
Four Canadian Contributions to Stochastic Modeling

Winfried K. Grassmann
Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, email:grassman@cs.usask.ca,

Martin L. Puterman
Sauder School of Business, University of British Columbia, Vancouver, BC V6T 1Z2, email:marty@chcm.ubc.ca,

Pierre L’Ecuyer
Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC H3C 3J7,

email:lecuyer@iro.umontreal.ca

Armann Ingolfsson
School of Business, University of Alberta, Edmonton AB T6G 2R6, email:armann.ingolfsson@ualberta.ca

Abstract — We outline the history, significance, and impact of four important contributions by
Canadian researchers to stochastic modeling for operational research: the use of the uniformization
method to compute transient probabilities for Markov chains, pioneered by Winfried
K. Grassmann, contributions to Markov decision processes by Martin L. Puterman, contributions
to the development of random number generators by Pierre L’Ecuyer, and contributions to
queueing theory software by Armann Ingolfsson.

Keywords Stochastic modeling, uniformization method, Markov decision processes, random
number generation, queueing theory software.

1. INTRODUCTION

Operational research employs a variety of mathematical tools,

the primary ones being optimization methods and stochastic

models. Our focus in this paper is on stochastic modeling for

operational research. We do not attempt an exhaustive survey;

instead we describe three major bodies of work that have had a

major and sustained impact: (1) the use of the uniformization

(or randomization) method to compute transient probabilities

for Markov chains (Grassmann 1977a), pioneered by Winfried

K. Grassmann, (2) contributions to Markov Decision

Processes (MDP) (Puterman 1994), by Martin L. Puterman,

and (3) contributions to the development of pseudo-random

number generators (RNGs) (L’Ecuyer 1988), by Pierre

L’Ecuyer. In addition, we describe recent contributions to the

development of easy-to-use software for queueing calculations

(Ingolfsson and Gallop 2003) by Armann Ingolfsson.

All four of these contributions have had a significant impact

on theory, practice, or both. The uniformization method is

mentioned in many text and reference books on stochastic pro-

cesses and queueing theory (de Souza e Silva and Gail 2000,

Kao 1997, Tijms 2003, Gross and Harris 1998, Stewart 1994,

Daigle 1992, Trivedi 2002, Jain et al., 2007) as the method

of choice for computing transient probabilities for Markov

chains and it is implemented in popular software packages

for performance evaluation of computer systems (Ciardo

2007, Sanders et al., 2007). Puterman’s book on Markov

Decision Processes (Puterman 1994) and a previous book

chapter (Puterman 1990) are standard references for researchers

in that field and have been cited over 2,000 times. The book was

recently cited (Powell 2007) as “the current high-water mark

for textbooks in [. . .] Markov decision processes.”

L’Ecuyer’s papers on random number generation have been

cited hundreds of times, and his random number generators

are implemented in popular commercial simulation software

packages such as SAS, Arena, Witness, Simul8, and

Automod. His first paper on random number generation

(L’Ecuyer 1986) was recently chosen as one of ten landmark

papers published in the proceedings of the Winter Simulation

Conference. Ingolfsson’s Queueing ToolPak (QTP) spread-

sheet add-in (Ingolfsson and Gallop 2003) to simplify
Received January 2008, Revised February 2008, Accepted

February 2008.

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14
ISSN 0315-5986 j EISSN 1916-0615

3

computations with commonly used queueing models is used for

teaching at many universities. A survey of spreadsheet add-ins

for operational research (Grossman 2002) described QTP as

making “queueing theory computations effortless.”

In the remainder of this paper, we devote one section to each

of the four contributions. Parts of the paper describe personal

opinions and experiences by individual authors. For ease of

reading, we use the first-person pronoun, but we include the

initials of the relevant author whenever we switch from one

author to another.

2. THE UNIFORMIZATION METHOD

Uniformization is a method to calculate transient probabilities for

continuous-time Markov chains. It was first suggested by Jensen

(1953), and it is often called Jensen’s method. Another name for

this method is randomization. Before we discuss uniformization,

we show why Markov chains are important, and where transient

solutions of Markov chains are required.

Most readers are familiar with Markovian queueing systems,

such as the M/M/1 and the M/M/c queue. Markov chains,

both of the discrete and the continuous variety, are essential

tools for queueing theorists. However, Markov chains are also

used in maintenance, reliability and other applications. To deal

with such a variety of applications, it is convenient to introduce

what we are calling Markovian event systems or MESs (see

Grassmann 1991). MESs are identical to SERTs, a term coined

by Gross and Miller (1984), which stands for State variable,

Event, Rate and Transition. In a Markovian event system, one

has a number of variables, called state variables, which jointly

determine the future of the system. A state is a particular assign-

ment of values to all state variables. At certain rates, the state

changes, and such changes are brought about by events. They

correspond to the events used when simulating discrete event

systems. Markovian event systems are special cases of discrete

event systems, with the restriction that they are Markovian.

Specifically, the rate of an event depends only on the present

state, and not on the past of the system. This means that there

is no need to schedule events, which makes the logic easier.

It is relatively easy to convert Markovian event systems into

continuous-time Markov chains. The simplest way, and a

method that is quite efficient when dealing with queueing

systems, is to enumerate all states, and find, for each state and

each event, the rate of the event and the state it leads to, the so

called target state. The rate of the event is then entered into

the transition matrix with the row being the original state, and

the column the target state.

Practically any discrete event system of interest can be

approximated with arbitrary precision by an MES by using

phase-type distributions, because such distributions are dense

on the positive axis, which allows one to deal with arbitrary

distributions, be they interarrival or service time distributions,

or any distribution used for scheduling. Unfortunately, phase-

type distributions require additional state variables, and, as

we will see later, the computational complexity, both in time

and space, increases exponentially with the number of state

variables.

The uniformization method is extensively used in

Generalized Stochastic Petri-Nets (GSPNs) and Stochastic

Automata Networks (SANs), which, like MESs, can be con-

verted to continuous-time Markov chains. GSPNs are graphs

with two types of nodes: places and transitions. Generally

speaking, places represent state variables, and transitions rep-

resent events. There is a third entity in a GSPN, the token, and

each place can contain a number of tokens. In this way, the

tokens represent the value of the state variable corresponding

to the place in question. SANs work in a similar fashion.

In this sense, SANs and GSPNs are examples of MESs.

What makes GSPNs and SANs important is the fact that

they are implemented in software tools (Ciardo 2007,

Sanders et al., 2007) that allow users to formulate systems

and find transient probabilities through uniformization.

Another package to calculate transient probabilities is

MARCA (Stewart 2007).

In queueing theory, one typically concentrates on

steady-state solutions, yet real-life systems are almost never

in steady-state. In this sense, transient solutions are more realis-

tic. One reason for using steady state results is that in many

cases, they are easier to obtain than transient results. Also,

the initial probabilities of being in the different states are

often unknown. On the other hand, if these initial probabilities

are known, and if the transient probabilities are not too difficult

to obtain, one should use them rather than equilibrium prob-

abilities. In particular, if rates are piecewise constant when con-

sidered as functions of time, and this is a reasonable

approximation (Ingolfsson et al., 2007), then transient solutions

should be considered. The distribution of the state variables

after the rate change then provides the initial distribution for

the new period. Other applications of transient solutions

involve waiting-time problems and embedded Markov chains,

as we will show later.

2.1 The Principles of Uniformization

To find transient probabilities of a Markov chain with

state space S, one needs the initial probability vector p(0) ¼

[pi (0), i [S] as well as the transition rates qij, i, j [S, i

= j. Also, qii is obtained by multiplying therate qi of

leaving state i by 21, that is, qii ¼ 2qi . Let Q ¼ [qij, i, j [
S]. The first step of uniformization is to find the maximum

leaving rate q ¼ max(qi), and uniformize Q according to the

formula

P ¼ Q=qþ I: ð1Þ

Note that P has no negative entries, and each row of P has a

sum of 1, at least provided the rows of Q all have a sum of

0. Hence, P can be considered as the transition matrix of a

discrete-time Markov chain. Let pn ¼ [pi
n] be the probabilities

WINFRIED K. GRASSMANN ET AL.4

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

of being in state i after n steps of this discrete Markov chain. We

can find pn recursively as

p0 ¼ pð0Þ

pnþ1 ¼ pnP; n � 0:
ð2Þ

To find p(t), we need the Poisson distribution with par-

ameter qt, given by p(n; qt) ¼ e2qt (qt)n/n! The transient sol-

utions for time t are now:

pðtÞ ¼
X1
n¼0

pnpðn; qtÞ: ð3Þ

For calculations, the sum in (3) cannot be extended to infin-

ity. However, its terms are majorized by p(n;qt), and one can

extend the sum until p(n;qt) is below a certain precision

e. Alternatively, one can use the fact that p(n;fq) is approxi-

mately normal if qt is large. This suggests extending the sum

until n ¼ M, with

M ¼ qt þ za
ffiffiffiffi
qt
p

; ð4Þ

where za, the a-fractile of a standard normal distribution, is,

say, 4, which means that a ¼ 0.000032.

It is noteworthy that P has the same equilibrium probabil-

ities as Q, that is, 0 ¼ pQ has the same equilibrium vector p

as p ¼ pP, as one can easily verify.

Before discussing (3) further, let me discuss how I (WKG)

arrived at it. I was interested in obtaining equilibrium solutions

for large Markov chains, and at this stage, Rolf Schassberger,

then at the University of Calgary, suggested I iterate (2) until

pn reaches steady-state. Since the matrices I considered were

very sparse, this is faster than Gaussian elimination. I tried

this method, and it worked well. After joining the University

of Saskatchewan in 1969, I studied volume 2 of Feller

(1971), who uses what he calls randomization extensively to

convert discrete-time processes into continuous-time pro-

cesses. For instance, in the case of the discrete Markov chain

given by P, instead of choosing a step size of 1, he chooses

an exponential random variable as his step-size. If the expec-

tation of this random variable is 1/q, the result is equation

(3). Indeed, a generalization of (3) is given by equation (9.1)

of page 353 in Feller (1971). Since the recursion given by (2)

worked so well, I concluded that (3) should also work well,

which indeed it did. I wrote a program in 1971, which was sub-

mitted to the SHARE program library (Grassmann and Ngai

1971). Very soon, I added an MES-based matrix generator to

this program. I had some difficulties publishing my results,

and my first paper on uniformization did not appear until

1977 (Grassmann 1977a). Hence, except for one early use

(Love 1977), the method did not receive much initial attention.

This only changed after I met Don Gross during an ORSA/
TIMS meeting where he gave a presentation involving transient

solutions. I suggested he use the unifomization method, then

called randomization, and he became an early convert.

Together with Doug Miller, he wrote the famous paper “The

Randomization Technique as a Modeling Tool and Solution

Procedure for Transient Markov Processes” (Gross and Miller

1984), which became an instant hit. He gave me full credit

by stating that randomization was “first introduced as a compu-

tational method by Grassmann.” Some people might think that

introducing randomization as a computational method is easy,

but this was not the case. The issue is that there were a

number of standard methods, such as the Runge-Kutta

method, and people claimed that these methods were superior.

As Don Gross told me, this is not true. He stated that randomiz-

ation is often an order of magnitude faster than Runge-Kutta

(Gross 1980). More recent studies have confirmed this assess-

ment (Ingolfsson et al., 2007).

2.2 Extensions

If Markov chains are used to model computer systems or

production systems, the total revenue within a certain time

interval, say from 0 to T, is often of great interest. To handle

this situation, one typically introduces rewards, which accumu-

late at a rate ri while the system is in state i. This implies that the

unconditional reward rate at time t is

rðtÞ ¼
X
i[S

ripiðtÞ:

If �rðTÞ is the total expected reward from 0 to T, one

finds using (3)

�rðTÞ ¼
ðT

0

rðtÞdt ¼
X1
n¼0

X
i[S

rip
n
i

ðT

0

pðn; qtÞdt: ð5Þ

Note that

ðT

0

pðn; qtÞdt ¼ 1

q

X1
m¼nþ1

pðm; qtÞ ¼ 1

q
1�

Xn

m¼0

pðm; qtÞ
 !

:

Since the pi
n and p(n;qt) must be calculated in any event, we

obtain �rðTÞ with little extra effort.

The method just mentioned can be extended to find the var-

iance of the reward accumulating from 0 to T (Grassmann

1987). This is important when dealing with production (Tan

1999), or performability (de Souza e Silva and Gail 1989,

1986). Similar considerations are also important to assess the

efficiency of simulation (Grassmann and Luo 2005, Lock

1988, Oni 2003, Sethi 2007). It is more difficult to obtain the

entire distribution of the actual total reward from 0 to T, but

this can be done as well (de Souza e Silva and Gail 2000,

1989, 1986).

Uniformization can also be used to deal with embedded

Markov chains (Ferreira and Pacheco 2006, Grassmann

FOUR CANADIAN CONTRIBUTIONS TO STOCHASTIC MODELING 5

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

1982). In this case, one needs integrals of the form

ð1

0

piðtÞdGðtÞ;

where G(t) is a given distribution. Using arguments similar to

the ones used to derive (5), one can determine this integral

by replacing p(n;qt) in (3) by

ð1

0

pðn; qtÞdGðtÞ:

For efficient methods to find this integral, see Grassmann

(1982).

Randomization is used extensively for finding waiting times

(Grassmann 1977b, Melamed and Yadin 1984a,b). To do this,

one tags a customer, and follows this customer through the

system. To the system, one now adds an absorbing state, say

ø, which represents the fact that the tagged customer has left.

Then it follows that

PfWait , tg ¼ pøðtÞ:

2.3 Algorithms Involving No Subtractions

It is noteworthy that the uniformization method does not

involve any subtractions, a property is shares with the

Grassmann/Taksar/Heyman (GTH) algorithm (Grassmann

et al., 1985). In Grassmann (1993), it is shown that algorithms

not containing subtractions are numerically very stable. The

reason is that such algorithms avoid subtractive cancellation,

a term that refers to the often catastrophic loss of digits when

forming the difference of two floating point numbers of

approximately equal size. It can be shown that when there are

no subtractions, one needs only consider the relative as

opposed to the absolute errors (Grassmann 1993). However,

the classical way to deal with rounding involves adding error

terms, and this is inappropriate when dealing with relative

errors. Numerical analysts trained in classical methods have

some difficulty with this, as I learned both as an author and

as an associate editor. In fact, my first attempt to publish the

randomization method met with a rejection. The referee

claimed that the randomization method is unstable, and that

the Runge-Kutta would be a far better method. His argument

was as follows: it is known that the Taylor expansion of p(t),

given by

pðtÞ ¼ pð0ÞeQt ¼ pð0Þ
X1
n¼0

ðQtÞn=n! ð6Þ

is numerically unstable. The reason is that for high enough t,

the term (Qt)n/n! increases rapidly with t and initially even

with n. The sum of all terms must be a probability, that is,

it must be between 0 and 1, which implies that there is

rampant subtractive cancellation. The referee then noted

that (3) is also a Taylor expansion, which can be shown as

follows:

pð0ÞeðP�IÞqt ¼
X1
n¼0

pð0ÞPne�qtðqtÞn=n! ¼
X1
n¼0

pð0ÞPnpðn; qtÞ:

This, however, immediately leads to (3). Hence, for the

referee, the case was clear: Taylor expansions are numerically

unstable, and what my submission proposed was a Taylor

expansion. What he missed was that P has no negative

elements, and consequently no subtractive cancellation. In

fact, an upper and a lower bound for the relative rounding

error of (3) is given in equation (19) of Grassmann (1993),

and these bounds are very narrow and sufficient for most

practical purposes.

2.4 Other Issues

When applying uniformization, one has to calculate a prob-

ability for each state i [S. Unfortunately, N, the number of

states in S, increases exponentially with the number of state

variables, and even for small systems, N can reach a thousand

or even a million. Even though systems with N as high as one

million can be solved by uniformization, we have to face the

fact that systems with hundreds or more state variables

cannot be solved that way. In fact, aside from simulation,

there is no generally applicable method to find transient or

even equilibrium solutions for such systems. On the other

hand, for theoretical investigations, small systems are prefer-

able, because tracking more than three or four state variables

challenges the ability of most investigators.

The fact that uniformization can be applied to systems with a

large state space stems from the fact that the transition matrices

corresponding to MESs are typically sparse. This is true

because if nE is the number of events, then each row of Q

can have at most nE non-zero entries, and the number of all

entries of Q is NnE , as opposed to N2 when Q is dense.

Typically, nE is related to the number of state variables, and

it seldom exceeds the square of the number of state variables.

The challenge is therefore to preserve sparsity during all calcu-

lations. This excludes, for instance, methods that rely on matrix

squaring.

Jensen’s method cannot be used for systems that change

continuously over time, say when arrival rates change

during the day. To overcome this, one can slice the time into

intervals, which Q remaining constant throughout the interval.

The probabilities found at the end of each interval can then be

used as the starting probabilities of the next interval. This

method has been used by Ingolfsson et al. (2007), who

provide a comparison of several methods that can deal with

this situation.

A third problem arising in Jensen’s method is the issue of

stiffness (Reibman et al., 1989), which expresses itself by

having diagonal elements varying over several orders of

WINFRIED K. GRASSMANN ET AL.6

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

magnitude. There are several methods to overcome this

problem. For instance, van Moorsel and Sanders (1994) intro-

duced the idea of adaptive randomization. In Carrasco and

Calderon (1995), the idea was to convert the system into one

that is less stiff. Another idea is to partition such systems

(Miller 1983).

If some state variables have no upper bound, the state space

is infinite, and the transition matrix has to be constructed on the

fly, say by some breadth-first algorithm. Also, in this case, rates

can approach infinity as a particular state variable increases.

Both problems can be overcome by using adaptive uniformiza-

tion (van Moorsel and Sanders 1994).

2.5 Conclusions

As a summary of our discussion, let me quote Sidje et al.

(2007), who write:

“Markovian analysts have traditionally used the uni-
formization method, which still remains very popular.
Evidence suggests that it can work very well, especially
on nonstiff problems, and this is the reason why
it remains one of the most widely used method for
computing transient solutions.”

Of course, I fully agree with this assessment, but I would

like to add two further comments: (1) For queueing systems

involving only 1 or 2 queues, the computational complexity

of uniformization does not challenge today’s computers, and

the main cost is really the time of the analyst formulating and

programming his model. (2) Uniformization is probably one

of the fastest methods to program, and since one need not

worry about rounding errors, the programmer does not need

to be a specialist in numerical analysis.

3. MARKOV DECISION PROCESSES

From performance evaluation for Markov chains, via uniformi-

zation, we now turn to optimization of Markov chains, via

Markov Decision Processes.

I (MLP) first heard the term “dynamic programming” in

1965 while an undergraduate math major at Cornell. I was

sitting outside the student union building one warm Spring

day, having survived a brutal Ithaca winter, chatting with an

industrial engineering student I knew about operations research

and its subfields linear programming, dynamic programming

and simulation. Without even knowing what it was, I found

the term dynamic programming curiously engaging. Little did

I know at that time that it would be the focus of the next 42

(and still counting) years of my career.

Shift forward to 1968, when I was an Operations Research

Ph.D student at Stanford and taking a course in dynamic pro-

gramming from Don Iglehart. I was intrigued by the wide appli-

cability and elegant theory of dynamic programming (a term

that I view as synonymous with Markov decision processes).

I was especially drawn to the rich theory of value iteration

and contraction mappings (Shapley 1953, Denardo 1967),

policy iteration (Howard 1960), and sensitive optimality

(Blackwell 1962, Veinott, Jr. 1969). While walking across

campus following our class, fellow Ph.D. student Robert

W. (Bob) Rosenthal (Radner and Ray 2003) raised the question

“Why does policy iteration work so well?” This intriguing

question proved to be the main focus of my research on MDP

theory and algorithms throughout the 70s.

While at Stanford I also took courses by Chernoff and

Siegmund on sequential analysis and by Karlin and Chung on

stochastic processes in addition to math courses in

real analysis, functional analysis and partial differential

equations. This rigorous foundation would prove invaluable

to my subsequent research on diffusion process control

and MDPs.

When it was time to choose a dissertation topic, my

advisor Arthur F. (Pete) Veinott Jr., suggested I look at the

recent book on diffusion processes by Petr Mandl (Mandl

1968). In particular he wanted me to investigate whether the

sensitive optimality theory for Markov Decision Processes

(Veinott 1969) applied to controlled one-dimensional diffusion

processes. I found Mandl’s book extremely challenging and

had to do considerable background reading in Markov pro-

cesses, differential equations, and functional analysis to under-

stand it. Among other results in my thesis, I developed a theory

of sensitive optimality for controlled one-dimensional diffusion

processes (Puterman 1974) and established the convergence of

policy iteration for controlled multi-dimensional diffusions

(Puterman 1977). The latter research combined methods from

stochastic processes, partial differential equations and

dynamic programming and would provide a lead in to my fun-

damental work on policy iteration.

3.1 Research on Policy Iteration

I completed my dissertation in 1972 while an assistant pro-

fessor at the University of Massachusetts. But the lure of the

west coast was too strong, so my wife, another Stanford

alum, and I moved in 1974 to British Columbia where I

became an Assistant Professor in the Faculty of Commerce at

the University of British Columbia (UBC). During my first

year at UBC, I presented my dissertation research in a study

group in optimal control theory with Ulrich Haussman, Ray

Rishel and Armand Makowski (the latter two were visiting

UBC from the University of Kentucky). One of them

noted that my work appeared related to quasilinearization

(Kalaba 1959).

Investigating this line of research led me to recognize the

link between policy iteration and Newton’s method. This was

formalized in Puterman and Brumelle (1979) in which we

established in considerable generality that policy iteration

was equivalent to Newton’s method applied to the discounted

dynamic programming optimality equation (OE) expressed

FOUR CANADIAN CONTRIBUTIONS TO STOCHASTIC MODELING 7

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

in the form

BvðsÞ ; max
a[A

rðs; aÞ þ l
X
j[S

pð jjs; aÞvð jÞ � vðsÞ
()

¼ 0 ð7Þ

(the notation follows Puterman, 1994). Prior to our research it

was customary to express the OE as the fixed point equation

TvðsÞ ; max
a[A

rðs; aÞ þ l
X
j[S

pð jjs; aÞvð jÞ
()

¼ vðsÞ ð8Þ

so that it was natural to solve it with value iteration.

Newton’s method in its simplest form solves an equation

f(x) ¼ 0, by iteratively computing f 0(xn) and then solving the

linearized form of f (x) ¼ 0 given by

f ðxnÞ � f 0ðxnÞðx� xnÞ ¼ 0 ð9Þ

To establish the relationship between policy iteration and

Newton’s method, we found it convenient to re-express the

OE in the form Bv ¼ 0 so that solving the OE became equival-

ent to finding the zero (or root) of the operator B in a linear

space. We then showed that determining the maximizing

policy in policy iteration corresponded to the differentiation

step in Newton’s method and evaluating a policy corresponded

to solving an equation of the form (9).

Next we addressed Bob Rosenthal’s question of why policy

iteration converged in so few iterations. It was known in great

generality that value iteration converged linearly at rate l.

The numerical analysis literature showed that under certain

smoothness properties on f(x), Newton’s method converged

quadratically. Our work built on this theory to establish con-

ditions under which policy iteration converged quadratically

and to provide error bounds. The culmination of this work

was an analytic theory for policy iteration which showed its

equivalence to Newton’s method and established that policy

iteration converged in significantly fewer iterations than value

iteration. Hence we had an answer to the question Bob

Rosenthal raised many years earlier as well as a formal

theory to build on.

In this research we expressed the policy iteration algorithm

in terms of the recursion

vnþ1 ¼ vn þ ðI � lPnÞ�1
Bvn

where B is defined in (7) the OE above and Pn is the transition

matrix corresponding to the maximizing decision rule at iter-

ation n. Of course, when evaluating a policy in policy iteration,

it was not necessary to compute the above inverse but instead

solve a linear equation which required O(N3) operations

where N is the number of states. We noted that for l , 1

ðI � lPnÞ�1 ¼
X1
m¼0

ðlPnÞm

and therefore we could obtain a class of algorithms by truncat-

ing the above series at Mn. The consequence of this was that

when Mn ¼ 0 for all n, the new algorithm was equivalent to

value iteration, when Mn ¼1 for all n the algorithm was equiv-

alent to policy iteration and in between we had a wide range of

algorithms corresponding to different choices for the sequence

Mn. We referred to this class of algorithms as modified policy

iteration (MPI) and analyzed its theory and computational

properties in Puterman and Shin (1978, 1982). In my opinion,

MPI remains the most efficient approach for solving moderate

size MDPs.

3.2 The Book

At UBC I taught a Ph.D. course on MDPs. I received encour-

agement from several colleagues, most notably Nico van Dijk

of the University of Amsterdam, to formally write up my

course notes. The final impetus came from Dan Heyman and

Matt Sobel whom I met with while attending an Operations

Research Society Meeting in Atlanta in 1985. They were

putting together the Stochastic Models (Heyman and Sobel

1990) volume of the Handbooks in Operations Research and

Management Science series and asked me to write a chapter

on MDPs. This was the encouragement I needed and began

this work during my sabbatical in 1987. Unfortunately, my

article was far too long for a handbook chapter and had to be

condensed significantly. But I had a lot of written material

and a framework to build on for my book Markov Decision

Processes (Puterman 1994). Writing this book became my

passion over the next six years.

I had two main objectives for the book; to create a state of

the art monograph that brought all the beautiful and deep

research on MDPs together in one place using a common nota-

tion, and to provide an introduction to MDPs that would be

accessible to graduate students and researchers. In particular,

I wanted to provide a complete treatment of discounted

models, average reward models, sensitive optimality, and con-

tinuous time models. I had hoped to also include a chapter on

partially observed MDPs but due to other pressing commit-

ments and my wife threatening to leave me if I didn’t finish

the book, I chose to omit this material.

I feel that my book was timely, useful and filled a significant

gap; it has motivated students and researchers, it has been used

as a text at many universities and it has been a source for many

favorable comments and reviews. I am deeply touched when I

visit other universities and find it on my colleagues’ desks or

bookshelves.

The book was published at a time when there was a lull in

MDP research; perhaps because its theory was mature or

perhaps because the main challenges at that point of time

were computational. Shortly thereafter, several different

groups, most notably computer scientists and electrical

engineers, became actively interested in solving very large

MDPs. In collaboration with operations researchers, these

WINFRIED K. GRASSMANN ET AL.8

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

communities created a broad range of techniques under the

headings reinforcement learning, neuro-dynamic programming

and approximate dynamic programming (ADP) that perhaps

have built on the foundations laid out in my book.

3.3 Conclusions

Since completing the book, I have continued my research on

MDP theory and application. With my extensive background

in statistical modelling and application, I focused on problems

which explored the relationship between optimization and esti-

mation. Ding, Puterman, and Bisi (2002) investigated the trade-

off between dynamic parameter estimation and control in a

dynamic newsvendor setting while Carvalho and Puterman

(2005) studied this trade-off in a dynamic pricing environment.

Recently I have begun investigating using MDP methods to

address health care management problems. In Patrick,

Puterman, and Queyranne (2007), we use ADP to determine

an approximately optimal policy for dynamic stochastic multi-

priority patient scheduling. My current research focuses on

extending this work as well as using MDPs methods to

enhance cancer care delivery.

I anticipate that the MDP field will continue to expand, and

that MDP models will become more broadly applied.

Applications in telecommunications, information search and

health care management as well as new theoretical challenges

in approximate dynamic programming will move the field

forward and attract many new researchers. I feel that I

entered the field when many basic research challenges pre-

sented themselves. Good advice from my Stanford advisor

Pete Veinott and our mutual love for mathematical elegance

and rigor inspired my research. I am grateful for this foundation

as well as the opportunity to have worked on MDP problems

with several outstanding Ph.D. students.

4. RANDOM NUMBER GENERATION

In this section, we move away from Markov modeling to a dis-

cussion of the basic building blocks needed to analyze general

stochastic systems via simulation, namely, random number

generators.

When I (PL) received my Ph.D. in 1983, I had never taken a

course on simulation and I had no clue about how computers

were generating random numbers. My thesis was on approxi-

mate dynamic programming for Markov decision processes

with continuous-state spaces, a topic that regained much atten-

tion recently, especially in the area of machine learning. Back

then, I was reading the books of Bertsekas and the papers of

Puterman and others, under the guidance of Alain Haurie. I

was studying DP in general abstract settings on the one hand,

and was developing solution methods based on finite element

approximations of the value function or the policy on the

other hand.

About a year into my first job as a computer science pro-

fessor at Université Laval, in Québec City, I was asked to

teach simulation. This is when I started learning about it, one

chapter ahead of the students. The Random Number

Generation (RNG) chapter was still far ahead when a colleague

who was developing educational computer games came to me

for help. The default Microsoft Basic RNG was giving him

great trouble and I was supposed to be the local expert on simu-

lation and RNGs. In one of the games, a character on the screen

repeatedly moved in one of four possible directions at random.

The program used a random 16-bit integer from the Basic gen-

erator to choose the direction at each step, making use of the

two least significant bits, using a “modulo 4” operation. The

problem was that the successive pairs of bits followed an

easily predictable pattern, making the computer game mean-

ingless. Instead of admitting my zero knowledge about

RNGs, I rushed to read the book chapter and other relevant

references, and to find out what algorithm was used by the

Basic compiler. As it turned out, it was a simple linear con-

gruential generator (LCG), based on a recurrence of the form

xi ¼ axi21 mod m, whose modulus m was a power of 2. It is

well known that for such generators, the least significant bits

of the successive values of xi are periodic with a very short

period, and this was obviously the source of the problem. I

was astonished that such a simplistic and grossly defective

RNG was employed in such highly-popular commercial soft-

ware, and viewed it as an easy opportunity to make a useful

contribution.

My initial goal was just to cook up and implement a better

generator for 16-bit computers. But that led me deeper into

number theory, geometry of numbers, statistical testing, and

efficient implementation tricks for RNGs. I found these fields

quite interesting and I got hooked. About a year later, I had a

Pascal code for a reasonably quick and portable RNG for

32-bit computers, with period length near 261 . This is one

billion times larger than the period of LCGs (with modulus

231 2 2) used in most simulation software at the time. The

new generator combined two LCGs with distinct prime

moduli m1 and m2 , each selected based on a spectral analysis

of its lattice structure, and subtracted their states modulo m1.

It had a much more robust behavior in empirical statistical

tests than the commonly used LCGs.

I showed this to Bennett Fox, a true expert on simulation,

who had chaired my Ph.D. thesis committee at the Université

de Montréal. By an extraordinary coincidence, that same

month, Ben was organizing an invited session on RNGs for

the 1986 Winter Simulation Conference (WSC), the world’s

primary yearly event on discrete-event simulation. He liked

my generator and this became my first WSC paper (L’Ecuyer

1986). There, I received enthusiastic encouragement from

RNG experts such as Luc Devroye, George Fishman, Ulrich

Dieter, and Richard Nance, for example, and that was the

beginning of my long and exciting journey in the world of

simulation research.

FOUR CANADIAN CONTRIBUTIONS TO STOCHASTIC MODELING 9

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

In 1988, a polished and expanded version of this work

appeared in the widely-distributed Communications of the

ACM (L’Ecuyer 1988), which published research articles at

the time. The generator made its way to several books, soft-

ware, and even pocket calculators. I went on to work on

RNGs based on higher-order linear recurrences, of the form

xn ¼ (a1xn21þ . . . þ akxn2k) mod m, with output un ¼ xn/m

(or a variant of this to avoid returning 0), and presented that

at the 1988 WSC. These RNGs, known as multiple recursive

generators (MRG), can have much longer periods and stronger

statistical behavior than the LCGs.

The next year, Shu Tezuka, from IBM Tokyo, noticed that

the pairs of successive numbers produced by my 1986 com-

bined generator were very close to the pairs produced by a par-

ticular (large) LCG with modulus m1 m2. This approximation

property also turned out to be true for vectors of successive

output values in an arbitrary number of dimensions. Tezuka’s

observation was important for the following reason. A key

aspect in the quality of a uniform RNG is the uniformity of

the set Ct of all vectors of t successive output values produced

by the RNG, from all possible initial states, for t ¼ 1,2,3,
For a random initial state (or seed) the RNG returns a vector

uniformly distributed over Ct as an approximation of a uni-

formly distributed vector over [0,1)t. For the approximation to

be good, Ct must cover the unit hypercube very evenly. For

this, a large cardinality of Ct (which usually means a long

period for the RNG) is necessary, but not sufficient. For

certain types of RNGs based on linear recurrences, including

the LCG and MRG, the uniformity is assessed via quantitative

measures that can be computed without generating the points,

by exploiting the mathematical structure of Ct (L’Ecuyer

1994, 2006). In the case of LCGs and MRGs, Ct turns out to

be the intersection of a lattice with the unit hypercube (Knuth

1998, L’Ecuyer 2006). Tezuka’s remark meant that the uni-

formity of the combined LCGs could be measured by analyzing

the lattice structure of the approximating LCG. We published a

joint paper that studied the basic theory for two classes of com-

bined LCGs and their approximation by a single LCG, with

explicit bounds on the differences in their output (L’Ecuyer

and Tezuka 1991).

In L’Ecuyer (1996a), I generalized this theory to combined

MRGs, and went on to construct specific high-quality com-

bined MRG in L’Ecuyer (1999a). One of them, named

MRG32k3a, is now used in a large variety of software tools

for simulation, statistics, finance and risk analysis, gaming

machines, etc. Combined MRGs can be motivated as efficient

ways of implementing (approximately) MRGs with large

moduli and robust statistical behavior, as I now explain. Fast

implementations of simple MRGs are available when several

of the coefficients aj are zero and the others are small, but in

that case, the MRG has too much structure and poor statistical

behavior. As an illustration, one type of widely-used MRG

(even today) is based on a recurrence of the form xn ¼ (xn2r

+ xn2k) mod m for some integers k . r . 0. It turns out

that all triples of output values of the form (un2k, un2r, un) pro-

duced by such a generator lie in only two planes in the three-

dimensional unit cube (L’Ecuyer 1997). This is definitely

very far from uniform! Another class of long-period generators

called add-with-carry and subtract-with-borrow, also

widely-used, have essentially the same property. This, and

many other less obvious structural deficiencies of popular gen-

erators, were uncovered in Couture and L’Ecuyer (1994, 1996,

1997) and Tezuka et al. (1994). Combination is one effective

way of obtaining fast and robust generators. The idea is to

select the components so that a fast implementation is available

for them, while the MRG that approximates the combination

has the best possible uniformity in terms of the lattice structure

of its sets Ct, as measured by the theoretical figures of merit.

The parameters are selected by extensive computer searches.

Similar ideas were developed for RNGs based on linear

recurrences modulo 2, which can run very fast on binary com-

puters because they can be implemented with a few simple

binary operations such as shift, rotation, bitwise or, and

exclusive-or, on blocks of bits (L’Ecuyer and Panneton

2007). Again, one can combine simple components that run

fast, in a way that the combination has very good uniformity

and (of course) a long period. The theory underlying this was

studied in Tezuka and L’Ecuyer (1991), L’Ecuyer (1996b),

and tables of good parameters together with specific implemen-

tations were given in L’Ecuyer (1999b). More recently, in

Panneton et al. (2006), we studied and constructed generators

with extremely long periods (up to 244497 2 1) and excellent

uniformity, also based on linear recurrences modulo 2.

A important concept that I have kept advocating for many

years in stochastic simulation is the need for RNGs with mul-

tiple streams and substreams. One should be able to declare

and create RNGs just like any other type of variable or object

in a programming language. These virtual RNGs, often called

streams, produce a very long sequence of random numbers,

and can themselves be split into substreams, which are long

enough to preclude any potential overlap. For any stream, one

should be able to generate the next number, to rewind the

stream to its starting point, or to the beginning of the current

substream, or to the beginning of the next substream. An

early version of this was proposed by L’Ecuyer and Côté

(1991), with a restricted number of streams. A more recent

implementation that provides a practically unlimited number

of streams and substreams (L’Ecuyer et al., 2002) has been

adopted recently in high-profile software such as SAS, Arena,

Witness, Simul8, and Automod, among others. The streams

and substreams are implemented from a single backbone gen-

erator, by cutting its sequence into several long disjoint

pieces. This requires efficient algorithms to jump ahead

quickly by an arbitrary number of steps in the sequence

(L’Ecuyer et al., 2002, L’Ecuyer 2006, Haramoto et al., 2007).

The usefulness of these streams and substreams can be illus-

trated with a small example. Suppose we want to estimate n ¼

E[X2 2 X1], where X1 and X2 are the performances of two

WINFRIED K. GRASSMANN ET AL.10

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

similar systems; for example, a telephone call center with two

slightly different numbers of agents to answer the calls, or a

manufacturing system in which some conveyors or machines

have slightly different speeds. This type of estimation

problem often occurs in sensitivity analysis and in simulation-

based optimization. We would like to estimate n by simulating

the two similar systems with common random numbers (the

same uniform random numbers used for the same purpose for

both systems, whenever possible, to minimize the noise in

the difference), repeat this n times independently, and

compute a confidence interval on n from the n independent

copies of X2 2 X1. Sometimes, a random number used for

one system is not needed in the other system (for example, if

a customer receives service in one case and abandons in the

other case). To make sure that the same random numbers are

used for the same purpose, we would devote one stream to

each type of random number used in the simulation (e.g., one

for service times and one for interarrival times in a queueing

system, one for the size of orders in an inventory system,

etc.). For each stream, we use n different substreams for the n

replications. At the beginning of a replication, each stream is

placed to the beginning of a new substream and the model is

simulated to compute X1. Then each stream is reset to the

beginning of its current substream and we simulate the model

again to compute X2. This ensures that exactly the same

sequences of random numbers, for each type, are used for

both X1 and X2. Each stream is then moved to the beginning

of the next substream for the next pair of runs.

4.1 Conclusions

My involvement with RNGs started with a very lucky coinci-

dence. By yet another coincidence, I am writing these lines

while attending the 2007 WSC, 21 years later, in exactly the

same city (Washington D.C.) as the 1986 WSC. To celebrate

the 40th anniversary of this conference, a special committee

has selected 10 landmark papers that had an important

impact on the field, among the nearly 10,000 papers published

in the conference proceedings during those 40 years, and a

special celebration was organized to honor their authors.

Amazingly, my 1986 paper is among the ten! That paper was

actually very simple and I had no idea at that time that it

could lead me that far. But it was the seed of all my subsequent

work and contributions to RNGs. In that sense, it has certainly

been a landmark of my scientific life.

In retrospective, my journey was successful mainly because it

started as an attempt to satisfy a concrete need for a better algor-

ithm and to provide an efficient software implementation. The

user’s viewpoint defined the target. At the same time, I was

ready to devote the required efforts to understand the underlying

mathematics, especially after my 1986 paper. Most researchers

on RNGs can be classified as either theoreticians who study

mathematical properties without paying much attention to con-

crete implementations, or hackers who pay minimal attention to

the theory (they do not take time to study it) and concentrate on

clever programming tricks. Over the past two decades, it was

very important to me to stay at the leading edge in both the

theory and implementation aspects, and I have been one of the

very few researchers on RNGs to do so. This alliance of theory

with practice has been the key to my success.

This story only gives a partial and oversimplified view of my

work on RNGs. It skips several other exciting topics: random-

ized quasi-Monte Carlo methods (for which the tools are actu-

ally very similar to those used for RNG analysis), variance

reduction techniques, rare-event simulation, gradient estimation

and stochastic optimization by simulation, and applications in

various areas such as manufacturing, finance, telecommunica-

tions, and call center management. To learn more about this,

the reader is invited to browse through the research publications

available at http://www.iro.umontreal.ca/�lecuyer/.

5. QUEUEING THEORY SOFTWARE

In this final section, we move back to Markov modeling, and

discuss barriers to the widespread use of Markovian queueing

models in practice and how software might lower some of

those barriers.

Markovian queues in steady state (notable the M/M/c and

M/M/c/n models) are among the most widely used stochastic

models in operational research. These models have been used

by telephone engineers since they were developed by Erlang

in the early part of the twentieth century, and later for the analy-

sis of telecommunication, computer, manufacturing, and service

systems. They are beginning to see use in health care systems

modeling. Many engineering and computer science students

and most business students learn about these basic models.

And yet, despite the long list of areas where these results

have been found useful and the large number of students that

have learned about them, I (AI) often see or hear about situ-

ations where simple queueing analysis could have been valu-

able but was not used. I am sure that other operational

researchers have had similar experiences, and not just with

queueing analysis. However, I think the barriers against use

are more extreme for queueing theory than other OR

methods, such as linear programming or simulation, for the fol-

lowing reasons:

Higher level of abstraction: It is more difficult to explain

how a Markov chain works and how it can model reality

than, say, a linear program or a simulation. The concept of

“steady state” is especially difficult to explain.

Assumptions that are perceived as limiting: Those who do

grasp the concepts of memoryless holding times and limiting

state probabilities often dismiss queueing results as irrelevant

because the assumptions appear unrealistic. It is also

common to assume that queueing theory is limited to steady

state results. Many practitioners and academics are not aware

of the relative ease with which transient probabilities can be

computed for a variety of realistic systems, as discussed in

Section 2.

FOUR CANADIAN CONTRIBUTIONS TO STOCHASTIC MODELING 11

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

Difficulty in performing calculations: Even when prac-

titioners do see the potential for using queueing analysis,

they may run into difficulties in computing the numerical

answers they need, if they lack training in programming and

numerical analysis, or the time needed to write their own code.

I developed the Queueing ToolPak (QTP, Ingolfsson and

Gallop 2003) in an attempt to lower at least the last of these bar-

riers. QTP is a free spreadsheet add-in for Microsoft Excel that

provides a set of functions to compute such quantities as

average waiting times or the minimum number of servers

needed to achieve a given service level. I chose to develop

the software as a spreadsheet add-in because with current tech-

nology, electronic spreadsheets are probably the computing

platform that the largest number of people have easy access

to and are familiar with. With familiarity come expectations,

for example, that computations in spreadsheets are updated

automatically when inputs are changed, and the QTP functions

conform with that expectation. This is somewhat different from

the way that academics often think of computations, as requir-

ing one to “run a program,” which in software design often gets

translated into requiring the user to “click a button” to perform

calculations. By designing the QTP functions to work the same

way as other spreadsheet functions work, my hope was that

users would find them easier to use and easier to incorporate

as building blocks in larger models. Initially, I developed

QTP for educational purposes and it is used for teaching at

many universities. However, over time I found that prac-

titioners would use QTP as a component to develop customized

spreadsheets for their clients and even academics would use it

for research purposes.

One thing I discovered when developing QTP was that

although formulas for M/M/c/n were developed almost a

century ago and they appear in countless introductory text-

books, it is not obvious how to implement computational algor-

ithms that work reliably across a wide range of input parameter

values, particularly system size, as measured by the number of

servers. The primary reason that I continued to develop QTP

beyond version 1.0 was that users contacted me about situations

where a particular set of input parameters caused the functions

to return errors. Readers who are evaluating queueing software

or developing their own code for queueing calculations may

find the following test case useful: an M/M/c queue with a

service rate m of 1, number of servers s ¼ x, and an arrival

rate l ¼ 0.9x. Many software packages fail when x exceeds

750, including the first version of QTP. Researchers have recog-

nized these numerical difficulties and partly because of them

have developed asymptotic approximations for relatively

simple Markovian queueing models such as the M/M/c

queue (Halfin and Whitt 1981) and the M/M/c þ M queue

(Garnett et al., 2002), where customers renege after an expo-

nentially distributed amount of time. In recent work, I have

focused on developing a general algorithm to reliably

compute performance measures for birth-death processes

with limiting state probabilities that decay geometrically or

faster—a class that includes the M/M/c, M/M/c þ M, and

many other models. The basic ideas are to compute the prob-

abilities recursively, to start the recursion at a state that one

expects a priori to have relatively high probability, to rescale

the probabilities so that they add up to one after every iteration,

and to use error bounds to truncate the upper and lower tails of

the state space.

In conclusion, to echo comments from the previous section, I

consider it important to understand the needs of users and poten-

tial users of stochastic models and to take advantage of that

understanding to increase the impact of our field, whether it is

through advances in theory, computation, or software design.

REFERENCES
Blackwell, D. 1962. Discrete dynamic programming. Annals

Mathematical Statistics 3, 719–726.

Carrasco, J. A. and Calderon, A. 1995. Regenerative randomization:

Theory and application examples. Performance Evaluation

Review 23, 23–241.

Carvalho, A. and Puterman, M. L. 2005. Learning and pricing in an

internet environment with binomial demands. Journal of Revenue

and Pricing Management 3, 320–336.

Ciardo, G. 2007. SMART, a stochastic model checking analyser for

reliability and timing. http://www.cs.urs.edu/~ciardo/SMART.

Accessed June 11 2007.

Couture, R. and L’Ecuyer, P. 1994. On the lattice structure of certain

linear congruential sequences related to AWC/SWB generators.

Mathematics of Computation 62, 798–808.

Couture, R. and L’Ecuyer, P. 1996. Orbits and lattices for linear

random number generators with composite moduli. Mathematics

of Computation 65, 189–201.

Couture, R. and L’Ecuyer, P. 1997. Distribution properties of

multiply-with-carry random number generators. Mathematics of

Computation 66, 591–607.

Daigle, J. N. 1992. Queueing Theory for Telecommunication.

Addison-Wesley, Reading, MA.

de Souza e Silva, E. and Gail, H. R. 1986. Calculating cumulative

operational time distributions of repairable computer systems.

IEEE Transactions on Computers 35, 322–332.

de Souza e Silva, E. and Gail, H. R. 1989. Calculating availability and

performability measures of repairable computer systems using

randomization. Journal of the ACM 36, 171–193.

de Souza e Silva, E. and Gail, H. R. 2000. Transient solutions for

Markov chains. Grassmann, W. K., ed., Computational

Probability. International Series in Operations Research and

Management Science, Kluwer, Boston, MA, 43–79.

Denardo, E. V. 1967. Contraction mappings in the theory underlying

dynamic programming. SIAM Review 9, 165–177.

Ding, X., Puterman, M. L., and Bisi, A. 2002. The censored newsven-

dor and the optimal acquisition of information. Operations

Research 50, 517–527.

Feller, William. 1971. An Introduction to Probability Theory and its

Applications, vol. 2. 2nd ed. Wiley, New York.

Ferreira, F. and Pacheco, A. 2006. Analysis of the GI/M/s/c queues

using uniformization. Computers and Mathematics with

Applications 51, 291–304.

WINFRIED K. GRASSMANN ET AL.12

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

Garnett, O., Mandelbaum, A., and Reiman, M. I. 2002. Designing a

call center with impatient customers. Manufacturing & Service

Operations Management 4, 208–227.

Grassmann, W. K. 1977a. Transient solutions in Markovian queueing

systems. Computers & Operations Research 4, 47–53.

Grassmann, W. K. 1977b. Transient solutions in Markovian queues.

European Journal of Operational Research 1, 396–402.

Grassmann, W. K. 1982. The GI/PH/1 queue: A method to find the

transition matrix. INFOR 20, 144–156.

Grassmann, W. K. 1987. Means and variances of time averages in

Markovian environments. European Journal ofOperational

Research 31, 132–139.

Grassmann, W. K. 1991. Finding transient solutions in Markovian event

systems through randomization. Stewart, W. J., ed., Numerical

Solutions of Markov Chains. Marcel Dekker, New York.

Grassmann, W. K. 1993. Rounding errors in certain algorithms invol-

ving Markov chains. ACM Transactions on Mathematical Software

19, 496–508.

Grassmann, W. K. and Luo, J. 2005. Simulating Markov-reward pro-

cesses with rare events. ACM Transactions on Modeling and

Computer Simulation 15, 138–154.

Grassmann, W. K. and Ngai, T. K. 1971. Program description for tran-

sient solutions in continuous Markov chains. SHARE Program

Library Agency, Program 360D-15.0.005, Research Triangle

Park, North Carolina.

Grassmann, W. K., Taksar, M. I., and Heyman, D. P. 1985.

Regenerative analysis and steady state distributions for Markov

chains. Operations Research 33, 1107–1116.

Gross, D. 1980. Personal communication.

Gross, D. and Harris, C. M. 1998. Fundamentals of Queueing Theory.

3rd ed. Wiley, New York.

Gross, D. and Miller, D. R. 1984. The randomization technique as a

modeling tool and solution procedure for transient Markov pro-

cesses. Operations Research 32, 343–361.

Grossman, T. A. 2002. Spreadsheet add-ins for OR/MS. OR/MS

Today 29(4) 46–51.

Halfin, S. and Whitt, W. 1981. Heavy-traffic limits for queues with

many exponential servers. Operations Research 29, 567–587.

Haramoto, H., Matsumoto, M., Nishimura, T., Panneton, F., and

L’Ecuyer, P.. 2007. Efficient jump ahead for F2-linear

random number generators. INFORMS Journal on Computing

(to appear).

Heyman, D. and Sobel, M. J. 1990. Handbooks in Operations

Research and Management Science, Volume 2: Stochastic

Models. North Holland, Amsterdam.

Howard, R. A. 1960. Dynamic Programming and Markov Processes.

MIT Press, Cambridge, MA.

Ingolfsson, A. and Gallop, F. 2003. Queueing toolpak 4.0. http://
www.business.ualberta.ca/aingolfsson/qtp/, accessed Jan. 21,

2008.

Ingolfsson, A. E., Akhmetshina, E., Budge, S., Li, Y., and Wu, X.

2007. A survey and experimental comparison of service level

approximation methods for non-stationary M/M/s queueing

systems. INFORMS Journal of Computing 19, 201–214.

Jain, J. L., Mohanti, S. G., and Bohm, W. 2007. A Course on Queueing

Models. Chapman and Hall, Boca Raton, Florida.

Jensen, A. 1953. Markoff chains as an aid in the study of Markoff

processes. Skandinavisk Aktuar-ietidskrift 36, 87–91.

Kalaba, R. 1959. On the nonlinear differential equations, the

maximum operator and monotone convergence. Journal of

Mathematics and Mechanics 9, 519–574.

Kao, E. P. C. 1997. An Introduction to Stochastic Processes. Duxbury

Press, New York.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2:

Seminumerical Algorithms. 3rd ed. Addison-Wesley, Reading, MA.

L’Ecuyer, P. 1986. Efficient and portable 32-bit random variate

generators. Proceedings of the 1986 Winter Simulation

Conference. 275–277.

L’Ecuyer, P. 1988. Efficient and portable combined random

number generators. Communications of the ACM 31 742-749 and

774. See also the correspondence in the same journal, 32 (1989)

1019–1024.

L’Ecuyer, P. 1994. Uniform random number generation. Annals of

Operations Research 53, 77–120.

L’Ecuyer, P. 1996a. Combined multiple recursive random number

generators. Operations Research 44, 816–822.

L’Ecuyer, P. 1996b. Maximally equidistributed combined Tausworthe

generators. Mathematics of Computation 65, 203–213.

L’Ecuyer, P. 1997. Bad lattice structures for vectors of non-successive

values produced by some linear recurrences. INFORMS Journal on

Computing 9, 57–60.

L’Ecuyer, P. 1999a. Good parameters and implementations for

combined multiple recursive random number generators.

Operations Research 47, 159–164.

L’Ecuyer, P. 1999b. Tables of maximally equidistributed combined

LFSR generators. Mathematics of Computation 68, 261–269.

L’Ecuyer, P. 2006. Uniform random number generation.

Henderson, S. G. and Nelson, B. L., eds., Simulation. Handbooks

in Operations Research and Management Science, Elsevier,

Amsterdam, 55–81.

L’Ecuyer, P. and Côté, S. 1991. Implementing a random number

package with splitting facilities. ACM Transactions on

Mathematical Software 17, 98–111.

L’Ecuyer, P. and Panneton, F. 2007. F2-linear random number genera-

tors. GERAD Report 2007-21 (submitted for publication).

L’Ecuyer, P., Simard, R., Chen, E. J., and Kelton, W. D. 2002. An

object-oriented random-number package with many long streams

and substreams. Operations Research 50, 1073–1075.

L’Ecuyer, P. and Tezuka, S. 1991. Structural properties for two classes

of combined random number generators. Mathematics of

Computation 57, 735–746.

Lock, S. W. K. 1988. Some experimental designs for determining run-

lengths in simulation. Master’s thesis, Department of Computer

Science, University of Saskatchewan, Saskatoon, Canada.

Love, C. E. 1977. Purchase/replacement rules for decaying service

facilities. Computers & Operations Research 4, 111–118.

Mandl, P. 1968. Analytic Treatment of One-Dimensional Markov

Processes. Springer-Verlag, New York.

Melamed, B and Yadin, M. 1984a. Numerical computations of

sojourn-time distributions in queueing networks. Journal of the

ACM 31, 839–854.

Melamed, B. and Yadin, M. 1984b. Randomization procedures in the

computation of cumulative-time distributions over discrete state

Markov processes. Operations Research 32, 926–944.

Miller, D. R. 1983. Reliability calculations using randomization

for Markovian fault-tolerant computing systems. 13th Annual

FOUR CANADIAN CONTRIBUTIONS TO STOCHASTIC MODELING 13

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

International Symposium on Fault-Tolerant Computing. IEEE

Computer Society, Silver Springs, MD.

Oni, O. A. 2003. Initial bias in the simulation of Markovian event

systems. Master’s thesis, Department of Computer Science,

University of Saskatchewan, Saskatoon, Canada.

Panneton, F., L’Ecuyer, P., and Matsumoto., M. 2006. Improved long-

period generators based on linear recurrences modulo 2. ACM

Transactions on Mathematical Software 32, 1–16.

Patrick, J., Puterman, M. L., and Queyranne, M. 2007. Dynamic multi-

priority patient scheduling for a diagnostic resource. Operations

Research (under review).

Powell, W. 2007. Approximate Dynamic Programming. Wiley,

New York.

Puterman, M. L. 1974. Sensitive discount optimality in controlled one

dimensional diffusions. Annals of Probability 2, 408–419.

Puterman, M. L. 1977. Optimal control of diffusion processes with

reflection. Journal of Optimization Theory and Its Applications 22,

103–115.

Puterman, M. L. 1990. Markov decision processes. Heyman, D. P. and

Sobel, M. J., eds., Handbooks in Operations Research and

Management Science, Volume 2: Stochastic Models. North

Holland, Amsterdam, 331–434.

WINFRIED K. GRASSMANN ET AL.14

INFOR, Vol. 46, No. 1, February 2008, pp. 3–14 DOI 10.3138/infor.46.1.3
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2008 INFOR Journal

