrences of this combination in the data
is represented in the corresponding bin by a square or
rectangle of a proportional size. If such a combination
does not occur, the bin itself is not drawn.

This visualization makes it clear that speeds in October
(the third month in the season) are much lower than in
the other months and that there are not many movements
in May (the last month). The highest speeds are attained
in August–September and in March–April.
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In principle, correlations and dependencies can also be
detected using data-mining methods devised to find rules
that predict the value of an attribute on the basis of the
values of other attributes. As we have already mentioned,
data-mining techniques usually require the data to be
encoded in a suitable form, such as logical expressions. To
make it possible to look for possible connections, not only
the movement data themselves need to be encoded but
also data about potentially related factors such as various
properties of the space, time, and moving entities, as well
as other phenomena or events. This requires the
development of suitable encoding methods for various
types of data. Spatial and spatiotemporal data are the
most difficult to convert into symbolic form. Some
approaches to encoding spatial data can be found in the
literature on spatial data mining (e.g., Ester, Kriegel, and
Sander 2001); however, there is as yet no sufficient
assortment of methods and tools to cover the needs of
analysts of movement data. Inventing new data-mining
methods specifically oriented to movement data is one of
the goals of the EU-funded project GeoPKDD.2

SUMMARY

As is evident in the foregoing discussion, numerous tools
are needed to detect patterns of various types in
movement data as well as to relate movement character-
istics and behaviours to other phenomena. Table 3
summarizes what has been suggested here.

This choice of techniques results from a theoretical
analysis and, certainly, will require practical verification.
Implementation of a prototype tool kit for discovering

knowledge from movement data is expected within the
project GeoPKDD.

Conclusion

This article presents an attempt at the systematic design of
a tool kit that could support visual exploration and
analysis of massive collections of movement data. When
data sets are massive, it is not sufficient to use visual
displays alone; rather, it is necessary to involve database
technologies and computational methods of data proces-
sing and analysis. Still, visualization plays a central role,
since it allows the innate perceptual and cognitive
capabilities and background knowledge of a human
analyst to be used in the process of data exploration
and analysis. These capabilities and knowledge cannot be
replaced by purely mechanical processing. Thus, the
combination of visualization with computer operations
offers the opportunity for truly synergetic work between
human and computer.

In order to find out what set of methods and techniques
could appropriately support the work of an analyst with a
large set of movement data, we first considered the general
structure of movement data. On this basis, we defined the
types of patterns that can be detected in movement data
and between movement data and data about other
phenomena. Then we reasoned out what kinds of data
transformations, computations, and visualizations might
allow the analyst to detect these pattern types. We have
not tried to invent any absolutely new visualization or
data-processing techniques but instead have referred to

Figure 8. Three variants of a binned scatter plot summarizing the stork movement data presented in Figure 5.
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Table 3 Computational and visualization techniques for detecting various types of patterns

Pattern Types
Computational or
Database Techniques What Is Visualized Visualization Techniques

Similarity and difference between
IMBs

Clustering on the basis of
various distance
functions

Statistics of movements
within clusters

Density map
Tiered maps representing flows
Histograms; temporally arranged

segmented bars (non-spatial
characteristics)

Data aggregation at
various temporal
granularities

Individual behaviours
included in a cluster

Map with trajectory lines
Animated map
Space–time cube

Constancy, changes, and various
arrangements in the
development of the MCB over
time

Methods for
generalization of
spatial distribution of
points: kriging, etc.

Density surfaces for
different time moments

Animated displays or small
multiples:

� Density map
� Perspective view

Aggregation by spatial
compartments

Various statistics for the
pairs compartment
þ time moment: number
of entities, averaged
characteristics, variance
indicators, etc.

Animated displays or small
multiples:

� Choropleth map
� Map with graduated symbols
� Map with diagrams
� Map with vectors

Statistical aggregation
over the whole set of
entities by time
moments
or intervals

Various overall statistics for
time moments or
intervals

Sequence of histograms, bar
charts, or star diagrams (small
multiples)

Temporally arranged
segmented bars

Computing changes by
spatial compartments

Differences or ratios for the
pairs compartment þ
time moment

Animated maps or small
multiples using a diverging
colour scale to distinguish
between increase and
decrease

Various connectional patterns Database queries
involving movement
data and other types of
data

Subsets of movement data
related in a
specified manner to
other data

Special marking (highlighting)
of graphical elements
corresponding to the selected
data, depending on the type
of display

Dividing movement data
and computing statistics
for the subsets

Statistics of
characteristics by subset

Multiple histograms, bar charts,
or star diagrams

Multiple maps showing
aggregated positions

Links between IMBs and static
properties or activities of
entities

Clustering of IMBs
(see above)

Statistics of static
properties or activities of
entities within clusters

Histograms (numeric properties)
Bar charts, pie charts

(qualitative properties)
Links between movements and

characteristics of the space or
spatial phenomena

Spatial generalization or
aggregation (see above)

Aggregated or generalized
movement data together
with other spatial data

Overlaying two or more
information layers in a map or
perspective view
(animated display or small
multiples)

Presentation of different
information in separate maps

Links between movements and
temporal cycles

Spatial or statistical
generalization or
aggregation (see above)

Movements by time
moments or intervals

Arrangement of small multiples
according to temporal cycles

Links between movements and
events

Times and, possibly,
spatial positions of
events

Including information about
events in various displays as
labels, symbols, marks, etc.

Links between two numeric
(ordered) attributes or between
one such attribute and linear or
cyclical time

Data aggregation by
intervals of attribute
values or time

Counts of occurrences of
value combinations for
each pair of intervals

Binned scatter plot
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existing approaches, techniques, and technologies that can
be quite serviceable if properly integrated and made
accessible to analysts. At present, however, we are not
aware of any existing tool kit that could comprehensively
support visual exploration and analysis of massive sets of
movement data. We hope that this study can provide
useful guidelines for developers of such tool kits.
Moreover, we believe in the usefulness of applying the
systematic approach described in this article to other types
of data.

Still, even a full implementation of the suggested high-
level design would not fully cover the needs of an analyst
of movement data. What is still missing?

When data sets are massive and complex, there is no way
to present them to an analyst in such a way that he or she
can see at once all the potentially relevant patterns that
exist in the data. The analyst must analyse, in the primary
sense of this word (i.e., ‘‘to separate [a material or abstract
entity] into constituent parts or elements,’’ according to
Random House Webster’s Electronic Dictionary and

Thesaurus, v. 1.0). The analyst must look at different
aspects of the dynamic collective behaviour of the moving
entities, decompose it into slices, divide the data into
subsets, and view the data on multiple levels of
aggregation and abstraction. From the examination of
each aspect, slice, subset, or view, the analyst gains some
bit of knowledge that is expected to bring him or her
closer to gaining overall knowledge of the dynamic
collective behaviour and its links to other phenomena.

However, this overall knowledge is merely the arithme-
tical sum of all the bits and pieces obtained by means of
the analysis, as a three-dimensional shape is not merely
the sum of its two-dimensional projections. Overall
knowledge is obtained by means of integrative, synthetic
actions that involve not only building a structure in which
each bit has its proper place but also generalization,
abstraction, induction, and deduction.

Thus, visual analytics consists of analytic and synthetic
activities, while our study has addressed only the analytic
side. It should be admitted that, to the best of our
knowledge, none of the currently existing systems and
tool kits for data exploration and analysis can support
knowledge synthesis, even to a small extent. Moreover,
there is no clear understanding in the research community
of what kind of support is needed or how it could be
provided. It is one of the missions of visual analytics
research to achieve substantial progress in this direction.

Acknowledgement

The study is a part of the EU-funded project Geographic
Privacy-Aware Knowledge Discovery and Delivery
(GeoPKDD), grant no. IST-6FP-014915. See http://
www.geopkdd.eu.

Author Information

Natalia Andrienko and Gennady Andrienko,
Fraunhofer Institute IAIS, Schloss Birlinghoven, 53754
Germany. Fax: þ49–2241–142072. E-mail: gennady.
andrienko@#160;iais.fraunhofer.de. Web: http://www.ais.
fraunhofer.de/and.

Note

1. Keim uses the term ‘‘analyse’’ in a broad sense, including
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