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Abstract

We consider the numerically reliable computation of reacha-
bility and observability Kalman decompositions of a periodic
system with time-varying dimensions. These decompositions
generalize the controllability/observability Kalman decompo-
sitions for standard state space systems and have immediate
applications in the structural analysis of periodic systems. We
propose a structure exploiting numerical algorithm to com-
pute the periodic controllability form by employing exclusively
orthogonal similarity transformations. The new algorithm is
computationally efficient and strongly backward stable, thus
fulfils all requirements for a satisfactory algorithm for periodic
systems.

1 Introduction

Among the important open computational problems which
we listed in a recent survey [15], the computation of pe-
riodic reachability and observability Kalman decompositions
is one which has many useful applications. Besides char-
acterizing the structural properties of the system (reachabil-
ity/controllability, observability/reconstructibility), properties
as stabilizability and detectability can be checked by comput-
ing the non-reachable and non-observable characteristic mul-
tipliers. Furthermore, by computing the periodic reachability
form and the dual periodic observability form of the reachable
subsystem, minimal realizations of periodic systems can be
easily computed. This computation is a basic step in a recently
developed algorithm to evaluate the transfer-function matrix of
a periodic system [14].

We consider periodic time-varying systems of the form

x(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) (1)

where the matricesAk ∈ IRnk+1×nk , Bk ∈ IRnk+1×mk ,
Ck ∈ IRpk×nk , are periodic with periodN ≥ 1. For the
definition of the periodic reachability/observability Kalman de-
compositions it is important to consider the more general case
of time-varying dimensions. Note that the Kalman decompo-
sitions even of constant dimension periodic systems may lead
to reachable/observable and unreachable/unobservable subsys-
tems with time-varying dimensions [5]. Thus, the minimal re-

alizations of periodic systems (i.e., reachable and observable)
have, in general, time-varying state dimensions [2, 3]. Periodic
systems with time varying input and output vector dimensions
have been considered in [7] and arise in a natural way in some
computational problems [14].

Periodic systems with time-varying state dimensions have been
already considered earlier in [6, 4]. However, numerically reli-
able algorithms for systems with time-varying dimensions have
been developed only very recently. Notable examples are the
algorithms for the computation of minimal realizations [13],
the evaluation of the transfer-function matrix of a periodic sys-
tem [14], and the numerically stable algorithm to compute the
zeros of periodic systems [16]. Note that, the development of
general algorithms able to address the case of time-varying di-
mensions, is one of the requirements which we formulated for
asatisfactorynumerical algorithm for periodic systems [15].

The computation of Kalman decompositions by using orthog-
onal similarity transformations was one of the first numerically
stable algorithms developed to solve system theoretic prob-
lems. In a survey [10], six authors are cited who published in
1981, almost simultaneously, numerically reliable algorithms
to compute the controllability Kalman decomposition via the
so-calledcontrollability staircase form. Although the corre-
sponding theoretical results have been extended to the periodic
case by Grasselli already in 1984 [5], and subsequently have
been refined in the works of various authors [9, 4, 2], until now
there exists no computation oriented algorithm to compute the
periodic Kalman decompositions.

In this paper, we propose a structure exploiting numerically
reliable algorithm to compute the Kalman reachability decom-
position for discrete-time periodic systems using exclusively
orthogonal similarity transformations. A dual algorithm can
be used to compute the Kalman observability decomposition.
With these two algorithms, the minimal realization problem of
periodic systems can be solved in a numerically reliable way.
The new algorithm is computationally efficient and strongly
backward stable, thus fulfils all requirements for a satisfactory
algorithm for periodic systems.

Notation. For anN -periodic matrixXi we use alternatively
thescript notation

X := diag (X1, X2, . . . , XN ),

which associates the block-diagonal matrixX to the cyclic ma-
trix sequenceXi, i = 1, . . . , N . This notation is consistent
with the standard matrix operations as for instance addition,



multiplication, transposition or inversion. We denote withσX
theN -cyclic shift

σX = diag (X2, . . . , XN , X1)

of the cyclic sequenceXk, k = 1, . . . , N . By using the script
notation, the periodic system (1) will be alternatively denoted
by the triple(A,B, C). The transition matrix of the system (1)
is defined by thenj × ni matrixΦA(j, i) = Aj−1Aj−2 · · ·Ai,
whereΦA(i, i) := Ini . The state transition matrix over one pe-
riod ΦA(j + N, j) ∈ IRnj×nj is called themonodromy matrix
of system (1) at timej and its eigenvalues are called thechar-
acteristic multipliersat timej. The set of periodic dimensions
{n1, . . . , nN}, will be denoted asn.

2 Periodic Kalman decompositions

For the definitions of reachability, observability and minimal-
ity of periodic systems we rely on [1] (see also [4] for a more
detailed exposition).

Definition 1 The periodic system(1) is reachable at timek if

rankRk = nk, (2)

whereRk is the infinite columns reachability matrix

Rk = [ Bk−1 Ak−1Bk−2 · · · ΦA(k, i + 1)Bi · · · ]. (3)

The periodic system(1) is completely reachableif (2) holds for
all k.

Definition 2 The periodic system(1) is observable at timek if

rank Ok = nk, (4)

whereOk is the infinite rows observability matrix

Ok =




Ck

Ck+1Ak

...
CiΦA(i, k)

...




. (5)

The periodic system(1) is completely observableif (4) holds
for all k.

Definition 3 The periodic system(1) is minimal if it is com-
pletely reachable and completely observable.

Let Sk ∈ Rnk×nk be anN -periodic nonsingular matrix. The
reachability, observability and minimality properties are invari-
ant under anN -periodicstate-space similarity transformation
of the form

Ãk = S−1
k+1AkSk, B̃k = S−1

k+1Bk, C̃k = CkSk

The reachability and observability Kalman decompositions of
periodic systems have been introduced in [5]. We recall below
the main results:

Theorem 1 [5, 7] EveryN -periodic system(A,B, C) is state-
space equivalent to anN -periodic system(Ã, B̃, C̃), where

Ãk =
[

Ar
k ∗

0 Ar
k

]
, B̃k =

[
Br

k

0

]
, C̃k = [Cr

k Cr
k ] (6)

whereAr
k ∈ Rrk+1×rk , rk = rankRk and the pair(Ar,Br) is

completely reachable.

The decomposition of the system matrices in the form (6)
is called the periodic Kalman reachability decomposition
(PKRD). In this decomposition, the subsystem(Ar,Br, Cr) is
completely reachable and thetransfer-function matrix(TFM)
of the linear time-invariant lifted-representations (see [8]) cor-
responding to this system and the original system(A,B, C) are
the same [2]. The unreachable characteristic multipliers of the
system (1) are the eigenvalues ofΦAr (N, 0).

Definition 4 The periodic system(1) is completely control-
lable if all unreachable characteristic multipliers are zero.

The dual result to Theorem 1 is the following one:

Theorem 2 EveryN -periodic system(A,B, C) is state-space
equivalent to anN -periodic system(Ã, B̃, C̃) where

Ãk =
[

Ao
k 0
∗ Ao

k

]
, B̃k =

[
Bo

k

Bo
k

]
, C̃k =

[
Co

k 0
]

(7)

whereAo
k ∈ Rqk+1×qk , the pair(Ao, Co) is completely observ-

able andqk = rankOk.

The subsystem(Ao,Bo, Co) is completely observable and the
TFMs of the lifted-representations corresponding to this sys-
tem and original system(A,B, C) are the same [2]. The un-
observable characteristic multipliers of the system (1) are the
eigenvalues ofΦAo(N, 0).

Definition 5 The periodic system(1) is completely recon-
structible if all unobservable characteristic multipliers are
zero.

In our developments we use thecyclic lifted systemdefined in
[9] for constant dimensions. Denote byZn thecyclic shiftma-
trix

Zn =




0 · · · 0 InN

In1 · · · 0 0
...

. . .
...

...
0 · · · InN−1 0




and define (similarly as done in [9] for constant dimensions)
the cyclic lifted system, with

∑N
i=1 mi inputs,

∑N
i=1 pi out-

puts, and state vector dimension
∑N

i=1 ni, as the time-invariant
system

xC
k (h + 1) = FCxC

k (h) + GCuC
k (h)

yC
k (h) = HCxC

k (h) (8)



where(FC , GC ,HC) := (ZnA, ZnB, C).
The following results are straightforward extensions of those
of [9] to the case of time-varying dimensions:

Lemma 1 The pair(A,B) is completely reachable iff the pair
(FC , GC) is reachable.

Lemma 2 The pair(A, C) is completely observable iff the pair
(FC ,HC) is observable.

3 PKRD algorithm

In this section we show that the periodic reachability form (6)
can be computed using orthogonal similarity transformations
and we develop an efficient computational algorithm which
generalizes the algorithm of [11] and similar algorithms cited
in [10].

To justify our approach, we consider the periodic pair(A,B)
and letU be an orthogonal state-space similarity transformation
such that eachUk+1 compressesBk to a full row rank matrix.
If νk+1 is the rank ofBk, then we can write

UT
k+1Bk :=

[
Ak,10

0

]
νk+1

ρk+1

mk

, (9)

whereAk,10 has full row rank. We apply the transformation to
Ak and partitionUT

k+1AkUk as follows

UT
k+1AkUk :=

[
Ak,11 Ak,12

B̃k Ãk

]
νk+1

ρk+1

νk ρk

(10)

Note that some dimensions can be zero, depending on the ranks
of the matricesBk, k = 1, . . . , N .

We observe that we can now apply to the reduced pairs a sec-
ond orthogonal similarity transformation defined byV, with Vk

of the formVk = diag(Iνk
, Ũk). These transformations will

affect onlyB̃k, Ãk andAk,12. Now we choosẽUk+1 to com-
press the rows of̃Bk to a full row rank matrix and repeat the
partitioning in form (9) and (10) for the matrices̃UT

k+1B̃k,1 and

ŨT
k+1ÃkŨk. We obtain globally

V T
k+1U

T
k+1AkUkVk :=




Ak,11 Ak,12 Ak,13

Ak,21 Ak,22 Ak,23

0 B̂k Âk




νk+1

ν̃k+1

ρ̃k+1

νk ν̃k ρ̃k

(11)

where some submatrices have been redefined. This reduction
process continues until̃νk = 0 for k = 1, . . . , N , that is, all
B̂k = 0, or ρ̃k = 0, for k = 1, . . . , N , that is allB̂k have full
row rank.

The following implementable algorithm formalizes the above
ideas:

PKRD Algorithm: Periodic Kalman Reachability Decom-
position

GivenAk ∈ IRnk+1×nk , Bk ∈ IRnk+1×mk andCk ∈ IRpk×nk

for k = 1, . . . , N , this algorithm computes the orthogonal ma-
trices Qk, k = 1, . . . , N , such that the transformed system
(σQTAQ, σQTB, CQ) is in the periodic Kalman reachability
form (6).

1. Setj = 1 andrk = 0, ν
(0)
k = mk, A

(0)
k = Ak, B

(0)
k =

Bk, Qk = Ink
for k = 1, . . . , N .

2. For k = 1, . . . , N , compute the orthogonal matrixUk+1

to compress the matrixB(j−1)
k ∈ IR(nk+1−rk+1)×ν

(j−1)
k to

a full row rank matrix

UT
k+1B

(j−1)
k :=

[
Ak;j,j−1

0

]
ν

(j)
k+1

ρ
(j)
k+1

ν
(j−1)
k

3. For k = 1, . . . , N , computeUT
k+1A

(j−1)
k Uk and partition

it in the form

UT
k+1A

(j−1)
k Uk :=

[
Ak;j,j Ak;j,j+1

B
(j)
k A

(j)
k

]
ν

(j)
k+1

ρ
(j)
k+1

ν
(j)
k ρ

(j)
k

4. Fork = 1, . . . , N andi = 1, . . . , j − 1, compute

Ak;i,jUk := [ Ak;i,j Ak;i,j+1 ]
ν

(j)
k ρ

(j)
k

5. For k = 1, . . . , N , computeQk ← Qkdiag(Irk
, Uk),

Ck ← Ckdiag(Irk
, Uk).

6. rk ← rk + ν
(j)
k , for k = 1, . . . , N ;

if ρ
(j)
k = 0 for k = 1, . . . , N , then` = j, Exit 1.

7. If ν
(j)
k = 0 for k = 1, . . . , N , then` ← j − 1, Exit 2;

else,j ← j + 1 and go to Step 2.

After performing thePKRD Algorithm , each pair(Ak, Bk) is
in the periodic reachability form (6), where the pair(Ar

k, Br
k)

is in a staircase form

[Br
k | Ar

k ] =




Ak;1,0 Ak;1,1 Ak;1,2 · · · Ak;1,`

O Ak;2,1 Ak;2,2 . . . Ak;2,`

...
...

. ..
. ..

...
O O O Ak;`,`−1 Ak;`,`


 (12)

and Ar
k ∈ IRρ

(`)
k+1×ρ

(`)
k . In (12), Ak;i,i ∈ IRν

(i)
k+1×ν

(i)
k , i =

1, . . . , `; Ak;i,i−1 ∈ IRν
(i)
k+1×ν

(i−1)
k and rankAk;i,i−1 = ν

(i)
k+1

i = 1, . . . , `.

We have the following important result.



Theorem 3 For each pair(A,B) there exists an orthogonal
matrixQ such that the transformed pair(σQTAQ, σQTB) is
in the periodic reachability form (6).

Proof. We apply thePKRD Algorithm to the pair(A,B)
(assuming C = 0) and obtain Q such that the pair
(σQTAQ, σQTB) is in the form (6) with the pair(Ar,Br)
in the form (12). We need to show that this pair is reachable.
Consider the pencil[ ZrAr − zI ZrBr ] of the cyclic lifted
system(see (8)) corresponding to the pair(Ar,Br). Accord-
ing to Lemma 1 and the Popov-Belevich-Hautus test, to prove
reachability we need only to show that this pencil has full row
rank

∑N
k=1 rk for all z ∈ |C.

By column and row permutations we can bring this pencil in
the form

R(z) =




S1 −zT1 O · · · O
O S2 −zT2 · · · O
...

. . .
.. .

.. .
...

O SN−1 −zTN−1

−zTN O · · · O SN




(13)

where, fork = 1, . . . , N ,

Sk := [ Br
k Ar

k ], Tk := [ O Irk+1 ]

Note that by construction, eachSk has full row rankrk+1 =∑`
i=1 ν

(i)
k+1. Thus, by performing̀ cyclic column reductions

using elementary column operations, we can bringR(z), for
any finitez, in the form diag(S1, . . . , SN ). However, this ma-
trix has full row rank, because, eachSk has full row rank. 2

The firstrk columns ofQk form an orthonormal basis for the
rechability subspace ImRk. For each pair(Ar

k, Br
k) we can

define a reachability indexµk as the largest value ofi such that
ν

(i)
k 6= 0. The periodic system (1) is reachable at timek if

rk = nk.

Remark 1. Let hk be the least integer such thatν
(hk)
k+1 =

0. Then, it is easy to see that the trailing
∑`

i=hk
ν

(i)
k+1 ×∑`

i=hk
ν

(i)
k block of Ar

k is in a block upper trapezoidal form
with all diagonal blocks having full row rank. It follows that
the resulting matrices̃Bk and Ãk of the PKRD (6) have, in
general, the forms

B̃k =
[

Br
k

0

]
=




Br
k,1

0
0


 ,

Ãk =
[

Ar
k ∗

0 Ar
k

]
=




Ar
k,11 Ar

k,12 ∗
0 Ar

k,22 ∗
0 0 Ar

k


 ,

whereAr
k,22 has full row rank. Note that in the single-input

case, the leading blockAr
k,11 is in an unreduced upper Hessen-

berg form, while the trailing blockAr
k,22 is full row rank upper

trapezoidal. 2

Remark 2. It is possible to further reduceAr
k by separating

the zero and nonzero characteristic multipliers in the product
ΦAr (N, 0). This can be done once again by employing ex-
clusively orthogonal transformations. The resulting periodic
matrix after this separation has the form

Ar
k =

[
A0

k ∗
0 Ac

k

]
,

where all characteristic values of the periodic matrixA0
k are

zero, and the periodic matrixAc
k ∈ IRnc×nc has constant di-

mension, is square and nonsingular. The eigenvalues ofΦAc

represents the uncontrollable characteristic multipliers of the
periodic system (1). It follows that the periodic system (1) is
stabilizableif all uncontrollable characteristic multipliers lie in
the interior of the unit circle. 2

Remark 3. ThePKRD Algorithm can be extended to periodic
descriptor systems of the form

Ekx(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) (14)

where the matricesAk, Bk, andCk are the same as in (1) and
Ek ∈ IRnk+1×nk+1 is an N -periodic invertible matrix. The
similarity transformation used in this case has the form

Ẽk = Tk+1EkSk+1, Ãk = Tk+1AkSk,

B̃k = Tk+1Bk, C̃k = CkSk

with Sk andTk N -periodic nonsingular matrices.

After a preliminary reduction ofEk to an upper triangular form
using suitable orthogonalSk and Tk, we perform, as in the
PKRD Algorithm , the row compression onBk using an or-
thogonal transformationUk+1. The only difference in the de-
scriptor case is that the upper triangular form ofEk is preserved
while reducingBk. This can be done by computing an appro-
priateVk+1 such thatUT

k+1EkVk+1 remains upper triangular.
In fact, the compression ofBk and maintaining the upper tri-
angular form ofEk can be done simultaneously, in a similar
way as done in [12] for standard descriptor systems. The com-
bined reduction and restoring of triangular form can efficiently
be done by employing orthogonal Givens transformations.2

4 Numerical aspects

To estimate the necessaryfloating-point operations(flops) nec-
essary to compute the periodic reachability Kalman decompo-
sition, we assume for simplicity constant dimensions:n = nk,
m = mk, p = pk. The worst-case operations count result if
the periodic system is reachable. In this case, if we use House-
holder transformations based QR decompositions with column
pivoting for the row compressions in thePKRD Algorithm ,
then we can easily give an estimate of the total number offlops
necessary to compute the PKRD as

Nflops = N

(
5
3
n3 + (p + m)n2

)



To accumulate the transformations the algorithm needs addi-
tionally Nn3 flops. Thus, the computational complexity of this
algorithm isO(Nn3). The same computational complexity can
be achieved also in the descriptor case.

All computations can be performed in place, thus the required
memory of(n + m + p)nN storage locations is minimal if the
transformations are not accumulated. The information on the
performed transformations can be compactly stored in the gen-
erated zero submatrices during the reduction, and in additional
N n-vectors. To form the transformation matrices explicitly,
Nn2 additional storage locations are necessary. These figures
are valid also for time-varying dimensions, wheren, m andp
are now the maximum values of state, input and output vector
dimensions, respectively.

Thestrong backward stability of thePKRD Algorithm can be
easily proved. The basic idea is that each transformationUk

can be computed and applied in a numerically stable way. A
sequence of such transformations can be also performed in a
numerically stable way, since each orthogonal matrix has unity
norm. For details see [17]. It follows that the results computed
with thePKRD Algorithm are exact for slightly perturbed ini-
tial matricesAk, Bk,Ck, which satisfy

‖X −X‖ ≤ εX‖X‖, X = Ak, Bk, Ck

where, in each case,εX is a modest multiple of the relative
machine precisionεM .

5 Applications

5.1 Computation of PKOD

To compute the PKOD, anPKOD Algorithm analogous
PKRD Algorithm can be devised. Instead row compressions,
this algorithm performs column compressions on the matrices
C

(i)
k in the successively generated pairs(A(i)

k , C
(i)
k ). The re-

sulting algorithm can be seen as the application of thePKRD
Algorithm to a certain dual periodic system. The following
procedure formalizes the main steps of this approach:

PKOD Algorithm: Periodic Kalman Observability Decom-
position

GivenAk ∈ IRnk+1×nk , Bk ∈ IRnk+1×mk andCk ∈ IRpk×nk

for k = 1, . . . , N , this algorithm computes the orthogonal ma-
trices Qk, k = 1, . . . , N , such that the transformed system
(σQTAQ, σQTB, CQ) is in the periodic Kalman observabil-
ity form (7).

1. Fork = 1, . . . , N , form the dual system matrices

Âk = AT
N−k+1, B̂k = CT

N−k+1, Ĉk = BT
N−k+1

2. Apply thePKRD Algorithm to the triple(Â, B̂, Ĉ) to de-
termine the orthogonal N-periodic transformation matri-
cesQ̂k such that

Â ← σQ̂T ÂQ̂, B̂ ← σQ̂T B̂, Ĉ ← ĈQ̂

with the resulting pair(Â, B̂) in the periodic reachability
form

Âk =

[
Âr

k ∗
0 Âr

k

]
, B̂k =

[
B̂r

k

0

]

3. Fork = 1, . . . , N , form the system matrices of the PKOD

Ak ← ÂT
N−k+1, Bk ← ĈT

N−k+1, Ck ← B̂T
N−k+1

4. SetQN = Q̂N , andQk = Q̂N−k, for k = 1, . . . , N − 1.

Using the computed results of this algorithm, therecon-
structibility and detectabilityproperties can be analyzed in a
similar way as indicated inRemark 2 for the dual properties
of controllability and stabilizability, respectively.

5.2 Computation of minimal realizations

The numerical computation of minimal realizations of periodic
systems has been addressed in [13], where a balancing-related
approach was proposed. This algorithm relies on the computa-
tion of the extended periodic Schur form ofAk, and involves
the solution of two non-negative definite periodic Lyapunov
equations. This algorithm is numerically reliable, since each
computational step relies on strongly backward stable algo-
rithms. The main advantage of this algorithm is that theN rank
decisions necessary to obtain the state-vector dimensions of a
minimal realization are performed only once at the end of the
algorithm. Thus, this approach is very reliable in determining
the order of the minimal realizations.

In some applications, as for example when computing the TFM
of a periodic system [14], the algorithmic efficiency aspects
play an important role. Thus, instead employing the above al-
gorithm as proposed in [14], we can alternatively use a sig-
nificantly more efficient procedure to compute minimal real-
izations by eliminating successively the unreachable and unob-
servable parts. A two step procedure is formalized below:

Minimal realization procedure

1. Apply the PKRD Algorithm to the system(A,B, C) to
compute the reachable realization(Ar,Br, Cr).

2. Apply the PKOD Algorithm to the reachable system
(Ar,Br, Cr) to compute the minimal realization as the ob-
servable part(Aro,Bro, Cro).

This algorithm is strongly backward stable and has a computa-
tional complexity ofO(Nn3).



6 Numerical example

Consider the 3-periodic single-input single-output system with
the constant dimension system matrices

A1 =
[

0 1
0 0

]
, B1 =

[
3
0

]
, C1 =

[
0 1

]

A2 =
[

1 2
0 0

]
, B2 =

[
0
1

]
, C2 =

[
2 4

]

A3 =
[

0 0
1 4

]
, B3 =

[
0
1

]
, C3 =

[
3 1

]

By applying thePKRD Algorithm with

Q1 =
[

1 0
0 1

]
, Q2 =

[
0 1
1 0

]
, Q3 =

[
0 1
1 0

]
,

we obtain the periodic matrices in the reachability form

[
Ar

1 ∗
0 ∗

]
=

[
1 0
0 0

]
,

[
Br

1

0

]
=

[
3
0

]
,

[
Cr

1 ∗ ]
=

[
1 0

]

[
Ar

2 ∗ ]
=

[
0 0
1 2

]
, Br

2 =
[

1
0

]
,

[
Cr

2 ∗ ]
=

[
2 4

]

[
Ar

3

0

]
=

[
4 1
0 0

]
,

[
Br

3

0

]
=

[
1
0

]
, Cr

3 =
[

1 3
]

Thus, the reachable part has time-varying state dimensions,
r1 = 1, r2 = 1, r3 = 2. Note that this part is also observ-
able, thus(Ar,Br, Cr) represents a minimal realization of the
original system.

7 Conclusion

In this paper we proposed a strongly backward stable algorithm
to compute the periodic reachability Kalman decomposition of
a periodic system. This algorithm can be applied to compute
the periodic observability Kalman decomposition as well, and
thus can be used to compute minimal realizations of periodic
systems. The algorithm works for system matrices with time-
varying dimensions and can be easily extended to descriptor
periodic systems as well. By fully exploiting the problem struc-
ture, an acceptable computational complexity can be achieved,
which is linear in the periodN and cubic in the maximum di-
mension of state vector. Thus, the new algorithm fulfils all
requirements which we formulated in [15] for a satisfactory al-
gorithm for periodic systems.
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