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varying systems, Kalman decomposition, numerical methodbave, in general, time-varying state dimensions [2, 3]. Periodic
systems with time varying input and output vector dimensions

Abstract have been considered in [7] and arise in a natural way in some
computational problems [14].

V\_/_e consider the ngmencally reliable computation of re‘_"mhﬁériodic systems with time-varying state dimensions have been
bility and observability Kalman decompositions of a IoerIOdIﬁlready considered earlier in [6, 4]. However, numerically reli-

system .W'th tlme—varylng.c.ilmensmns. _These decomposmogﬁle algorithms for systems with time-varying dimensions have
g.e'nerallze the controllability/observability Kalman depomp 5een developed only very recently. Notable examples are the
sitions fpr st_andard state space systems a_nd_have imme %%rithms for the computation of minimal realizations [13],
applications in the structurz_al_ analysis O_f pe”Od'C_ systems. Wes evaluation of the transfer-function matrix of a periodic sys-
propose a ;trupture explo!t!ng numerical alg_orlthm to CONam [14], and the numerically stable algorithm to compute the
pute the perlc_)d|_c cpntrollabll|ty for.m by employing eXCIU.S'Vel}Qeros of periodic systems [16]. Note that, the development of
orthogongl S|m|Iar|ty .transformat|ons. The new algorithm igg o algorithms able to address the case of time-varying di-
computationally efficient and strongly backward stable, th ensions, is one of the requirements which we formulated for

fulfils all requirements for a satisfactory algorithm for periOdiﬁsatisfactorynumerical algorithm for periodic systems [15].
systems.

The computation of Kalman decompositions by using orthog-
onal similarity transformations was one of the first numerically
stable algorithms developed to solve system theoretic prob-

Among the important open computational problems whidRms. In a survey [10], six authors are cited who published in
we listed in a recent survey [15], the Computation of pé_981, almost Simultaneously, numerica”y reliable algorithms
riodic reachability and observability Kalman decompositior{§ compute the controllability Kalman decomposition via the
is one which has many useful applications. Besides ch&p-calledcontrollability staircase form Although the corre-
acterizing the Structural properties Of the System (reacha@ponding theoretical reSUItS haVe been eXtended to the periodiC
ity/controllability, observability/reconstructibility), propertiescase by Grasselli already in 1984 [5], and subsequently have
as stabilizability and detectability can be checked by compiaeen refined in the works of various authors [9, 4, 2], until now
ing the non-reachable and non-observable characteristic nillere exists no computation oriented algorithm to compute the
tipliers. Furthermore, by computing the periodic reachabilif§eriodic Kalman decompositions.
form and the dual periodic observability form of the reachablg this paper, we propose a structure exploiting numerically
subsystem, minimal realizations of periodic systems can Rgiaple algorithm to compute the Kalman reachability decom-
easily computed. This computation is a basic step in a recenilysition for discrete-time periodic systems using exclusively
devel_opgd algorithm to evaluate the transfer-function matrix QFthogonaI similarity transformations. A dual algorithm can
a periodic system [14]. be used to compute the Kalman observability decomposition.
We consider periodic time-varying systems of the form With these two algorithms, the minimal realization prOblem of
periodic systems can be solved in a numerically reliable way.
x(k+1) = Agz(k)+ Bru(k) ) The new algorithm is computationally efficient and strongly
ylk) = Cra(k) backward stable, thus fulfils all requirements for a satisfactory
algorithm for periodic systems.

1 Introduction

where the matricesd;, € R™+ ™ B, € R+ XMk . . . .
C. € RP**™, are periodic with periodV > 1. For the Notation. For an N-periodic matrixX; we use alternatively
F ! i the script notation

definition of the periodic reachability/observability Kalman de-
corr_]posmon_s it is |mportant to consider the more general case X = diag (X1, Xa, ..., XN),

of time-varying dimensions. Note that the Kalman decompo-

sitions even of constant dimension periodic systems may lealich associates the block-diagonal mattixo the cyclic ma-

to reachable/observable and unreachable/unobservable sulisixssequenceX;, ¢ = 1,...,N. This notation is consistent
tems with time-varying dimensions [5]. Thus, the minimal rewith the standard matrix operations as for instance addition,



multiplication, transposition or inversion. We denote with’
the N-cyclic shift

oX = diag (Xs,..., XN, X1)

of the cyclic sequenc&, k = 1,..., N. By using the script
notation, the periodic system (1) will be alternatively denoted
by the triple(A, B,C). The transition matrix of the system (1)

is defined by they; x n; matrix® 4(j,7) = A;_14;_2--- A;,

Theorem 1 [5, 7] Every N-periodic systeniA, B,C) is state-
space equivalent to al-periodic systeniA, B, C), where
Al x

~ =~ BZ
SERIRST

WhereAj, € R™=+1*" r, = rank Ry and the pair( A", B") is
completely reachable.

],ék—[c;; 7] ®)

whered® 4 (i, i) := I,,,. The state transition matrix over one pe-

riod ®4(j + N, j) € R™*™ is called themonodromy matrix

of system (1) at timg and its eigenvalues are called ttiear-

acteristic multipliersat timej. The set of periodic dimension

{n1,...,nx}, will be denoted aa.

2 Periodic Kalman decompositions

For the definitions of reachability, observability and minimal§yStem (1) are the eigenvaluesij-
ity of periodic systems we rely on [1] (see also [4] for a mor:

detailed exposition).

Definition 1 The periodic systelfl) is reachable at timé if

rank Ry = ng, (2)
whereRy, is the infinite columns reachability matrix
Ry =[Bgr_1 Ag-1Br_o -+ ®a(k,i+1)B; ---]. (3)

The periodic systerfi) is completely reachablié (2) holds for
all k.

Definition 2 The periodic systerfl) is observable at timé if

rank O = ny, 4)
whereQy, is the infinite rows observability matrix
Ck
Cr+1 Ak
Oy = ; (%)
Ci® (i, k)

The periodic syster(il) is completely observablé (4) holds
for all k.

Definition 3 The periodic syster(i) is minimal if it is com-
pletely reachable and completely observable.

Let S, € R™>*™< be anN-periodic nonsingular matrix. The
reachability, observability and minimality properties are invari-
ant under anV-periodicstate-space similarity transformation

of the form

Ay, = SﬁlAkSm By = Sl;ile Ci = CyS),

The decomposition of the system matrices in the form (6)
is called theperiodic Kalman reachability decomposition

s(PKRD). In this decomposition, the subsystedr, B",C") is

completely reachable and thnsfer-function matriXTFM)

of the linear time-invariant lifted-representations (see [8]) cor-
responding to this system and the original systetn3, C) are

the same [2]. The unreachable characteristic multipliers of the
(N,0).

e
Definition 4 The periodic systenfl) is completely control-
lableif all unreachable characteristic multipliers are zero.

The dual result to Theorem 1 is the following one:

Theorem 2 Every N-periodic systegﬁé, l§, C) is state-space
equivalent to anV-periodic systeniA, B, C) where

T4 0| 5 _
A=V ) B

whereA§ € R¥*+1 %% the pair(A°,C°) is completely observ-
able andg;, = rankOy.

BO

wla-ta o) o

The subsysteniA°, 3°,C?) is completely observable and the
TFMs of the lifted-representations corresponding to this sys-
tem and original systemA, B,C) are the same [2]. The un-
observable characteristic multipliers of the system (1) are the
eigenvalues ob 45(N,0).

Definition 5 The periodic systen{l) is completely recon-
structible if all unobservable characteristic multipliers are
zero.

In our developments we use tbgclic lifted systendefined in
[9] for constant dimensions. Denote By, thecyclic shiftma-
trix

0 --- 0 Ly
I, - 0 0
Zn = .
0 - I, O

and define (similarly as done in [9] for constant dimensions)
the cyclic lifted systemwith S°~  m; inputs, =~ | p; out-
puts, and state vector dimensi@rﬁ\i1 n;, as the time-invariant

system
The reachability and observability Kalman decompositions o¥

periodic systems have been introduced in [5]. We recall below r{(h+1) =

the main results:

FCx¢ (h) + GCuf (h)

HC 2 (h) ®



where(F¢ G, H®) := (ZnA, Zu13,C). The following implementable algorithm formalizes the above

The following results are straightforward extensions of thoé%eaS:
of [9] to the case of time-varying dimensions: PKRD Algorithm: Periodic Kalman Reachability Decom-
position

Lemma 1 The pair(A, B) is completely reachable iff the pairGivenAk. € R™+1Xm B ¢ R™+ XM and(y, € RP** "
(F¢,G%) is reachable. ’ :

fork =1,..., N, this algorithm computes the orthogonal ma-

tricesQx, k = 1,..., N, such that the transformed system
Lemma 2 The pair(A4,C) is completely observable iff the pair(c QT .AQ, 0 QT B,CQ) is in the periodic Kalman reachability
(F¢, H®) is observable. form (6).

Bkan :Ink fork = 1,...,N.
In this section we shqw that the per|0(Ij|c. regchablhty form_(6)2‘ Fork = 1,..., N, compute the orthogonal matri¥.
can be computed using orthogonal similarity transformations 1) (nbsr s} D)
and we develop an efficient computational algorithm which ~ t0 compress the matrig,” " € R\ =+ ="+ to
generalizes the algorithm of [11] and similar algorithms cited @ full row rank matrix

in [10].

_— . - (4)
To justify our approach, we consider the periodic dad; 5) T gU-b ._ [Ak;m—l } Vk%l
and let/ be an orthogonal state-space similarity transformation LTk 0 pd)
such that eacl,; compresses;, to a full row rank matrix. ylgﬂfl)

If v41 is the rank ofBy, then we can write
3. Fork=1,...,N, computeUkTHAg_l)Uk and partition

4 it in the form
k,10 Vi+1
Uham= | 50| ©
Pk+1 A A )
i—1 LN kij,j+1 v
e Ul A V0 = [ BY AV } 3
’ +1
whereAy, 1o has full row rank. We apply the transformation to @) p(j)
Ay, and partitionU}, ; A, Uy, as follows F F
4. Fork=1,...,Nandi=1,...,j — 1, compute
UL AU, = Aﬁ,n Aﬁ,12 Vk+1 (10) Ap;i jUr = [Ak(;)g Ak;i,(gﬁl]
FpL TR B, Ay Pl+1 Yk P
Vi Pk 5 Fork = 1,...,N, computeQ; « Qidiag,,,Us),
Note that some dimensions can be zero, depending on the ranks Cr — Crdiagly,, Uy)-
of the matricesB,, k =1,...,N. 6. 1y — +y,§7),fork =1,...,N;
We observe that we can now apply to the reduced pairs a sec- if p§g> =0fork=1,...,N,thenl = j, Exit 1.

ond orthogonal similarity transformation definedWywith V;, ) ) oo
of the formV}, = diag(I,, , Uy). These transformations will /- If 77~ = 0fork = 1,.... N, thenf — j —1, Exit 2;
affect only B, A and Ay, 1o. Now we choosdJ; to com- else,j < j + 1 andgoto Step 2.

press the rows oﬁk to a full row rank matrix and repeat the

partitioning in form (9) and (10) for the matricég’, , By, ; and After performing thePKRD Algorithm , each paif( Ay, By) s

in the periodic reachability form (6), where the péit}, B},)

ﬁg—&-lgkﬁk' We obtain globally is in a staircase form
Apno| Ak Arize 0 Arage
Ak,ll Ak,lz Ak,13 Vk41 [B,: | A;} _ 0 Ak:271 Ak;2>2 Ak;2,é (12)
ViU AU Ve = | Akat Arze Aros | e (12) ; : _ :
0 By, Ak', ﬁk-{-l O O O Ak;g)g,1 Ak;gyg
Vg U Pk

_ L) ) (i) (i)
and A7 € R . In (12), Ag,; € RV

ion (4) (i—1) ;
E, A 7[, Ak;i,ifl € RYk+1%"k and rankAk;i’Z—,l = I/l(cl-&)-l
i=1,.. L.

where some submatrices have been redefined. This reduc
process continues until, = 0 for k = 1,..., N, that is, all
By =0,0rp, =0,fork =1,..., N, that is all By have full
row rank. We have the following important result.



Theorem 3 For each pair(A4, B) there exists an orthogonal Remark 2. It is possible to further reducd}, by separating

matrix Q such that the transformed pair Q7 AQ,cQ*B) is the zero and nonzero characteristic multipliers in the product

in the periodic reachability form (6). ® 4+(N,0). This can be done once again by employing ex-
clusively orthogonal transformations. The resulting periodic

Proof. We apply thePKRD Algorithm to the pair (A, 3) Matrix after this separation has the form

(assumingC = 0) and obtain @ such that the pair 0

(6QTAQ,0QTB) is in the form (6) with the paif.A”", B") = [ Ay " } 7

in the form (12). We need to show that this pair is reachable. 0 A%

Consider the pencilZ, A” — 2I Z,.B"] of the cyclic lifted . . !

. o where all characteristic values of the periodic mat#i% are
system(see (8)) corresponding to the p&d”, B"). Accord- zero, and the periodic matriA{ € IR " has constant di-
ing to Lemma 1 and the Popov-Belevich-Hautus test, to prové ™’ P k

reachability we need only to show that this pencil has full row - Hoon: 1S square and nonsingular. The eigenvaluds,of

N represents the uncontrollable characteristic multipliers of the
rank_j— r forall z €C. periodic system (1). It follows that the periodic system (1) is

By column and row permutations we can bring this pencil istabilizableif all uncontrollable characteristic multipliers lie in

the form the interior of the unit circle. O
S —zTy O . o) Remark 3. ThePKRD Algorithm can be extended to periodic
10} Sy —2Ty - 1) descriptor systems of the form
R(z) = : : (13) Ewx(k+1) = Apa(k)+ Bru(k) (14)
@) Sn-1 —2TN-1 y(k) = Cra(k)
—zI'n O e ) SN

where the matriced, By, andC), are the same as in (1) and
where, fork = 1,..., N, E, € R™+ ™+ is an N-periodic invertible matrix. The
similarity transformation used in this case has the form
Sk Z:[B]Z AZ], Tk Z:[O I

Tk+1 ]
_ By = Tht1 EiSkq1, - Ak = Th1 AiSk,
Noete th(?)t by construction, ea@k has full row rankrkH_: By = Tios1 By, Cr = CiSi

> i—1Vri1- Thus, by performing cyclic column reductions

using elementary column operations, we can bii(@), for with S, andT}, N-periodic nonsingular matrices.
any finitez, in the form diadg Sy, . .., Sn). However, this ma-

trix has full row rank, because, eah has full row rank. O After a preliminary reduction of’;, to an upper triangular form

using suitable orthogond, and T}, we perform, as in the
The firstry, columns of@); form an orthonormal basis for thePKRD Algorithm , the row compression oB;, using an or-
rechability subspace IR;,. For each paif A}, B;,) we can thogonal transformatiotv, ;. The only difference in the de-
define a reachability index;, as the largest value éfsuch that scriptor case is that the upper triangular fornfifis preserved
v\ £ 0. The periodic system (1) is reachable at titng  while reducingB;. This can be done by computing an appro-
TR = Nj. priate V41 such thatUl, , B, Vi1, remains upper triangular.

. hi) In fact, the compression @8, and maintaining the upper tri-
Remark 1. Let hy be the least integer such th +1 = angular form ofE;, can be done simultaneously, in a similar
0. Then, it is easy to see that the trailidg;_, V,(L)rl X way as done in [12] for standard descriptor systems. The com-
Zf:hk V](f) block of A7 is in a block upper trapezoidal form bined reduction and restoring of triangular form can efficiently
with all diagonal blocks having full row rank. It follows thatPe done by employing orthogonal Givens transformations.
the resulting matrice®3;, and A, of the PKRD (6) have, in

general, the forms 4 Numerical aspects

_ Br By To estimate the necessdlgating-point operationg¢flop9 nec-

By = [Ok} = 0 , essary to compute the periodic reachability Kalman decompo-
0 sition, we assume for simplicity constant dimensiomns= ny,

m = myg, p = px. The worst-case operations count result if

m Apn Apao | * the periodic system is reachable. In this case, if we use House-

Ay = [Tk‘%} = 0 Af oo | * , holder transformations based QR decompositions with column
k 0 0 ‘ A7 pivoting for the row compressions in tiRKRD Algorithm ,

_ ) ~ then we can easily give an estimate of the total numbépps
where Aj ,, has full row rank. Note that in the single-inputyecessary to compute the PKRD as

case, the leading block, |, is in an unreduced upper Hessen-

berg form, while the trailing block, ., is full row rank upper 5 4 5
trapezoidal. O Niops = N (Sn + (p+m)n )



To accumulate the transformations the algorithm needs addi- with the resulting pail(ﬁ, [?) in the periodic reachability
tionally Nn?3 flops Thus, the computational complexity of this form
algorithm isO(Nn?). The same computational complexity can

be achieved also in the descriptor case.

-~ . B;
All computations can be performed in place, thus the required » Be= [ ]
memory of(n + m + p)nN storage locations is minimal if the
transformations are not accumulated. The information on the
performed transform.ations can be compaqtly storeq in th(la.genﬁ;_ Fork =1,..., N, form the system matrices of the PKOD
erated zero submatrices during the reduction, and in additiona
N n-vectors. To form the transformation matrices explicitly, N N N
Nn? additional storage locations are necessary. These figures Ak — AN_g11,  Br— Ch_ji1, Cr = Br_pp
are valid also for time-varying dimensions, wherem andp
are now the maximum values of state, input and output vector
dimensions, respectively. 4. SetQy = Oy, andQy = On_p, fork=1,...,N — 1.
Thestrong backward stability of th€KRD Algorithm can be
easily proved. The basic idea is that each transformdtipn
can be computed and applied in a numerically stable way. Using the computed results of this algorithm, thecon-
sequence of such transformations can be also performed igtraictibility and detectabilityproperties can be analyzed in a
numerically stable way, since each orthogonal matrix has unstiynilar way as indicated iRemark 2 for the dual properties
norm. For details see [17]. It follows that the results computed controllability and stabilizability, respectively.
with thePKRD Algorithm are exact for slightly perturbed ini-

tial matricesAy, By,C'., which satisfy 5.2 Computation of minimal realizations

X — X[ <ex[|X]l, X = Ag, By, Cy The numerical computation of minimal realizations of periodic
systems has been addressed in [13], where a balancing-related
approach was proposed. This algorithm relies on the computa-
tion of the extended periodic Schur form df,, and involves

the solution of two non-negative definite periodic Lyapunov

5 Applications equations. This algorithm is numerically reliable, since each

) computational step relies on strongly backward stable algo-
5.1 Computation of PKOD rithms. The main advantage of this algorithm is thatAheank

To compute the PKOD, aPKOD Algorithm analogous decisions necessary to obtain the state-vector dimensions of a

PKRD Algorithm can be devised. Instead row compression&inimal realization are performed only once at the end of the
this algorithm performs column compressions on the matric@gorithm. Thus, this approach is very reliable in determining
C}gl) in the successively generated DEGFSEZ),C,EZ)). The re- the order of the minimal realizations.

sulting algorithm can be seen as the application ofRKRD In some applications, as for example when computing the TFM
Algorithm to a certain dual periodic system. The followingf a periodic system [14], the algorithmic efficiency aspects
procedure formalizes the main steps of this approach: play an important role. Thus, instead employing the above al-
gorithm as proposed in [14], we can alternatively use a sig-
nificantly more efficient procedure to compute minimal real-
izations by eliminating successively the unreachable and unob-
Given A;, € R™+1 %™ By € R™+*™ andC}, € RP**™  servable parts. A two step procedure is formalized below:

where, in each case, is a modest multiple of the relative
machine precision,,.

PKOD Algorithm: Periodic Kalman Observability Decom-
position

fork =1,..., N, this algorithm computes the orthogonal ma- inimal realization procedure
tricesQx, K = 1,..., N, such that the transformed syste nl Ization p u
(0QTAQ,0QTB,CQ) is in the periodic Kalman observabil-
ity form (7). 1. Apply the PKRD Algorithm to the system(A4, B,C) to
compute the reachable realizatioA™, B7,C").
1. Fork =1,..., N, form the dual system matrices
Av =A% 41, Bi=0C% 1, Cuv=B% 2. Apply the PKOD Algorithm to the reachable system
o (A", B",C") to compute the minimal realization as the ob-
2. Apply thePKRD Algorithm to the triple(.A, B, C) to de- servable parf.A™, B C°).

termine the orthogonal N-periodic transformation matri-

ces@k such that ) ) )
R This algorithm is strongly backward stable and has a computa-

A—cQT A0, B~ oQ"B, C—CQ tional complexity ofO(Nn?).



6 Numerical example [3] I. Gohberg, M. A. Kaashoek, and J. Kos. Classification

) o . . ) of linear periodic difference equations under periodic or
Consider the 3-periodic single-input single-output system with  inematic similarity.SIAM J. Matrix Anal. App|.21:481—

the constant dimension system matrices 507. 1999.
A — [0 1] B, — [3] o—To1 [4] I. Gohberg, M. A. Kaashoek, and L. Lerer. Minimality
loo T lof T [01] and realization of discrete time-varying systen@per-
(1 97 [0 ator Theory: Advances and Applicatigns6:261-296,
Ay = By = Cy=1[214] 1992
2 I O O ] ’ 2 I 1 | ) 2 .
e [0 0] B.— [0] .73 1 [5] O. M. Grasselli. A canonical decomposition of linear pe-
3T 4 BT T [ ] riodic discrete-time systemint. J. Contro| 40:201-214,

1984.

B lying thePKRD Algorith ith
y applying theP gorithm wit [6] O. M. Grasselli and S. Longhi. Pole-placement for non-

1 0 0 1 0 1 reachable periodic discrete-time systerviath. Control
Q1= { 0 1 ] y Q2= { 1 0 ] , Q3= { ] ) Signals Syst4:439-455, 1991.

. . . i . [7] U. Helmke and E. I. Verriest. Structure and parametriza-
we obtain the periodic matrices in the reachability form

tion of periodic linear systems.SIAM J. Matrix Anal.
Appl. (submitted).

Al ‘ x| [ 1]0 Bi| |3 . _
{ 0 *} - {OO] ’ { 0 } - _0] Lorf+]=[1]0] [8] R. A. Meyer and C. S. Burrus. A unified analysis of mul-
0l0o 1] ) tirate and periodically time-varying digital filterdEEE
[As]+] = {1 2] , By = {0 ; [C5|+]=[2]4] Trans. Circuits and Systen22:162—-168, 1975.
Az | 41 Byl [1 cr—1T13 [9] B. Park and E. I. Verriest. Canonical forms for discrete-
ol - lool" 0 |~ _ﬁ » L3 = [ ] time periodically time varying systems and a control ap-

plication. Proc. of CDC'89, Tampapp. 1220-1225,
Thus, the reachable part has time-varying state dimensions, 1989.
ry = 1,79 = 1, r3 = 2. Note that this part is also observ-

able, thug. A", B",C") represents a minimal realization of the[lo] P. Van Dooren and M. VerhaegerOn the use of uni-
original system. tary state-space transformationsl. 47 of Special Issue

of Contemporary Mathematics in Linear Algebra and Its

. Role in Systems ThegrnAmer. Math. Soc., Providence,
7 Conclusion R.l., 1985.

In this paper we proposed a strongly backward stable algorittibl] A. Varga. Numerically stable algorithm for standard con-
to compute the periodic reachability Kalman decomposition of  trollability form determinationElectron. Lett. 17:74-75,
a periodic system. This algorithm can be applied to compute 1981.

the periodic observability Kalman decomposition as well, a fE . . . .
- o . 1I2] A. Varga. Computation of irreducible generalized state-
thus can be used to compute minimal realizations of perlogm space realizationybernetika 26:89-106, 1990.

systems. The algorithm works for system matrices with time-
varying dimensions and can be easily extended to descripit®] A. Varga. Balancing related methods for minimal real-
periodic systems as well. By fully exploiting the problem struc-  ization of periodic systems.Systems Control Lett,
ture, an acceptable computational complexity can be achieved, 36:339-349, 1999.

which is linear in the periodv and cubic in the maximum di-
mension of state vector. Thus, the new algorithm fulfils aﬁ
requirements which we formulated in [15] for a satisfactory al-

}4] A. Varga. Computation of transfer functions matrices
of periodic systems. Proc. of CDC’2002, Las Vegas,

gorithm for periodic systems. Nevada 2002.
[15] A. Varga and P. Van Dooren. Computational methods for
References periodic systems - an overviewroc. of IFAC Workshop

on Periodic Control Systems, Como, Itahp. 171-176,
[1] S. Bittanti and P. Colaneri. Analysis of discrete-time lin- 2001.

ear periodic systems. IDigital Control and Signal Pro- .
cessing Systems and Techniqu@. T. Leondes, Ed.), [16] A. Varga and P. Van Dooren. Computation of zeros of pe-

vol. 78 of Control and Dynamics Systenp. 313-339., riodic systems.Proc. of CDC’2002, Las Vegas, Nevada
Academic Press, 1996. 2002.

. , o [17] J. H. Wilkinson.The Algebraic Eigenvalue Probler@x-
[2] P. Colaneri and S. Longhi. The realization problem for ° ¢4 University Press, 1965.

linear periodic systemsAutomatica 31:775-779, 1995.



