
Benchmark Suite for Industrial and Tramp Ship Routing and
Scheduling Problems

Ahmad Hemmati1, Lars Magnus Hvattum1, Inge Norstad2, Kjetil Fagerholt1

1 Department of Industrial Economics and Technology Management, Norwegian University of Science
and Technology, Alfred Getz veg 3, NO-7491 Trondheim, Norway

e-mail: ahmad.hemmati@iot.ntnu.no; lars.m.hvattum@iot.ntnu.no; kjetil.fagerholt@iot.ntnu.no

2 Norwegian Marine Technology Research Institute (MARINTEK), POB 4125 Valentinlyst, NO-7450

Trondheim, Norway
e-mail: inge.norstad@marintek.sintef.no

Abstract -- This paper considers a class of cargo ship routing and scheduling problems from industrial
and tramp shipping and presents a wide range of benchmark instances that have been created to
represent realistic planning problems for various shipping segments. Initial results for the benchmark
instances are provided both through exact and heuristic methods. Optimal solutions to smaller problem
instances are provided by a commercial mixed-integer programming solver, and high-quality solutions
to larger problem instances are provided by a state-of-the-art adaptive large neighborhood search
heuristic. The provided benchmark instances, as well as an instance generator, intend to stimulate
future development of solution algorithms for this important planning problem, and to provide a basis
for modelling and solving various real-life problem extensions that go beyond what is included in the
benchmark instances.

Keywords maritime transportation, instance generation, pick-up and delivery, adaptive large
neighborhood search.

1. INTRODUCTION

International trade heavily depends on maritime transportation with more than nine billion tons of
goods carried at sea annually by a world fleet with capacity of more than 1.6 billion deadweight tons
(UNCTAD, 2013). It is common to distinguish between the following three modes of operation in
maritime transportation (Lawrence, 1972): liner, industrial and tramp shipping. Liner shipping
resembles bus line operations since the ships follow published schedules and itineraries. Container
shipping belongs to this mode. An industrial operator owns the cargoes and controls the ships, trying
to minimize the cost of transporting its own cargoes, similar to a private fleet. Tramp shipping has
similarities with taxi services, where the ships follow the available cargoes, usually with a mix of
mandatory contract cargoes and optional spot ones.

In this paper we focus on industrial and tramp shipping, which have several similarities when it comes
to operational characteristics. Oil and bulk products, which constitute about 60% of the total amount
of goods carried at sea, are almost entirely transported within these two modes of operation. Al-
Khayyal and Hwang (2007) distinguish between cargo routing and inventory routing, which both may
appear in industrial and tramp shipping. We focus in this paper on cargo routing, which involves the
problem of routing a fleet of ships to service a number of cargoes that are given as input to the
planning process, in contrast to inventory routing where the cargoes are determined through the
planning process itself.

In this class of problems, a shipping company has a set of mandatory contract cargoes that it is
committed to carry. Typically in a tramp shipping company, these mandatory contract cargoes come
from long-term agreements between the shipping company and the cargo owners, while an industrial
operator transports its own cargoes. Each cargo in the given planning period must be picked up at its
port of loading, transported and then delivered to its corresponding discharging port. There are time
windows given, within which the loading of the cargoes must start, and there may also exist time
windows for discharging. The shipping company controls a heterogeneous fleet of ships to transport
the cargoes, each ship with a given initial position, possibly at sea, and a time for when it becomes
available for new transport assignments. There may be compatibility constraints between ships and
cargoes, for example because some ships cannot enter a cargo’s loading or discharging port due to
draft limitations. The challenge for the industrial operator is to construct routes and schedules such as
to minimize costs. Tramp shipping companies will also try to increase their revenue by transporting
optional spot cargoes, so their objective, in addition to constructing routes and schedules, is to select
the optional spot cargoes so as to maximize profits.

It is common to distinguish between deep sea and short sea shipping problems. In deep sea shipping,
the cargoes are often transported long distances across (at least) one of the big oceans giving long
sailing times. In short sea shipping, the operation is only regional, for example within the
Mediterranean Sea. Deep sea and short sea shipping problems give different underlying topologies.

Furthermore, it is also common to distinguish between full load and mixed load problems. Whereas for
major bulk commodities a cargo is usually a full shipload, the ship capacity may accommodate several
cargoes simultaneously for minor bulk commodities and chemicals where the shipments are smaller.
The latter is referred to as the mixed load case. In the full load case, the problem simplifies compared
to the case where a ship may carry several cargoes simultaneously.

The planners of an industrial or tramp shipping company basically must solve, on a daily basis, a ship
routing and scheduling problem which in structure has many similarities to the multi-vehicle pickup
and delivery problem with time windows (m-PDPTW) described by Desrosiers et al. (1995). However,
there are also a number of differences in the operational environment between cargo routing problems
in industrial and tramp shipping and the m-PDPTW that arise for example in land transport, see the
discussions by Ronen (1983) and Christiansen et al. (2004). The most important ones are perhaps that
the fleet is heterogeneous, that ships operate around the clock and do not start from a common depot,
that not all ships and cargoes are compatible, and that the travel distances are based on a different
topology.

Christiansen et al. (2013) present a recent general survey on ship routing and scheduling, and show
that the research within this topic has blossomed and that its volume has more than doubled compared
with the previous decade. A large share of this research is on cargo routing problems in industrial and
tramp shipping, see for example (Brønmo et al., 2007; Hwang et al., 2008; Korsvik et al., 2010;
Maliappi et al., 2011; Jetlund and Karimi, 2004; Lin and Liu, 2011).

Despite the recent increase in research on ship routing and scheduling, this transportation mode still
receives little attention compared to its importance. One of the reasons for this lack of attention is
probably the barriers for researchers to engage in such problems due to lack of standardized data.
Much of the previous research has been performed on real life problems that cannot be shared due to
confidentiality issues, or on ad hoc, randomly generated instances that do not sufficiently capture the
particular features of maritime transportation. There is therefore a need to develop standardized
benchmark problem instances for industrial and tramp ship cargo routing and scheduling problems.
This was also pointed out by Maliappi et al. (2011). Such benchmark instancess have been developed
for various vehicle routing problems, such as Solomon’s instances (Solomon, 1987) for the vehicle
routing problem with time windows, and have undoubtedly resulted in an increased research interest
and many important contributions.

Recently, benchmark problem instances have been developed also for specific maritime routing
problems. Brouer et al. (2013) present an integer programming model and a benchmark suite for liner
shipping network design. Their benchmark suite, which is made to reflect the business structure of a
global liner shipping network, is presented and discussed in relation to industry standards, business
rules, and mathematical programming. The benchmark instances are developed based on real-life data
from a global liner-shipping company and supplemented by data from several industry and public
stakeholders. Similarly, Papageorgiou et al. (2014) present a library of test instances for deep-sea
single-product maritime inventory routing problems. They also propose a mixed-integer programming
model for solving the problem, which is used to provide best known results for the benchmark
instances.

Our main contribution in this paper is to present and make available a wide range of realistic
benchmark instances for industrial and tramp ship cargo routing and scheduling problems, as well as
an instance generator for generating additional instances. These benchmark instances have been
developed so that they reflect various shipping segments, such as both deep sea and short sea shipping
and full load and mixed load problems. Wee also present a state-of-the-art adaptive large
neighborhood search (ALNS) implementation to solve the problem. Finally, we present a
computational study illustrating the performance of the ALNS heuristic and a commercial MIP solver
directly solving a mathematical formulation of the cargo routing problem.

The main goal of this work is that other researchers will use our benchmark instances, as well as our
instance generator, for developing better solution algorithms for this important planning problem.
Furthermore, we hope the paper will stimulate researchers to model and solve various real life
extensions to this problem that also go beyond what is included in our benchmark instances, such as
speed optimization (Norstad et al., 2011; Psaraftis and Kontovas, 2013), inclusion of bunkering
decisions (Bebes and Savin, 2009; Vilhelmsen et al., 2014) and environmental regulations (Kontovas
and Psaraftis, 2011). The instances presented in this paper can be used as a basis for such extensions.

The rest of this paper is organized as follows. A formulation of the ship routing and scheduling
problem considered in this paper is given in Section 2. The generation of the benchmark instances is
described in Section 3. The ALNS heuristic proposed for solving the problem is presented in Section
4Section 5 presents the computational study, while concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

We consider a shipping company, operating either within tramp shipping or industrial shipping, which
operates a heterogeneous fleet of ships. At a given point in time we consider a static and deterministic
planning problem, consisting of determining how the fleet of ships should service a set of known
cargoes. The ships may have different capacities, service speeds and cost structures, and due to
previous assignments, they become available for new assignments at different times and different
locations. In addition, some ships may be prevented from carrying certain cargoes due to
incompatibilities

If a cargo is assigned to a ship, the ship must load the cargo in its corresponding loading port and later
unload the cargo in its unloading port. All loading and unloading operations must be performed within
a time interval that is specific to that operation for a given cargo. Ship capacities must not be violated.
The shipping company may choose to use spot charter to transport a given cargo, instead of carrying it
using one of its own ships.

Below is a general mathematical formulation of the industrial and tramp cargo routing and scheduling
problem, where the set of ships is denoted by ܸ, and the capacity of ship ݒ ∈ ܸ is ܭ௩ . If we let ݅
denote a cargo, there is a node ݅ corresponding to the loading port and a node ݅ ൅ ݊ corresponding to
the unloading port, with ݊ being the number of cargoes. The set of loading nodes is denoted by ܰ௉,
and the set of unloading nodes is denoted by ܰ஽. The set of nodes that can be visited by ship ݒ is ௩ܰ,
and this set includes an origin node ݋ሺݒሻ and an artificial destination node ݀ሺݒሻ. The set of arcs that
ship ݒ can traverse is ܣ௩. We also introduce the shorthand ௩ܰ

௉ ൌ ܰ௉ ∩ ௩ܰ for loading nodes that can
be visited by ship ݒ, and ௩ܰ

஽ ൌ ܰ஽ ∩ ௩ܰ for unloading nodes that can be visited by ship ݒ.

Each node has a time window [௜ܶ , തܶ௜]. The cost of sailing from ݅ to ݆ using ship ݒ is ܥ௜௝௩ , and the

associated travel time is ௜ܶ௝௩. The time at which service begins at node ݅ using ship ݒ is ݐ௜௩, and ݈௜௩ is

the total load onboard after completing service at node ݅ using ship ݒ. The variables ݔ௜௝௩ are binary

flow variables, indicating whether ship ݒ moves directly from node ݅ to node ݆. Binary variables ݕ௜
indicate whether cargo ݅ is transported by the available vessel fleet. If the cargo is not transported with

the available vessel fleet, a cost ܥ௜
ௌ is incurred. For industrial shipping, this corresponds to the cost of

using spot charter to transport the cargo. For tramp shipping the cost represents either the loss of
revenue from not being able to carry an optional cargo or the cost of using spot charter to transport a
mandatory contract cargo. The mathematical formulation of the problem becomes as follows.

min෍ ෍ ௜௝௩ݔ௜௝௩ܥ
ሺ௜,௝ሻ∈஺ೡ

൅ ෍ ௜ܥ
ௌݕ௜

௜∈ேು௩∈௏

 (1)

subject to

෍ ෍ ௜௝௩ݔ
௝∈ேೡ௩∈௏

൅ ௜ݕ ൌ 1, ݅ ∈ ܰ௉, (2)

෍ ௢ሺ௩ሻ௝௩ݔ
௝∈ேೡ

ൌ 1, ݒ ∈ ܸ, (3)

෍ ௜௝௩ݔ
௝∈ேೡ

െ ෍ ௝௜௩ݔ
௝∈ேೡ

ൌ 0, ݒ ∈ ܸ, ݅ ∈ ௩ܰ\ሼ݋ሺݒሻ, ݀ሺݒሻሽ, (4)

෍ ௝ௗሺ௩ሻ௩ݔ
௝∈ேೡ

ൌ 1, ݒ ∈ ܸ, (5)

݈௜௩ ൅ ܳ௝ െ ௝݈௩ ൑ ௩൫1ܭ െ ,௜௝௩൯ݔ ݒ ∈ ܸ, ݆ ∈ ௩ܰ
௉, ሺ݅, ݆ሻ ∈ ௩, (6)ܣ

݈௜௩ െ ܳ௝ െ ݈ሺ௡ା௝ሻ௩ ൑ ௩൫1ܭ െ ,௜ሺ௝ା௡ሻ௩൯ݔ ݒ ∈ ܸ, ݆ ∈ ௩ܰ
௉, ሺ݅, ݊ ൅ ݆ሻ ∈ ௩, (7)ܣ

0 ൑ ݈௜௩ ൑ ,௩ܭ ݒ ∈ ܸ, ݅ ∈ ௩ܰ
௉, (8)

௜௩ݐ ൅ ௜ܶ௝௩ െ ௝௩ݐ ൑ ሺ തܶ௜ ൅ ௜ܶ௝௩ሻ൫1 െ ,௜௝௩൯ݔ ݒ ∈ ܸ, ሺ݅, ݆ሻ ∈ ௩, (9)ܣ

෍ ௜௝௩ݔ
௝∈ேೡ

െ ෍ ሺ௡ା௜ሻ௝௩ݔ
௝∈ேೡ

ൌ 0, ݒ ∈ ܸ, ݅ ∈ ௩ܰ
௉, (10)

௜௩ݐ ൅ ௜ܶሺ௡ା௜ሻ௩ െ ሺ௡ା௜ሻ௩ݐ ൑ 0, ݒ ∈ ܸ, ݅ ∈ ௩ܰ
௉, (11)

௜ܶ ൑ ௜௩ݐ ൑ തܶ௜, ݒ ∈ ܸ, ݅ ∈ ௩ܰ, (12)

௜ݕ ∈ ሼ0,1ሽ, ݅ ∈ ܰ஼, (13)

௜௝௩ݔ ∈ ሼ0,1ሽ, ݒ ∈ ܸ, ሺ݅, ݆ሻ ∈ ௩. (14)ܣ

The goal is to minimize the value of the objective function (1), which sums up the costs from
operating the fleet plus the cost of spot charters. Constraints (2) state that all cargoes must either be
picked up by a ship or transported using spot charter. Constraints (3)-(5) describe the flow on the

sailing route used by ship ݒ. Constraints (6) and (7) keep track of the load onboard at loading and

unloading nodes respectively. Constraints (8) make sure that the load does not exceed the ship
capacity. Constraints (9) ensure that the time at which service starts is possible with respect to travel
times. Constraints (10) make sure that if a cargo is loaded, its unloading port is also visited by the
same ship. Precedence requirements are imposed through constraints (11). Time windows are stated
by constraints (12), while constraints (13) and (14) impose binary requirements on the spot charter and
flow variables.

The above model is both valid for deep sea and short sea problems. It is also valid both for the full
load and the mixed load case, though more efficient formulations can be obtained for the full load
case, see for example (Christiansen et al., 2007).

The industrial and tramp cargo routing and scheduling problem is NP-hard, being more general than
the traveling salesman problem with time windows. By the same argument, the problem of
determining whether any feasible solution to the problem exists is NP-complete (Savelsbergh, 1985).

3. BENCHMARK SUITE

This section describes how an instance generator has been created, and how this generator has been
used to create a basic set of benchmark instances for industrial and tramp ship routing and scheduling.
The instance generator and the benchmark instances are currently available at the web page
http://iot.ntnu.no/users/larsmahv/benchmarks/. The best known results on each of the instances are
also reported there.

3.1 The instance generator

To generate instances, certain inputs must be specified. Initially, a set of ports and a set of ship types
must be defined. Each port has a given location and belongs to a corresponding geographical region.
For each ship type, the cost of entering each port is given as well as the time spent in port as a function
of the quantity loaded or unloaded in the port. In addition, the travel time and travel cost, assuming a
fixed sailing speed, is given between each pair of ports for each ship type.

The above inputs are static, in the sense that a relevant set of ports and a relevant set of ship types will
not change frequently. Therefore, two different sets of static inputs have been prepared and included in
the instance generator: One set defines ports and ship types that are relevant for deep sea shipping, and
another set defines ports and ship types for short sea shipping. Figure 1 below shows a world map
where most of the ports in the deep sea data set are marked. The short sea data set comprises a subset
of these ports, namely those to be found in Europe. For the deep sea data set, the vessel set contains
six types, including general cargo ships and oil tankers of varying sizes, whereas the short sea data set
contains seven different ship types used in dry bulk shipping.

The ports are geographically divided into regions. For the deep sea data set there are five regions,
namely Europe, South America, the Far East, the US East Coast, and the US West Coast. The short
sea data set consists of Europe, but it is subdivided into 14 regions, corresponding to different
countries. Travel times and travel costs between each pair of ports are based on real distances
(Fagerholt et al., 2000) and current day fuel prices.

Remaining inputs to the instance generator are used to further specify the type of instances that should
be generated. First, the user must specify which ship types to include in the instances, as well as how
many ships to include from each type. As an example, when generating deep sea instances, it is
appropriate to generate instances using either only oil tankers or only general cargo ships, but not a
mix thereof.

Figure 1: World map showing a selection of the ports included in the deep sea data set.

Second, the user specifies the number of cargoes to generate. This number is the total number of
cargoes, which may consist of both optional and mandatory cargoes, and the instance generator will
decide the mix of these depending on the other inputs described below. It is assumed that mandatory
cargoes may be handled by using spot voyages, so the difference between mandatory cargoes and
optional cargoes is mainly in the interpretation of the cost of not transporting them.

Third, the size of the cargoes is given as input. To simplify the input, the user may select to generate
small cargoes, large cargoes, cargoes of mixed size, or full load cargoes. For each of these categories,
the size of a cargo is generated randomly from a given interval which is relative to the average ship
capacity. Only one dimension of capacity is considered.

Fourth, the size of the time windows is determined. There are four alternatives for the time windows
namely tight, normal, loose, or none. Time windows are also relative to the travel times, and for
loading ports the time windows will have a width of seven days for deep sea shipping and three days
for short sea shipping. The time windows for unloading ports begin at the same time as the
corresponding loading time windows, but are wider, typically allowing a ship enough time to load and
unload some additional cargoes before making the corresponding delivery.

Fifth, there is an option to adjust the flow of goods between regions. Normally the flow of goods is not
balanced, as some regions consume more goods than they produce or vice versa. The instance
generator may either generate cargoes purely at random, or first establish trade patterns that influence
the flow of goods between regions. The latter is more realistic, and ensures that certain regions are
considered mainly as export regions and others mainly as import regions.

Finally, the last input regards the market condition, which may be specified as either poor, normal, or
good. In a good market, there will be more optional cargoes available, with higher revenues, but the
cost of using spot voyages is higher. In a poor market, there are fewer cargoes to transport, and the
cost of using spot voyages is relatively low.

Once inputs have been given, the instance generator proceeds as follows: First, two subsets of ports
are generated, with one subset consisting of ports where cargoes are often loaded and the other
consisting of ports where cargoes are often unloaded. If the requested instance should have balanced
flow of goods, these subsets are equal to the full set of ports. Second, a set of cargoes is generated,
where for each cargo the loading port, the unloading port, and the size are all specified.

Third, the generator makes sure that all cargoes can be serviced by the selected fleet, and otherwise
some of the cargoes are generated anew. Time windows are also calculated at this point, trying to
ensure that all the ships in the fleet can be assigned an even work load and that at least one ship can
reach any cargo in time for the loading time window.

Fourth, time windows and spot charter costs are adjusted according to the selected market situation. In
a good market there will be more cargoes available within a given time frame, whereas in a poor
market there will be less cargoes available per time unit. Finally, if some ships cannot reach any cargo
in time for the loading time window, the ship is repositioned so that at least one cargo can be reached.

3.2 Benchmark instances

The instance generator may be used to generate a wide variety of instances. In the following we will
describe a set of 240 instances that represent realistic combinations of settings, divided into four
groups. For all four groups, the instances have normal time windows, unbalanced flow between
regions, and a heterogeneous fleet of vessels, and are all based on a normal market condition.

Table 1 gives a summary of the four groups of test instances. The number of cargoes range from 7 to
130 for instances with mixed cargo sizes, and from 8 to 100 for instances with full load cargoes. The
number of ships vary between three and 50, in general with fewer ships for instances with mixed cargo
sizes. There are between two and four different ship types in each instance. For each group, there are
12 different combinations of the number of cargoes and the number of ships, and five instances are
generated for each combination, yielding a total of 60 instances in each of the four groups.

Group Geography Cargo sizes #Cargoes #Ships #Ship types

1 Short sea Mixed 7-130 3-40 2-4
2 Short sea Full load 8-100 3-50 2
3 Deep sea Mixed 7-130 3-40 2-3
4 Deep sea Full load 8-100 3-50 2

Table 1: summary of test instances generated.

While the instance generator is able to also generate instances with other characteristics, these
instances represent typical basic instances in various segments of the shipping industry. The instance
generator could be used to generate further instances to analyze the impact of different market
conditions, different regional flow patterns, additional types of cargo sizes, and additional types of
time windows.

4. ADAPTIVE LARGE NEIGHBORHOOD SEARCH

The ALNS heuristic was introduced by Ropke and Pisinger (2006) extending the large neighborhood
search heuristic of Shaw (1997) by allowing the use of multiple destroy and repair methods within the
same search process (Ribeiro and Laporte, 2012). Given below as Algorithm 1, is a general pseudo-
code for our ALNS implementation. The algorithm picks an initial solution and then, at each iteration,

removes ݍ cargoes from the current solution and then reinserts them in the solution differently.

Algorithm 1: ALNS heuristic for cargo routing problems

1 Function ALNS
2
3

generate initial solution s
sbest = s

4 repeat
5 s’ = s
6 select removal and insertion heuristics based on search parameters
7
8

select the number of cargoes to remove and reinsert, ݍ
remove ݍ cargoes from s’

9 reinsert removed cargoes into s’
10 if (f (s’) < f (sbest)) then
11 sbest = s’
12 If accept (s’ , s) then
13 s = s’
14 update search parameters
15 until stop-criterion met
16 return sbest;

We now describe our implementation in more detail.

4.1 Solution representation and initial solution

A solution consists of a set of visiting sequences, one for each of the actual ships and one for an
artificial ship that represents cargoes transported by spot voyages. In each sequence some cargoes are
transported by a specific ship. The sequence of loading and unloading is represented by using the
cargo number twice, first for the loading and then for the unloading of the cargo.

The proposed ALNS starts with an initial feasible solution. To be sure of feasibility, all cargoes are put
in the artificial ship representing the use of spot voyages. Thus, there is no sailing cost for the initial
solution and the only cost is the cost of not transporting the cargoes.

4.2 Removal heuristics

In step 8 of Algorithm 1, some cargoes are removed from the current solution, using a removal

heuristic. In these heuristics we remove ݍ cargoes from the current solution. In each iteration, ݍ is

chosen randomly in ሾ4,min	ሺ100, ሻሿ݊ߦ where n is the number of cargoes and ߦ is a constant

parameter. Thus, the number of removed requests, ݍ, varies during the search to provide different

neighborhood size. Three different removal heuristics are used: the Shaw removal heuristic, random
removal, and worst removal.

In the Shaw removal heuristic the main idea is to remove a set of similar cargoes. First, a random

cargo is selected, and then ݍ െ 1 additional similar cargoes are selected for removal. We define the

similarity of two cargoes by a measure called relatedness. The relatedness is defined with respect to a
distance measure, a time measure, a size measure, and a measure that consider the ships that can be
used to serve the cargoes:

ܴሺ݅, ݆ሻ ൌ ߮൫݀஺ሺ௜ሻ,஺ሺ௝ሻ ൅ ݀஻ሺ௜ሻ,஻ሺ௝ሻ൯ ൅ ߯൫ห ஺ܶሺ௜ሻ െ ஺ܶሺ௝ሻห ൅ ห ஻ܶሺ௜ሻ െ ஻ܶሺ௝ሻห൯

൅߰൫ܳ௜ െ ܳ௝൯ ൅ ߱ ൬1 െ
ห௄೔∩௄ೕห

୫୧୬൛|௄೔|,ห௄ೕหൟ
൰ .

We define ݀௜,௝ as the minimum travailing cost from ݅ to ݆. The pickup and delivery locations of cargo ݅

is denoted by ܣሺ݅ሻ and ܤሺ݅ሻ, ௜ܶ indicates the time when location ݅ is visited and ܳ௜ denotes the size of

request ݅. The set of vehicles that are able to transport cargo ݅ is ܭ௜.

The term weighted by ߮ measures distance, the term weighted by ߯ measures temporal connectedness,

the term weighted by ߰ measures size of the requests and the term weighted by ߱ ensures that two

requests get a high relatedness measure if only a few or no vehicles are able to serve both requests.

The random removal heuristic is the simplest of the removal heuristics, and basically selects ݍ cargoes

at random and removes them from the solution.

The last removal heuristic is worst removal. The main idea of this heuristic is to remove cargoes that
are placed in high cost positions. In worst removal heuristic we calculate and sort the cost of the

cargoes ܥ௜ and then remove cargoes with high costs ܥ௜. For more detail, we refer the readers to (Ropke

and Pisinger, 2006).

4.3 Insertion heuristics

In these heuristics we reinsert the removed cargoes into the solution. We have implemented two
different insertion heuristics: a basic greedy heuristic and a regret-k heuristic.

The basic greedy heuristic is an iterative heuristic that inserts one cargo in each iteration. We calculate
the cost of inserting a cargo at its best position overall and then the cargo with minimum cost is
selected to be inserted at its best position. This process continues until all cargoes have been inserted,
possibly by using the artificial ship representing spot voyages.

Regret heuristics improve the myopic behavior of the basic greedy heuristic. A regret-k heuristic
calculates the regret value which is equal to the sum of the differences in the cost of solutions when a
cargo is inserted in its best position and when it is inserted in its 2nd best, 3rd best, ..., and k-th best
position. In each iteration the regret-k heuristic chooses to insert the cargo that maximizes the regret
value. The selected request is inserted in its best position.

4.4 Adaptive weight adjustment

Adaptive weight adjustment is an iterative process to define and adjust (automatically) the weight of
each removal and insertion heuristic using statistics from earlier iterations. For this purpose we divide
the entire search into segments, with 100 iterations in each segment. Then we calculate a score for
each of the heuristics during the search in the current segment and at the end of segment new weights
will be calculated.

The main point here is how to score insertion and removal heuristics and update their weights. The
score of a removal or insertion heuristic is increased based on the quality of the new solution obtained.
A heuristic operation which results in a new global best solution gets a high increase in its score.
Solutions that have not been accepted before and which improves the cost of the current solution also
gets an increased score. Finally, solutions that are accepted but does not improve on the current
solution get a small increase in their score.

For updating the scores between segments, we first normalize the scores (ߨ௜) by dividing them by the

number of times they have been used (ߠ௜) and then the new weights will be calculated by using a

predefined parameter (r) to balance the earlier weights and the new normalized scores as follows. Let

 :The new weights become .ݏ be the weight of heuristic ݅ used in segment	௜,ୱݓ

௜,௦ାଵݓ ൌ ௜,ୱሺ1ݓ െ ሻݎ ൅ ݎ
௜ߨ
௜ߠ

In the first segment all heuristics have the same weight, and ߨ௜ and ߠ௜ are re-set between segments.

4.5 Selection of heuristics

After weighting the heuristics, we have k heuristics with weights ݓ௜, ݅ ∈ ሼ1,2, … , ݇ሽ, then we select

heuristic ݆ with probability
௪ೕ

∑ ௪೔
ೖ
೔సభ

 by using a roulette wheel selection principle. The removal and

insertion heuristic are selected independently.

4.6 Acceptance criterion and stopping criterion

We have implemented the acceptance criterion of simulated annealing which accepts solutions that are
better than the current solution and also accepts solutions that are worse than the current solution with

probability ݁ି|௙ି௙೙೐ೢ|/் , where ܶ ൐ 0 is the temperature. The cooling schedule implemented

by Crama and Schyns (2003) is used, and the algorithm stops when a specified number of iterations
have been completed.

5. COMPUTATIONAL STUDY

The benchmark instances presented in the previous section have been solved using both the ALNS
heuristic described in Section 3 as well as by XPRESS Optimizer Version 25.01.05 using the model
described in Section 2. This will give an indication about how difficult industrial and tramp ship
routing and scheduling problems are to solve to optimality, although it should be possible to solve
larger instances by using specially tailored algorithms. By comparing with optimal solutions on small
instances and with lower bounds from XPRESS on larger instances, we also get an indication of the
performance of the ALNS heuristic. In the following tests, the standard parameters of XPRESS was
used, expect that MIPRELSTOP was set to 0 and that the search was stopped after one hour. The
ALNS was executed ten times for each instance, each run including 25,000 iterations. Both XPRESS
and the ALNS was executed on a single core, using a 3.4 GHz CPU with 8 GB RAM and a 64-bit
operating system. Results for the short sea instances with mixed cargo sizes are reported in Tables 2
and 3. Average values are presented in Table 2 for each instance size. For XPRESS we report the gap
between the lower and upper bounds found during the one hour run, the gap between the upper bound
and the best known solution, and the total running time in seconds. We run the ALNS algorithm 10
times and calculate both the minimum and the average gap between the best solution found and the
best known solution, as well as the average running time. The numbers in the table are average values
over the five instances of each size. The heuristics included in XPRESS are able to locate feasible
solutions for all instances, however for larger instances, these solutions typically involve servicing
most of the cargoes by spot charters, leading to high costs.

XPRESS ALNS

#Cargoes #Ships
Optimality
Gap (%)

Gap to Best
Known (%) Seconds

Minimum Gap
to Best

Known (%)

Average Gap
to Best

Known (%) Seconds
7 3 0.00 0.00 0.26 0.00 0.00 1.59

10 3 0.00 0.00 0.76 0.00 0.00 2.54
15 4 0.00 0.00 85.36 0.00 0.58 5.28
18 5 3.70 1.00 2549.74 0.00 0.51 7.54
22 6 19.32 3.09 3038.10 0.00 1.82 11.50
23 13 43.17 17.67 3599.58 0.00 0.57 14.95
30 6 391.85 244.64 3599.60 0.00 1.48 22.61
35 7 480.86 276.47 3599.58 0.00 1.67 32.34
60 13 590.88 325.89 3600.56 0.00 0.91 120.89
80 20 652.46 317.22 3602.80 0.00 0.91 248.08

100 30 95344.74 345.49 3614.92 0.00 0.95 466.46
130 40 119034.11 344.60 3691.34 0.00 0.70 1016.78

Table 2: average results for short sea shipping instances with mixed cargo sizes.

#Cargoes #Ships Instance #1 Instance #2 Instance #3 Instance #4 Instance #5

7 3 1476444 1134176 1196466 1256139 1160394
10 3 2083965 2012364 1986779 2125461 2162453
15 4 1959153 2560004 2582912 2265396 2230861
18 5 2374420 2987358 2301308 2400016 2813167
22 6 3928483 3683436 3264770 3228262 3770560
23 13 2276832 2255870 2362503 2250110 2325941
30 6 4958542 4568421 4106293 4449812 4528514
35 7 4942430 4543650 4433847 4580935 5511661
60 13 8202138 8055970 7651685 8593410 8950046
80 20 10376392 10387253 9763401 11598420 10983117

100 30 12845591 13057536 12088444 13791917 13502730
130 40 16524192 16713067 15862154 17305841 18533293

Table 3: individual best known results for short sea shipping instances with mixed
cargo sizes, with bold face font indicating known optimal values.

Table 3 gives the best known values for each instance individually, with known optimal solutions
highlighted in bold. Within one hour computation time, the formulation given in Section 2 can only be
solved to optimality by XPRESS for instances with up to around 18 cargoes. The ALNS identifies
solutions that are at least as good as those found by XPRESS on all instances in this set.

XPRESS ALNS

#Cargoes #Ships
Optimality
Gap (%)

Gap to Best
Known (%) Seconds

Minimum Gap
to Best

Known (%)

Average
Gap to Best
Known (%) Seconds

8 3 0.00 0.00 0.12 0.00 0.00 1.84
11 4 0.00 0.00 0.46 0.00 0.13 2.85
13 5 0.00 0.00 0.26 0.00 0.07 4.10
16 6 0.00 0.00 0.70 0.00 0.05 6.14
17 13 0.00 0.00 1.00 0.01 0.01 8.59
20 6 0.00 0.00 47.78 0.00 0.14 10.71
25 7 0.85 0.00 2428.02 0.00 0.22 16.47
35 13 9.83 0.60 3600.04 0.00 0.29 35.91
50 20 16.41 1.90 3600.52 0.00 0.35 83.08
70 30 204.65 156.51 3603.32 0.00 0.70 210.66
90 40 364.12 276.11 3617.60 0.00 0.47 418.57

100 50 381.14 269.85 3651.22 0.00 0.35 587.52

Table 4: average results for short sea shipping instances with full load cargoes.

Tables 4 and 5 provide similar information about the short sea instances with full load cargoes. The
difference is that full load instances are easier for XPRESS to solve, finding optimal solutions of
instances with up to 25 cargoes. Among the five instances with 17 cargoes, there is one instance for
which the ALNS does not find the optimal solution. However, for that instance ALNS finds, in all 10
runs, a solution whose value is only 0.05 % higher than the optimal solution.

#Cargoes #Ships Instance #1 Instance #2 Instance #3 Instance #4 Instance #5

8 3 1391997 1246273 1698102 1777637 1636788
11 4 1052463 1067139 1212388 1185465 1310285
13 5 2034184 2043253 2378283 2707215 3011648
16 6 3577005 3560203 4081013 3667080 3438493
17 13 2265731 3154165 2699378 2806231 2910814
20 6 2973381 3206514 3197445 3342130 3156378
25 7 3833588 3673666 4238213 4260762 4069693
35 13 2986667 3002974 3084339 3952461 3293086
50 20 7265169 7470529 6938306 8947342 7330386
70 30 10088768 10503191 10314521 10910832 10908679
90 40 13468846 13981808 12767716 14506983 13720466

100 50 13893237 14718351 13206559 14936198 14106741

Table 5: individual best known results for short sea shipping instances with full load
cargoes, with bold face font indicating known optimal values.

Deep sea instances differ from short sea instances not only in the geography and in the ratio between
traveling times and time spent in port, but also through different ship types being included. It turns out
that XPRESS is able to solve to optimality larger instances for the deep sea case than for the short sea
case. Tables 6 and 7 give results for deep sea instances with mixed cargo sizes, and Tables 8 and 9
give results for deep sea instances with full load cargoes.

 XPRESS ALNS

#Cargoes #Ships
Optimality
Gap (%)

Gap to Best
Known (%) Seconds

Minimum Gap
to Best Known

(%)

Average Gap
to Best

Known (%) Seconds

7 3 0.00 0.00 0.40 0.00 0.00 1.64
10 3 0.00 0.00 0.58 0.00 0.01 2.40
15 4 0.00 0.00 21.26 0.00 1.26 5.07
18 5 2.45 0.00 979.46 0.00 0.47 7.58
22 6 3.92 0.10 1569.82 0.00 2.18 11.29
23 13 5.33 0.11 1583.08 0.00 0.12 14.59
30 6 239.06 107.93 3600.28 0.00 0.79 22.06
35 7 236.45 114.91 3600.58 0.00 0.98 30.89
60 13 845.58 327.13 3601.52 0.00 2.41 115.32
80 20 1124.49 349.94 3603.58 0.00 1.83 255.76

100 30 9380.99 324.07 3616.30 0.00 1.50 479.91
130 40 810851.39 359.54 3677.62 0.00 1.44 1048.17

Table 6: average results for deep sea shipping instances with mixed cargo sizes.

#Cargoes #Ships Instance #1 Instance #2 Instance #3 Instance #4 Instance #5

7 3 5233464 6053699 5888949 6510656 7220458
10 3 7986248 7754484 9499357 8617192 8653992
15 4 13467090 12457251 12567396 11764241 10833640
18 5 43054055 25068287 29211238 32281904 40718028
22 6 41176718 37236363 38215238 34129809 46379332
23 13 41002992 28014147 29090422 33685274 38664843
30 6 19227093 16896623 21298546 21076728 24490671
35 7 65082675 54839181 56258180 61489997 63943961
60 13 81709586 75878996 92585918 91076203 89721702
80 20 72019446 74476462 78918099 76459495 75378149

100 30 153747613 154533570 152338747 157017186 162084771
130 40 239877031 234909061 244239529 228680203 246883618

Table 7: individual best known results for deep sea shipping instances with mixed
cargo sizes, with bold face font indicating known optimal values.

For deep sea instances with mixed cargo sizes, XPRESS finds optimal solutions to three out of five
instances with 23 cargoes, although it fails to prove optimality for one of the instances with 18
cargoes. While there appears to be a serious degradation of the solution quality obtained by using
XPRESS when going from 23 to 30 cargoes, the ALNS seems to scale well.

For the instances with full load cargoes, XPRESS finds optimal solutions to all instances with 25
cargoes or less, and is even able to prove optimality for one out of five instances with 50 cargoes.
However, for one of the other full load deep sea instances with 50 cargoes XPRESS terminates
prematurely when using standard settings, and had to be run without cut generation by setting
CUTSTRATEGY = 0. There is again only one instance where ALNS does not succeed in finding the
best known solution, and for this instance the gap to the best known varies between 0.21 % and
1.45 %.

 XPRESS ALNS

#Cargoes #Ships
Optimality
Gap (%)

Gap to Best
Known (%) Seconds

Minimum Gap
to Best

Known (%)

Average Gap
to Best Known

(%) Seconds

8 3 0.00 0.00 0.32 0.00 0.00 1.75
11 4 0.00 0.00 0.48 0.00 0.00 2.74
13 5 0.00 0.00 0.52 0.00 0.00 3.79
16 6 0.00 0.00 0.86 0.00 0.03 5.91
17 13 0.00 0.00 1.34 0.00 0.00 8.00
20 6 0.00 0.00 1.42 0.00 0.01 9.82
25 7 0.00 0.00 8.02 0.00 0.41 15.87
35 13 4.84 0.26 2733.18 0.00 1.03 35.29
50 20 10.14 0.79 3375.20 0.04 0.48 84.81
70 30 13.12 1.21 3604.16 0.00 0.28 212.74
90 40 119.03 91.67 3614.92 0.00 0.60 420.68

100 50 163.01 119.11 3630.36 0.00 0.60 591.11

Table 8: average results for deep sea shipping instances with full load cargoes.

#Cargoes #Ships Instance #1 Instance #2 Instance #3 Instance #4 Instance #5

8 3 9584863 9369654 4596681 6899730 6815253
11 4 34854819 25454434 29627143 33111680 28175914
13 5 11629005 11820655 9992593 12819619 10534892
16 6 51127590 44342796 45391842 39687114 42855603
17 13 17316720 12194861 12091554 12847653 13213406
20 6 16406738 16079401 17342200 16529748 17449378
25 7 22773158 20206329 19108952 22668675 23036603
35 13 86951609 83422071 83898591 91970481 91130154
50 20 41398100 37872273 39916853 43941098 41971890
70 30 142923793 135766719 162903901 156541043 157037323
90 40 191675120 191143649 212152967 211046180 198625224

100 50 207105715 208540820 218438412 221248187 224430601

Table 9: individual best known results for deep sea shipping instances with full load
cargoes, with bold face font indicating known optimal values.

6. CONCLUDING REMARKS

This paper has considered the cargo ship routing and scheduling problem that arises in industrial and
tramp shipping. We have presented and made available a wide range of benchmark instances that were
made to represent realistic planning problems for various segments of the shipping industry. An
instance generator that can be used to produce additional instances has also been provided. To solve
the cargo ship routing and scheduling problem, a state-of-the-art adaptive large neighborhood search
(ALNS) heuristic has been implemented. The benchmark instances have been solved both by the
ALNS and a commercial MIP solver based on a mathematical formulation of the problem. The
commercial MIP solver is able to find optimal solutions to instances up to around 18-25 cargoes,
depending on the structure of the instances. The ALNS finds solutions that are at least as good as those
identified by the MIP solver on 238 out of 240 instances, and seems to scale well also for instances up
to 130 cargoes.

We hope our work will stimulate other researchers to develop better solution algorithms for this
important planning problem, and, even more importantly, to model and solve various real-life
extensions that go beyond what is included in our benchmark instances.

Acknowledgements
This research was carried out with financial support from the Research Council of Norway through the
DOMinant II and GREENSHIPRISK projects.

References
Al-Khayyal, F. and Hwang, S.J. (2007), “Inventory constrained maritime routing and scheduling for

multi-commodity liquid bulk, Part I: Applications and model”, European Journal of Operational
Research 176(1):106-130.

Bebes, O. and Savin, S. (2009), “Going bunkers: the joint route selection and refueling problem”,
Manufacturing & Service Operations Management 11(4): 694-711.

Brouer, B.D., Fernando Alvarez, J., Plum, C.E.M., Pisinger, D. and Sigurd, M.M. (2013), “A base
integer programming model and benchmark suite for liner-shipping network design”,
Transportation Science 48(2):281-312.

Brønmo, G., Christiansen, M., Fagerholt, K. and Nygreen, B. (2007), “A multi-start local search
heuristic for ship scheduling – a computational study”, Computers and Operations Research
34(3):900-917.

Christiansen, M., Fagerholt, K., Nygreen, B. and Ronen, D. (2007), “Maritime transportation”.
Handbooks in Operations Research and Management Science, Transportation, vol. 14, North-
Holland, pp. 189-284.

Christiansen, M., Fagerholt, K., Nygreen, B. and Ronen, D. (2013), “Ship routing and scheduling in
the new millennium”, European Journal of Operational Research 228(3):467-483.

Christiansen, M., Fagerholt, K. and Ronen, D. (2004), “Ship routing and scheduling: status and
perspectives”, Transportation Science 38(1):1-18.

Crama, Y. and Schyns, M. (2003), “Simulated annealing for complex portfolio selection problems”,
European Journal of Operational Research 150(3): 546–571.

Desrosiers, J., Dumas, Y., Solomon, M.M. and Soumis, F. (1995), “Time constrained routing and
scheduling”. In Ball, M.O., Magnanti, T.L., Monma, C.L. and Nemhauser, G.L. (eds)
Handbooks in Operations Research and Management Science, 8th vol. North-Holland,
Amsterdam, pp 35-139.

Fagerholt, K., Heimdal, S.I. and Loktu, A. (2000), “Shortest path in the presence of obstacles: An
application to ocean shipping”, Journal of the Operational Research Society 51:683-688.

Hwang, H.S., Visoldilokpun, S. and Rosenberger, J.M. (2008), “A branch-and-price-and cut method
for ship scheduling with limited risk”, Transportation Science 42 (3):336–351.

Jetlund, A.S. and Karimi, I.A. (2004), “Improving the logistics of multi-compartment chemical
tankers”, Computers and Chemical Engineering 28(8):1267-1283.

Kontovas, K. and Psaraftis, H.N. (2011), “Reduction of emissions along the maritime intermodal
container chain: operational models and policies”, Maritime Policy and Management 38(4) 451-
469.

Korsvik, J.E., Fagerholt, K. and Laporte, G. (2010), “A tabu search heuristic for ship routing and
scheduling”, Journal of the Operational Research Society 61(4):594-603.

Lawrence, S.A. (1972), International sea transport: The years ahead, Lexington Books, Lexington.

Lin, D.Y. and Liu, H.Y. (2011), “Combined ship allocation, routing and freight assignment in tramp
shipping”, Transportation Research Part E 47(4):414-431.

Malliappi, F., Bennell, J.A. and Potts, C.N. (2011), “A variable neighborhood search heuristic for
tramp ship scheduling”, Computational Logistics, Lecture Notes in Computer Science 6971,
273–285.

Norstad, I., Fagerholt, K. and Laporte, G. (2011), “Tramp ship routing and scheduling with speed
optimization”, Transportation Research Part C 19(5):853-865.

Papageorgiou, D.J., Nemhauser, G.L., Sokol, J., Cheon, M.S. and Keha, A.B. (2014), “MIRPLib - A
library of maritime inventory routing problem instances: Survey, core model, and benchmark
results”, European Journal of Operational Research 235(2):350-366.

Psaraftis, H.N. and Kontovas, C.A. (2013), “Speed models for enegy-efficient maritime transportation:
A taxonomy and survey”, Transportation Research Part C 26: 331-351.

Ribeiro, G.M. and Laporte, G. (2012), “An adaptive large neighborhood search heuristic for the
cumulative capacitated vehicle routing problem”, Computers and Operations Research
39(3):728-735.

Ronen, D. (1983), “Cargo ships routing and scheduling: survey of models and problems”, European
Journal of Operational Research 12(2):119-126.

Ropke, S. and Pisinger, D. (2006), “An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows”, Transportation Science 40(4):455-472.

Savelsbergh, M.W.P. (1985), “Local search in routing problems with time windows”, Annals of
Operations Research 4:285-305.

Shaw, P. (1997), “A new local search algorithm providing high quality solutions to vehicle routing
problems”, Technical report, University of Strathclyde, Glasgow.

Solomon, M.M. (1987), “Algorithms for the vehicle routing and scheduling problem with time
window constraints”, Operations Research 35(2):254–265.

UNCTAD (2013), Review of Maritime Transport, United Nations, New York and Geneva.

Vilhelmsen, C., Lusby, R. and Larsen, J. (2014), “Tramp ship routing and scheduling with integrated
bunker optimization”, EURO Journal on Transportation and Logistics. doi:10.1007s13676-013-
0039-8.

