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This work presents the formal approach for identifying
continuous transfer functions of the vertical dynamics
of a high-speed ship as a nonlinear optimization
problem with linear constraints. The proposed solution
is described with a hybrid optimization method ( genetic
algorithm + nonlinear optimization algorithm with
linear constraints from the Matlab toolbox).
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1. Introduction

Since the end of the Second World War the shipping
industry has focused on using light metal alloys and
plastic laminates to create units that are larger and
more comfortable for passengers. A striking example
of these kinds of ships is the so-called Fast Ferries,
used on regular lines for transporting passengers and
cars. The construction and exploitation of these kinds
of vehicles is a growing market, with over 200 com-
panies using 1250 fast ferries at present. In 2000 just in
Europe, fast ferries transported 82.6 million passen-
gers and 12.8 million cars.

Maritime transport’s main competitor is air trans-
port. Consequently, the keen interest shown by mari-
time passenger transport firms (shipping companies,
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ship owners and builders) in increasing their compet-
itiveness with air transport is understandable.

One of the most unpleasant disadvantages of mari-
time transport is the motion sickness suffered by both
passengers and crew as a result of the vertical accel-
erations associated with the induced heave and pitch
motions. The decrease as far as possible in this motion
sickness will lead to greater comfort and safety. In
order to solve this problem using a control algorithm,
first of all it is necessary to obtain a mathematical
model of the process to be controlled.

There are two very different parts in the process
model, on the one hand, the vertical dynamics of the
high-speed ship and on the other hand, the mechanical
actuators (fins, flaps,...) that will be used to offset
the heave and pitch motions.

In [3,9,11,15,16], different transfer functions are
proposed to describe the vertical dynamics of different
kinds of ships. They are however not applicable to
Fast Ferries. Moreover, in [8] the most appropriate
models of mechanical actuators are described for
reducing motion sickness in a Fast Ferry.

One possible way of obtaining the transfer func-
tions of the vertical dynamics of a fast ferry is iden-
tification in the time or frequency domain; for this it is
necessary to have the right experimental data. In the
CEHIPAR (El Pardo Model Basin, Spain) sea beha-
viour experiments were done with a scaled down
replica (1/25) of a fast ferry from which experimental
data in the form of time series of wave height, heave
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and pitch at different speeds (20, 30 and 40 kn)
and different sea states (SSN=4, 5 and 6) were
obtained.

The application of parametric identification tech-
niques on the time series meant that it was possible to
obtain ARX SISO and ARX SIMO models [5,7], that
describe the ship’s vertical dynamics according to the
ship speed and sea state. These discrete models are
splendid for gaining insight into the ship’s vertical
dynamics. Yet in order to use actuator elements to
control the heave and pitch motions, it is necessary to
decompose the dynamics into four models: heave
force, pitch moment, heave motion and pitch motion.

The measurement of time series of heave force and
the pitch moment [14] in a model basin is difficult and
not very reliable. As a matter of fact, these magnitudes
are not able to measure in a full scaled ship. Thus, the
identification using discrete ARX type models of the
heave force and the pitch moment was discarded.

However, it is possible to do an identification in the
frequency domain since amplitude and phase data of
the heave force, pitch moment and heave and pitch
motions at different encounter frequencies and ship
speed were obtained in CEHIPAR using the program
PRECAL, which is based on a CAD description of the
hull of the ship to be analysed. This program solves
the physical equations of the vertical dynamics of a
high-speed ship numerically using the Band Theory
[9,14,15]. This theory basically consists of decompos-
ing the ship’s volume into narrow transversal bands
on which the nonlinear differential equations of the
ship’s dynamics are solved by numerical integration.

This work presents the formal approach for iden-
tifying continuous transfer functions of the vertical
dynamics of a high-speed ship as a nonlinear optimi-
zation problem with linear constraints. The proposed
solution is described with a hybrid optimization
method (genetic algorithm + nonlinear optimization
algorithm with constraints from the Matlab toolbox).

2. Initial Considerations

To properly understand this work, it is necessary to
describe and define the regular and irregular wave
concepts, heave and pitch motions and encounter
frequency.

2.1. Wave Description

Sea waves are principally caused by the interaction
between the wind and water on the sea surface [14].
There are at least two physical processes involved

J. Aranda et al.

here: the friction between the air and water, and
the fields of local pressure associated with the blowing
of the wind on the water. Although there are many
works that try to explain the generation of waves by
the wind [13,19] nobody has developed a theory that
thoroughly explains the energy transfer mechanism
between the wind and sea.

Sea waves are usually irregular [15] both in time and
space and more or less random by nature. If two
waves are compared, it can be observed that they do
not have exactly the same amplitude, they travel at
different speeds and in different directions.

Regular waves never occur in a real maritime
environment, although they can be easily generated in
a laboratory with a model basin. Regular waves are
used as the principal basis for many behaviour
experiments of ships in a model basin, since they
provide a lot of information about ship’s vertical
dynamics. Moreover, assuming linear wave theory is
possible to consider that the right superposition of
regular waves generates irregular waves.

Traditionally, sailors have used the visual
appearance or sea state number (SSN) as an indica-
tion of the local speed of the wind. This has led to the
numerical concept of sea state as a measurement of
wave severity. Different scales of sea state have been
developed by different national institutions. In 1970,
the World Meteorological Organisation (WMO)
established a code for describing sea states (see
Table 1). Each SSN corresponds to a significant wave
height range.

2.2. Encounter Frequency

Imagine a ship moving with a speed U, expressed in
metres per second (the unit that sailors use to describe
speed is the knot, which is equivalent to 0.51 m/s), on
the sea surface (see Fig. 1).

Table 1. World Meteorological Organisation (WMO) sea
state codes.

SSN Significant wave height Description
range (m)

0 0 Calm (glassy)

1 0-0.1 Calm (rippled)

2 0.1-0.5 Smooth

3 0.50-1.25 Slight

4 1.25-2.5 Moderate

5 2.5-4.0 Rough

6 4.0-6.0 Very rough

7 6.0-9.0 High

8 9.0-14.0 Very high

9 Over 14.0 Phenomenal
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A wave front moves with a constant speed ¢, the
wavelength is A\. The waves fall against the ship
forming an angle p with the ship motion direction.

In Fig. 1, it can be seen that the component of the
ship speed in the wave incidence direction is U cos p,
and that the waves will pass along the ship with a
relative speed ¢ — U cos p.

Since the crests of the waves are separated by a
distance A, a crest will meet with the ship with an
encounter period T.

A

To=— 2
¢ c—Ucos i

(1)
The encounter frequency we is the relative frequency
with which the waves fall against a moving ship, it is
defined as:

_2r 2m

We T 7(6 — U cos p). (2)

Or equivalently,
we = w — kU cos p. (3)
In deep waters the number of waves have the form [15]
k =w’/g, where the expression w, is:
2

we:w—%Ucosu. 4)

In a head sea p=180°, the encounter frequency is
expressed:

2
We =W+ Yu. (5)
g
In other words, in a head sea the encounter frequency
w, 1s greater than the wave frequency w, and is directly
proportional to the ship speed U.

Fig. 1. Train of regular waves falling against a moving ship.
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3. Qualitative Description of the Vertical
Dynamics of a High-Speed Ship

A ship is a rigid solid partially submerged in water. As
a result of the waves acting on the ship a series of
forces and moments are induced that cause six dif-
ferent motions: surge, sway, heave, roll, pitch and
yaw. There are physical equations that describe the six
motions, they are nonlinear differential equations in
terms of hydrodynamic forces and moments [9,14,15].

Most ships have port/starboard symmetry and so
the ship dynamic can be decomposed [15] into two
planes:

e Horizontal plane, where the roll, yaw and sway
motions are presented.

e Vertical plane, where the heave, pitch and surge
motions are presented.

The interaction between the vertical and horizontal
dynamics is usually small for high speed slender
bodies, so that a good assumption [14,15] is to con-
sider both dynamics as independent. Furthermore, in
head seas, i.e., waves that perpendicularly hit the ship
bow, the vertical accelerations that cause motion
sickness are exclusively associated with the heave and
pitch motions.

Heave motion is understood to be the vertical dis-
placement / on the ship’s centre of gravity as a result
of the waves (see Fig. 2). Its unit of measurement is the
metre.

Pitch motion is understood to be the angular dis-
placement p on the ship’s vertical plane as a result of
the waves (see Fig. 2). Its unit of measurement is the
degree.

The sign convention that is used for the heave and
pitch motion varies depending on the reference con-
sulted. This work uses the following:

e The heave motion is considered positive h > 0 if the
vertical displacement of the centre of gravity is
upwards.

Fig. 2. Heave motion and pitch motion.
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e The pitch motion is considered positive p > 0 if the
bow sinks above the level of calm waters.

The heave and pitch motions are coupled, but
this coupling is generally weak so in the first approx-
imation they can be considered as independent
motions [15].

Depending on the wavelength of the waves
A and the ship’s length L, three kinds of waves are
distinguished (see Fig. 3): long (if A > L), intermediate
(if A~ L) and short (A< L).

Suppose that large regular waves fall with a head
sea on a ship. The time series of wave height w, heave
h and pitch p can be expressed using the following
equations:

w = wo sin(wel),
h = ho sin(wet + 6y ), (6)
P = posin(wet + 6p),

where wy, hy and pg are the amplitude of wave height,
heave and pitch, respectively. w, is the encounter fre-
quency. 6y and 6, are the phase of heave and pitch,
respectively.

Figure 4 represents for a fixed point the wave
depression w according to time. This graph also

Fig. 3. Kinds of waves depending on the wavelength of the
waves A and the ship’s length L.

Fig. 4. Heave and pitch motion for large regular waves fall
with a head sea on a ship.
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represents what the position of the ship would be. For
the time instant o = 7/2w, s, coinciding with a wave
crest (w=wg) the maximum value of (h=hy) is pre-
sented. For the time instant 7g=m/w, S, coinciding
with the cross through zero (w=0) from a positive
value to a negative value of wave depression the
maximum value of pitch is obtained (p = p,). For the
time instant tc = (37/2)/w, s, coinciding with a wave
depression (w= —wg) the minimum heave value is
obtained (h=hg). Finally, for the time instant
tp = (2m)/w, s coinciding with the cross through zero
(w=0) from a negative to a positive value of wave
depression the minimum pitch value (p=-—poy) is
obtained.

Therefore, for these wave conditions it is concluded
that the heave is synchronised (6, =0°) with the wave
motion, while the pitch is dephased (6, = —90°) with
the wave amplitude.

In order to know the asymptotic behaviour of the
heave and pitch motions, suppose that there are two
extremely long waves, which would correspond to the
tide after several hours, i.e., the wave frequency tends
towards zero w— 0. In this instance the ship follows
the surface of the water in such a way that the heave
and wave amplitudes are equal, the pitch is also can-
celled out. Therefore, the transfer functions waves-
heave (h(s)/w(s)) and waves-pitch (p(s)/w(s)) tend
towards 1 and 0, respectively, when the wave fre-
quency is decreasing

(o) p(jw)
(o) (i)

Furthermore, for extremely short waves, i.e., the wave
frequency tends towards infinite w — oo, there would
be ripples to which the ship does not respond, so that
there is neither heave nor pitch motion, which in terms
of the transfer functions waves-heave (/(s)/w(s)) and
waves-pitch (p(s)/w(s)) is expressed as follows:

h(jw) p(w)
w(jw) w(jw)| w—oo
The asymptotic behaviors described by Eqs (7) and (8)

must be borne in mind in the process for identifying
transfer functions.

0. (7)

w—0 w—0

0. (8)

w—00

4. Approach for Identification Problems

Within the non-parametric identification techniques,
one of the most commonly used is the frequency
response. This method consists of measuring the sys-
tem’s response in the stationary state when a sinus-
oidal input is applied. The changes in amplitude and
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phase will determine the system’s response to this
frequency. If the experiment is repeated for a set of
frequencies that include the system’s bandwidth, there
will be amplitude and phase measures according to
frequency, which can be represented using a Bode
diagram.

If the experimental points of the Bode diagram of a
system are known, using an optimization problem
solution it is possible to identify a continuous transfer
function that presents a similar frequency response
and that can therefore be considered as a good model
of the system.

The vertical dynamics of a high-speed ship can be
represented by the block diagram in Fig. 5, where

e Gy(s) is the transfer function where the input is the
wave height w (m) and the output the heave motion
h (m).

e Gp(s) is the transfer function where the input is
the wave height w (m) and the output the pitch
motion p (°).

Furthermore, the waves induce a heave force and a
pitch moment in the ship, which cause the heave and
pitch motions, respectively. Thus, the vertical
dynamics can also be represented by the extended
block in Fig. 6, where

e Gy(s) is the transfer function where the input is the
wave height w (m) and the output the heave force
Fy (KN).

e Goy(s) is the transfer function where the input is the
heave force Fyy (KN) and the output the heave
motion / (m).

Fig. 5. Block diagram of the vertical dynamics of a high-
speed ship.

Fig. 6. Extended blocks diagram of the vertical dynamics of
a high-speed ship.
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e Gp(s) is the transfer function where the input is the
wave height w (m) and the output the pitch moment
Mp (KN m).

e G>p(s) is the transfer functions where the input is the
pitch moment Mp (KN m) and the output the pitch
motion p (°).

Therefore, the following relations are fulfilled:

GH(S> = GlH(S) . G2H(S), (9)
GP(S) = Glp . GZP(S). (10)

The identification of Giy(s) and Gyp(s) is done
directly, since there are data of amplitude and phase at
different encounter frequencies for both transfer
functions. These data were obtained using the soft-
ware program PRECAL. However, the identification
of Goy(s) and G,p(s) must be done indirectly, since
there are no data for these transfer functions. There-
fore the identification of Gy(s) and Gp(s) must be
done first of all and the G,y(s) and G,p(s) expressions
must be obtained from Eqs (9) and (10) by identifying
on the Gy(s) and Gp(s) data.

Generally, suppose that there is a set of N experi-
mental points of amplitude |G(jwe;)| and phase
arg(G(jwe;)) for different encounter frequencies we,,
i=1,...,N. The real and imaginary part of these
points is given by:

Re(G(jwei)) = |G(jwer)| cos(arg(Gjwer))),
Im(G(jwei)) = |G (jwei)| sin(arg(G(jwe:)))-

(11)
Let the estimated transfer function G(s) be:
G(s) = b’”iﬁfﬁ: :f_sl+l+ ' H: b (12)
Its parameter vector 6 is:
0=1lar, ....an b1, ..., by]" (13)

The structure G(s) of is denoted by (1, n, nps), where
m is the number of zeros, n is the number of poles and
nps is the number of simple poles.

We want to identify the structure and the para-
meters § of the estimated transfer function G(s), in
such a way that its amplitude |G(jwe)| and its
phase arg(G(jwe;)) in the encounter frequencies
Wei» i=1, ... ,N have the least possible error for the
values |G(jwe;)| and arg(G(jwe;)), respectively.

Therefore, in order to estimate G(s) an optimization
problem has to be solved, where it is necessary to
define an expression of the error or cost function.
A possible choice, in accordance with [1,18] of the cost
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function is:

J(8) = Jreal(0) + Jimag(0), (14)
where
N
Jreal(0) = Z(RB(G(I‘%!)) - Re(éowei)))2
" (15)
Jimag(0) = Z(Im(G(]wel)) - Im(éuwei)))z

1

In order to identify the continuous models of the
vertical dynamics of a ship, it is necessary to identify
G1u(s), Gau(s), Gip(s) and Gap(s).

Let (my, ny, npsy) be the G1y(s) or Gp(s) structure,
the range of values permitted for this structure is
bounded in set E;.

I <my < Mymax
1 <1y < 1imax . (16)
npsy < Nlmax

E =

Let (m», n», nps,) be the G-y(s) or Gop(s) structure, the
range of values permitted for this structure is bounded
in set E>.

1 <my < (mmax - mlmax)
1<n < (nrnax - nlmax) . (17)
nps; < (nmax - n]max)

Ey =

In accordance with the theoretical equations of a
ship’s vertical dynamics [9,15], mpax =3, Mmax =95,
Mimax =4, Mmax = 7.

Moreover, in the identification process of the dif-
ferent transfer functions the a priori knowledge of the
vertical dynamics must be considered, which results in
the following constraints:

1. The model must be stable, ie, the transfer functions
G1u, Gou, Gip, Gop must not have positive poles.

2. Atlow frequencies the functions Gy(s) and Gy(s)
verify |G1H(]we,)| —>1 and |G2H(]we,)| —>1 which

leads to the followmg restriction on the coefﬁc1ents
GIH(S) and GzH(S).
|b1] = |aul. (18)

3. At low frequencies the transfer frequency Gip(s)
verifies |Gp (jwe;)| —60, which leads to the follow-

ing restriction on the coefficients Gp(s):
by =0. (19)

Four nonlinear optimization problems with linear
constraints therefore have to be solved for each of the
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speeds considered:

e Problem I: Find the function Gy(s) € E; which
minimises the cost function J(6), subject to the
restriction (18).

e Problem 2: Find the function Gay(s) € E, which
minimises the cost function J(f), subject to the
restriction (18).

e Problem 3: Find the function G]P(S) € E; which
minimises the cost function J(f), subject to the
restriction (19).

e Problem 4: Find the function Gyp(s) € E, which
minimises the cost function J(6).

To solve Problems 2 and 4, it is necessary to first solve
Problems 1 and 3.

5. Solution to the Identification Problems

Problems 1 and 2 present problems of convergence
related to the initial values of the parameter vector
that is usually necessary to start any optimization
routine. Thus, a solution to avoid these convergence
problems is to use a hybrid optimization method [2]
formed by a genetic algorithm GA and the nonlinear
optimization algorithm with linear constraints from
the Matlab toolbox [4]. It has been checked in multiple
cases [6,10,12,17] that the use of a GA generally pro-
vides a solution quite close to the global optimum
since they are characterised by their capacity to avoid
local minimums. The fulfilment of this property
however depends on the right choice of the GA
parameters (population size, generations number,
cross probability, mutation probability, ...). Each
optimization problem generally needs a different GA
parameters configuration. Therefore, the solution
obtained with the GA serves as a excellent initial value
for the nonlinear optimization algorithm to avoid
undesirable convergence problems.

Problems 3 and 4 are solved using the nonlinear
optimization algorithm without GA (non-hybrid
optimization method), since the random generation of
the initial value of the parameter vector is sufficient to
achieve the right algorithm convergence.

Itis demonstrated both empirically and theoretically
that GAs provide a reliable search for solutions to
problems in complex spaces [6,10,12,17]. Although
probabilistic rules intervene, GAs do not represent a
blind search through space for solutions to a problem.
The idea is that the information that is accumulated in
the search space, completely unknown at the begin-
ning, can direct the posterior search towards subspaces
with expected improvement. It is important to high-
light that the use of GAs does not ensure finding the
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global optimum of a problem, but they may provide
quite close solutions to it, since they are characterised
by their capacity to avoid local minimums.

Since GAs solve maximisation problems, the cost
function J defined in Eq. (14) is transformed into:

100
Jg = 7 (20)
The maximum of Jg coincides with the minimum of J.
A factor of 100 included to increase the comparison
range of the elements that constitute each generation
in a GA population. The GA will inspect the spaces of
structures £, and E, of Gy and G,y respectively,
calculating the parameter vector for each one
and selecting the one that presents the best cost
function Jg.

The functions selected with GA are denoted by
G1ug(s) and Goyg(s), and they will be used as initial
values to identify Gg(s) and G,y(s) by a nonlinear
optimization algorithm with constraints from the
Matlab toolbox.

The GA specifications [1] used are:

e Initial population of 10 individuals created at
random.

Substitution by generation.

Probability of cross p.=0.7.

Probability of mutation p,, =0.007.

The choice of parents is done using the roulette
method.

e 10,000 generations run in 40 eras.

In order to ensure the stability of the estimated models
using the nonlinear optimization method, the
transfer function to be estimated has been expressed
thus:

3(s) = Xntmi 18" 4 Xgm8"™ 4 4 Xap
(HZ A’(‘S)) (S + xnpc+1) """ (S + xnp£‘+nps)
(21)

b}

where

A= [sz 4+ 2sxi-1 + (x?_1 —i—x?)] i=1,...,npc. (22)
The denominator has been rewritten in quadratic
factors that represent the conjugate complex pole and
in simple factors that represent the poles on the real
axis. Therefore, given a total number of n poles, there
will be npc complex poles and nps simple poles.

The G(s) numerator does not factorise since it is the
optimization algorithm which, given the number of
total zeros m of the structure, determines the right
number of complex and simple zeros.
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With a structure (m, n, nps) for the transfer function

G(s), the parameter vector to be estimated is:

T
] xan—npS]

(23)

0= [x17 X2y« oo s Xnpe—15 Xnpes Xnpe+1s -

If G(s) is written in the form (21), then the stability
necessarily ensures that the real parts of all the poles
are less than zero, i.e., they are in the left semiplane of
plane s.

x; <0, i ...,npc+ nps. (24)
For numerical calculations the restriction that is in
fact used is:

x; < —0.005, i=1,...,npc+ nps. (25)

The algorithm ident_G1 was developed to identify
Giu(s) or Gip(s) using the non-linear optimization
method, this algorithm was implemented as a function
M of Matlab [7].

This algorithm works with two different repre-
sentations of the transfer function to be estimated

G(s): Eq. (21) and the following equation:

G(S) :yn1+n+lsm +ym+nsm_1 + Yt
S Yus" A '

(26)

The ident G1 algorithm consists of the following
steps:

1. Obtaining the initial values. The algorithm has to
be given the structure (m, n, nps) of the transfer
function to be estimated G(s), as well as an initial
parameter vector 6 of G(s). These initial values
can be obtained with GA or be generated
randomly. The algorithm also has to be given the
N data of the module |G(jwe;)| and the
phase arg(G(jwe)) i=1,..., N, at different
encounter frequencies of the function to be
identified G(s).

2. Normalisation of the data |G(jw;)| in order to
avoid numerical calculation problems.

3. Calculation of the real part Re(G(jwe;)) and the
imaginary part Im(G(jw,;)) from the data |G(jwe,)|
and arg(G(jwey))-

4. Generation of the equations in symbolic form
of the real part Re(G(jwe)) and the imaginary
part Im(G(jw,;)) of the transfer function to be
estimated. Thus, Eq. (26) is written as follows:

G(iwe)
_ (y71+1 - W% * V43 + -
0@t

) (e Yo =R yura+ o)
Y+ fw 2=yt
7)




194

Or equivalently,

A nl+j-n2
G =—
Vo) = s
G(/We):Hl(,Vly-usJ’eranWe) ( )
+fH2(y1, cee ayn1+n+l’we)~
Consequently,
Re(G(iwe)) =Hi(y15 - Vimtnt1>We), (29)

Im(G(jwe)) = Ha(y1, . ..

s Vmtntls We)-

5. Generation of the coefficients in symbolic form
of the numerator G, applying accordingly,
the constraints at low frequency defined in Egs. (18)

or (19).
6. Calculation of the symbolic expressions of the
coefficients y,, k=1, ..., n of the denominator of G

in its form (26), according to the coefficients x;
of the denominator of G in its factorized form (21).
In other words, the following kinds of equations
are obtained:
yk:Fk(Xl,---aXVn)a k:l,...,n. (30)

7. Construction of the cost function J(6) that is
defined in (14).

8. Search for the optimum parameter vector 0, that
minimises the cost function J using the non-linear
optimization method with linear constraints from
the Matlab toolbox (function constr.m).

Therefore the algorithm ident_Gl1, in a first stage
(steps 1-7) appropriately constructs the cost function
J(0) to be optimised, considering the magnitude and
phase experimental points of a function G(s), the
structure of the transfer function to be estimated G(s)
and the constraints imposed on the values of its
coefficients. Subsequently in a second stage (step 8) an
optimization routine of the function J(6) is executed
using the non-linear optimization method. Thus the
parameter vector 6, is obtained that minimises the
cost function.

Furthermore, the algorithm ident G2 was devel-
opment to obtain the expressions Gay(s) or Gap(s)
from Eqgs (9) and (10), identifying on the data of Gy(s)
or Gp(s), respectively. In order to be able to apply the
algorithm, it is necessary to have first obtained GlH(S)
or Gip(s) with the algorithm ident_G1.

The steps for the algorithm ident_G2 are very
similar to the steps for the algorithm ident G1; it
simply works with a two-transfer function product
instead of with just one transfer function.
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5.1. Identification of Gy and G,y

The solution to Problems 1 and 2 for the identification
of Gy and G,y, was done following the optimization
scheme illustrated in Fig. 7. This scheme consists of
four steps:

1. Identification of an initial model Gy using GA.

2. Identification of an initial model Gryg with GA,
using the model Gyg.

3. Identification of Gy with the algorithm ident_Gl1,
taking as the initial value for the calculation the
model Gy obtained in step 1.

4. Identification of the model G,y with the
algorithm ident_G2, taking as the initial value
G-oug and using the model Gy obtained in the
previous step.

5.2. Identification of G;p and G,p

The solution to Problems 3 and 4 was done in accor-
dance with the optimization scheme illustrated in
Fig. 8. This scheme consists of four steps:

1. Configuration of an initial model Gipg, for this a
structure (m;, ny, nps)) € E; is fixed and a para-
meter vector 6 is generated randomly for the
transfer function.

2. Identification of Gp with the algorithm ident_Gl1,
using as the initial value the model Gpo.

3. Configuration of an initial model G»p,, for this a
structure (m», n», nps,) € E, is fixed and a para-
meter vector 6 is generated randomly for the
transfer function.

Fig. 7. Optimization scheme to identify Gx(s) and Goy(s).
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4. Identification of the model G,p with the ident G2,
taking as the initial value G,py and using the model
G p obtained in step 2.

6. Results Obtained and Validation

The amplitude and phase data of the transfer function
Gp, G1g, Gp and Gy were used for the identification
of continuous models of the pitch moment, heave
force, heave and pitch motions. These data were
obtained in CEHIPAR with the help of the software
program PRECAL at different encounter frequencies.

Fig. 8. Optimization scheme to identify Gp(s) and G,p(s).
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The transfer functions Gy, Goy, Gip and G,p were
identified for the speeds U =20, 30 and 40 kn [7]. For
U =40 kn, a case of special interest for navigation was
obtained:

0.067s% +0.1025%>+0.904s —0.189

Giuls) = ,
(8 = & 13405 1 2.26657 1 0.8675 1 0.189

0.267s> — 0.510s + 3.053

Gon(s) = :
n(8) = 554695 + 3.053

—0.076s* 4 0.030s> — 0.925s

Gipl(s) = ,
P(8) = 37310205 1 6.1945 + 6.8545 1 2.706

_ —2.104s? + 16.440s + 0.691
s34+ 1.20382 + 31555 + 1.334°

Gop (Y)

The validation of the estimated transfer functions was
done by representing their frequency response in a
Bode diagram where they were compared with the
amplitude and phase points obtained with PRECAL.
In the case of G,y and G,p since there are no data, they
are multiplied by Gy and Gp, respectively, in such a
way that the Bode that is represented is the waves-
heave Gy and waves-pitch Gp filter. Figures 9—12
show the Bode diagram of G y(s), Gu(s), Gip(s) and
Gp(s) compared with the amplitude and phase points
obtained with PRECAL.

Moreover, the total continuous estimated model
Gu(s) or Gp(s) is excited with irregular waves

Magnitude (dB)

100 |

200 f

300 f

Phase (deg)

400 F
—500

-600
10

we (rad/s)

Fig. 9. Bode diagram of Gy(s) compared with the PRECAL amplitude and phase points.
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Fig. 10. Bode diagram of Gy(s) compared with the PRECAL amplitude and phase points.
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Fig. 11. Bode diagram of G,p(s) compared with the PRECAL amplitude and phase points.

measured experimentally in the CEHIPAR for a spe-
cific speed. The output generated by the model is
represented with the measurement experimentally,
also calculating the average quadratic error. In Fig. 13,
the output Gy(s) is shown compared with the heave
measured experimentally when the excitation input is

irregular waves SSN=5 to U=40 kn. An average
quadratic error e2m=0.011 is obtained.

In Fig. 14, the output Gp(s) is shown compared with
the pitch measured experimentally when the excitation
input is irregular waves SSN=5 to U=40 kn. An
average quadratic error e2m =10.1225 is obtained.
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Fig. 12. Bode diagram of Gp(s) compared with the PRECAL amplitude and phase points.
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Fig. 13. The output of Gy(s) (solid line) is shown compared
with the heave measured (broken line) experimentally when
the excitation input is irregular waves SSN =15 to
U=40 kn.

7. Conclusions

This work has presented identification in the domain
of the frequency of continuous models of the vertical
dynamics of a high-speed ship. The system has been
decomposed into four filters: Gy, Gip, Goy and Gap,
to model the heave force, the pitch moment, heave and
pitch respectively. In the identification process of the
filters G and G,y, a hybrid optimization method has
been used formed by a genetic algorithm GA and a

25

Pitch (degrees)
o

_25 1 1 1 1 1 1 : 1
0 10 20 30 40 50 60 70 80
Time (s)

Fig. 14. The output of Gp(s) (solid line) is shown compared
with the pitch measured (broken line) experimentally when
the excitation input is irregular waves SSN =35 to
U=40 kn.

nonlinear optimization algorithm with constraints
from the Matlab toolbox. While in the identification of
the filters Gip and G,p, the nonlinear optimization
algorithm without GA (non-hybrid optimization
method) has been only used.

For the application of the nonlinear optimization
method two algorithms in Matlab were developed:
ident_G1 for the identification of Gy and G,p, and
ident_G?2 for the identification of G,y and Gop.

The main difference between the non-hybrid
method and the hybrid method of identification is the
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choice of the initial values of the parameters to be
identified from the transfer function structure used as
the model. In the hybrid method where a GA is used
first, some excellent initial values are achieved after a
considerable calculation time. These initial values are
close to the global optimum, so it takes very few
iterations for the nonlinear optimization algorithm to
reach the global optimum. In the non-hybrid method,
the initial values are chosen randomly without wasting
calculation time but the nonlinear optimization algo-
rithm can require a greater number of iterations to
converge to the global optimum. In fact, it may not
even converge or just converge to a local optimum.

The experience acquired in the identification of the
continuous models indicates that in models with not
many parameters it is recommendable to use the non-
hybrid method, because although it uses some random
initial values it does not take long to converge to the
global optimum, so it is not worth having a calcula-
tion time first to obtain good initial values using GA.
While in models with many parameters the hybrid
method is highly recommendable to avoid problems of
convergence.

Bearing in mind the characteristics of both
methods, in the solution to Problems 3 and 4 the non-
hybrid method was used because the random
generation of the initial value of the parameter vector
0 was sufficient to achieve the right convergence of the
nonlinear optimization algorithm. However for the
solution to Problems 1 and 2 the hybrid method was
preferred to avoid problems of convergence.

The continuous models that have been identified
can be considered as good since they fulfil the
requirements indicated in the validation process to
which they were subjected, i.c., they present a good
adjustment in the frequency domain to the amplitude
and phase data obtained with PRECAL, and more-
over their time simulations both with regular and
irregular waves when compared with the experimental
time series present a small average quadratic error.
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