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∗ Instituto de Matemáticas y F́ısica Fundamental, CSIC,

Serrano 123, 28006 Madrid, Spain

Abstract: A geometric derivation of numerical integrators for nonholonomic
systems and optimal control problems is obtained. It is based in the classical
technique of generating functions adapted to the special features of nonholonomic
systems and optimal control problems.
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1. INTRODUCTION

Standard methods for simulating the motion of
a dynamical system usually ignore many of the
geometric features of this system (simplecticity,
conservation laws, symmetries...). However, new
methods have been recently developed, called geo-
metric integrators, which are concerned with some
of the extra features of geometric nature of the
dynamical system (see [HaLuWa:02]).

In the first part of the paper, we propose a class
of geometric integrators for nonholonomic systems
[Leomar:96D,NeiFuf:72] based on a discretization
of the Lagrangian function (in a more precise
sense, we discretize the action function) and a co-
herent discretization of the constraint forces (see
[LeMaSa:02]). These equations will be conceptu-
ally equivalent to the proposed for systems with
external forces (see [MarWes:01]). Finally, second
part corcerns with the construction of symplectic
integrators for optimal control theory by using
generating functions of the second kind.

1 This work has been supported by grant BFM2001-2272.
A. Santamaŕıa Merino wishes to thank the Programa
de formación de Investigadores of the Departamento de
Educación, Universidades e Investigación of the Basque
Government (Spain) for financial support.

2. NONHOLONOMIC SYSTEMS

2.1 Geometrical formulation of nonholonomic systems

Let Q be a n-dimensional differentiable manifold,
with local coordinates (qi) and tangent bundle
TQ, with induced coordinates (qi, q̇i). Consider a
Lagrangian system, with Lagrangian L : TQ → R,
subject to nonholonomic constraints, defined by a
submanifold D of the velocity phase space TQ.
We will assume that dimD = 2n − m and that
D is locally described by the vanishing of m inde-
pendent functions φa (the “constraint functions”),

satisfying the rank condition rank

(
∂φa

∂q̇i

)
= m.

In the sequel, we will follow a Hamiltonian point
of view. The canonical coordinates on T ∗Q (the
cotangent bundle of Q) are denoted by (qi, pi).
Assume, for simplicity, that the Lagrangian L
is hyperregular, that is, the Legendre transfor-
mation Leg : TQ → T ∗Q, (qi, q̇i) 7→ (qi, pi =
∂L/∂q̇i), is a global diffeomorphism. The con-
straint functions on T ∗Q become Ψa = φa◦Leg−1,

i.e. Ψa(qi, pi) = φa(qi,
∂H

∂pi
) , where the Hamilto-

nian H : T ∗Q → R is defined by H = EL ◦
Leg−1. Here, EL denotes the energy of the sys-
tem, locally defined by EL = q̇i ∂L

∂q̇i
− L. Since
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locally Leg−1(qi, pi) = (qi,
∂H

∂pi
), then H = piq̇

i−

L(qi, q̇i) , where q̇i is expressed in terms of qi and
pi by using Leg−1.

The equations of motion for the nonholonomic
system on T ∗Q can now be written as follows (see
[CaLeMa:99,Marl:95] and references therein)





q̇i =
∂H

∂pi

ṗi = −
∂H

∂qi
− λa

∂Ψa

∂pj
Hji ,

(1)

together with the constraint equations Ψa(q, p) =
0, where Hij are the components of the inverse of
the matrix (Hij) = (∂2H/∂pi∂pj). Note that

(
∂Ψa

∂pj
Hji)(q, p) = (

∂φa

∂q̇i
◦ Leg−1)(q, p).

LetM denote the image of the constraint subman-
ifold D under the Legendre transformation, and
let F be the distribution on T ∗Q along M , whose
annihilator is given by F o = Leg∗(F̃

o)). Here, F̃ o

represents the constraint forces subbundle, locally
defined by

F̃ o = span{µa =
∂φa

∂q̇i
dqi}

The Hamiltonian equations of motion of the non-
holonomic system can be then rewritten in intrin-
sic form as

(iXωQ − dH)|M ∈ F o

X|M ∈ TM ,
(2)

where ωQ = −dθQ = dqi∧dpi (with θQ = pi dq
i) is

the canonical symplectic form on T ∗Q. Suppose in
addition that the following compatibility condition

F⊥ ∩ TM = {0} holds, where “ ⊥ ” denotes the
symplectic orthogonal with respect to ωQ. Ob-
serve that, locally, this condition means that the

matrix (Cab) =

(
∂Ψa

∂pi
Hij

∂Ψb

∂pj

)
is regular. The

compatibility condition is not too restrictive, since
it is trivially verified by the usual systems of me-
chanical type (i.e. with a Lagrangian of the form
kinetic minus potential energy), where the Hij

represent the components of a positive definite
Riemannian metric. The compatibility condition
guarantees, in particular, the existence of a unique
solution of the constrained equations of motion (2)
which, henceforth, will be denoted by XH,M on
the Hamiltonian side and Leg−1

∗ (XH,M ) = ξL,D

on the Lagrangian side.

Moreover, if we denote by XH the Hamiltonian
function of H , i.e., iXH

ωQ = dH then, using
the constraint functions, we may explicitely de-
termine the Lagrange multipliers λa as λa =
−CabXH(Ψb) . Next, writing the 1-form Λ =
−CabXH(Ψb)∂Ψ

a

∂pj
Hjidq

i then, the nonholonomic

equations are equivalently rewritten as





q̇i =
∂H

∂pi
,

ṗi = −
∂H

∂qi
− Λi ,

(3)

for initial conditions (q0, p0) ∈ M and Λ = Λi dq
i.

We also denote by Λ̃ = Leg∗(Λ) the 1-form on
TQ wich represents the constraint force once the
Lagrange multipliers have been determined.

Now, consider the flow Ft : M → M , t ∈
I ⊆ R of the vector field XH,M , solution of the
nonholonomic problem. Since (3) is geometrically
rewritten as

iXH,M
ωQ = dH + Λ ,

then

LXH,M
θQ = d(iXH,M

θQ −H)− Λ ,

or, equivalently, LXH,M
θQ = d(L ◦ Leg−1) − Λ .

Therefore, integrating

F ∗
h θQ − θQ = d

(∫ h

0

L ◦ F̃t dt

)
−

∫ h

0

F ∗
t Λ , (4)

where F̃t is the flow of the vector field ξL,D.

2.2 “Generating functions” and nonholonomic

mechanics

In what follows, we will follow similar arguments
for the construction of generating functions for
symplectic or canonical maps [Arn:78]. However,
because of equation (4), we have that the non-
holonomic flow is not a canonical transformation;
i.e.,

F ∗
hωQ − ωQ = d

(∫ h

0

F ∗
t Λ

)
. (5)

This description will allow us to construct a new
family of nonholonomic integrators for equations
(19). Denote by πi : T

∗Q× T ∗Q → T ∗Q, i = 1, 2,
the canonical projections. Consider the following
forms

Θ= π∗
2θQ − π∗

1θQ ,

Ω= π∗
2ωQ − π∗

1ωQ = −dΘ .

Denote by iFh
: Graph(Fh) →֒ T ∗Q × T ∗Q the

inclusion map and observe that Graph(Fh) ⊂ M×
M . Then, from (4) i∗Fh

Θ is equal to

(π1|Graph(Fh))
∗

[
d

(∫ h

0

L ◦ F̃t dt

)
−

∫ h

0

F ∗
t Λ

]
.

Let (q0, p0, q1, p1) be coordinates in T ∗Q × T ∗Q
in a neighborhood of some point in Graph(Fh). If
(q0, p0, q1, p1) ∈ Graph(Fh) then Ψa(q0, p0) = 0
and Ψa(q1, p1) = 0. Moreover, along Graph(Fh),
q1 = q1(q0, p0), p1 = p1(q0, p0) and



p1 dq1 − p0dq0 = d

(∫ h

0

L(q(t), q̇(t)) dt

)

−

∫ h

0

Λ̃(q(t), q̇(t)), (6)

where (q(t), q̇(t)) = F̃t(q0, q̇0) with Leg(q0, q̇0) =
(q0, p0). Here, F̃t denotes the flow of ξL,D. Equa-
tion (6) is satisfied along Graph(Fh).

Assume that, in a neighborhood of some point
x ∈ Graph(Fh), we can change this system of
coordinates to a new coordinates (q0, q1). Denote
by

Sh(q0, q1) =

∫ h

0

L(q(t), q̇(t)) dt ,

where q(t) is a solution curve of the nonholonomic
problem with q(0) = q and q(h) = q1 and an
adequate extension of Sh. It is easy to show that
this solution always exists for adequate values of
q0 and q1.

Thus, we deduce that




p0 = −
∂Sh

∂q0
+

∫ h

0

Λ̃(q(t), q̇(t))
∂q

∂q0
,

p1 =
∂Sh

∂q1
−

∫ h

0

Λ̃(q(t), q̇(t))
∂q

∂q1
,

(7)

where (q0, q1) verifies the constraint functions
ϕa(q0, q1, h) = 0, explicitely defined by

ϕa(q0, q1, h) =

Ψa(q0,−
∂Sh

∂q0
(q0, q1) +

∫ h

0

Λ̃(q(t), q̇(t))
∂q

∂q0
), (8)

where q(t) is a solution of the nonholonomic
problem with q(0) = q0 and q(h) = qh.

Next, we will show how the group composite law
of the flow Fh, FNh = Fh ◦ . . . ◦ Fh︸ ︷︷ ︸

N

, is expressed in

terms of the corresponding “generating functions”
Sh. Moreover, the following Theorem will result
in a new construction of numerical integrators
for nonholonomic mechanics when we change the
“generating function” and the constraint forces by
appropriate approximations.

Theorem 2.1. The function SNh, the “generating
function” for FNh, is given by

SNh(q0, qN ) =
N−1∑

k=0

Sh(qk, qk+1) ,

where qk, 1 ≤ k ≤ N − 1, are points verifying

D2S
h(qk−1, qk) +D1S

h(qk, qk+1) =
∫ h

0

Λ̃(q(t), q̇(t))
∂q

∂q1
+

∫ 2h

h

Λ̃(q(t), q̇(t))
∂q

∂q0
, (9)

and q(t) is a solution curve of the nonholonomic
problem with q(0) = qk−1 and q(h) = qk (respec-

tively, q(h) = qk and q(2h) = qk+1) for the first
integral (resp., second integral) of the right-hand
side.

Proof: It is suffices to prove the result for N = 2;
that is,

S2h(q0, q2) = Sh(q0, q1) + Sh(q1, q2) ,

where q1 verifies condition (9).

Since

p1 dq1 − p0 dq0 = dSh(q0, q1)−

∫ h

0

Λ̃(q(t), q̇(t)) ,

p2 dq2 − p1 dq1 = dSh(q1, q2)−

∫ 2h

h

Λ̃(q(t), q̇(t)) ,

then

p2 dq2 − p0 dq0 = d
(
Sh(q0, q1) + Sh(q1, q2)

)

−

∫ h

0

Λ̃(q(t), q̇(t))−

∫ 2h

h

Λ̃(q(t), q̇(t)) .

Since the variables q1 do not appear on the left-
hand side term, we obtain expression (9). More-
over, for this choice of q1 then S2h(q0, q2) =
Sh(q0, q1) + Sh(q1, q2) is a “generating function
of the first kind” of F2h.

Equations (9) determine an implicit system of
difference equations which permit us to obtain q2
from the initial data q0 and q1.

2.3 Nonholonomic integrators

In the sequel and, for simplicity, assume that Q is

a vector space. Since Sh(q0, q1) =
∫ h

0 L(q(t), q̇(t)) dt,
where q(t) is a nonholonomic solution with q(0) =
q0 and q(h) = q1, we can obtain nonholonomic
integrators by taking adequate approximations of
the “generating function” Sh and the extra-term∫ h

0
Λ̃(q(t), q̇(t)).

Consider, for instance, the approximation

Sh
α(q0, q1) = hL((1− α)q0 + αq1,

q1 − q0
h

) , (10)

for some parameter α ∈ [0, 1]. (In general, we will
write Sh

α(q0, q1) ≈ Sh(q0, q1).)

A natural approximation of the constraint forces
adapted to our choice of approximation for Sh are

∫ h

0

Λ̃(q(t), q̇(t))
∂q

∂q0

≈ (1− α)hΛ̃((1 − α)q0 + αq1,
q1 − q0

h
) ,

∫ h

0

Λ̃(q(t), q̇(t))
∂q

∂q1
≈ αhΛ̃((1− α)q0 + αq1,

q1 − q0
h

) .

Consequently, we obtain the following numerical
method for nonholonomic systems



D2S
h
α(qk−1, qk) +D1S

h
α(qk, qk+1) =

αhΛ̃((1− α)qk−1 + αqk,
qk − qk−1

h
)

+(1− α)hΛ̃((1− α)qk + αqk+1,
qk+1 − qk

h
) ,

with 1 ≤ k ≤ N−1 and initial condition satisfying

ϕ̃a ( q0, q1, h) = Ψa(q0,−
∂Sh

α

∂q0
(q0, q1)

+(1− α)hΛ̃((1 − α)q0 + αq1,
q1 − q0

h
)) = 0 .

Example 2.2. Nonholonomic particle.

Consider the Lagrangian L : TR
3 → R

L =
1

2
(ẋ2 + ẏ2 + ż2)− (x2 + y2) ,

subject to the constraint φ = ż − yẋ = 0. Taking
α = 1/2 in (10) we obtain a geometric integrator
for the continuous nonholonomic problem. The
first figure compares the method introduced here
to the traditional Runge-Kutta method of fourth
order, showing an improvement in several orders
of magnitude. Observe that, in this scale, the
value of the energy in each step of our algorithm
is practically undistinguishable from the initial
value of the energy.
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The second figure is a comparison between our
method and the one proposed in [CorMar:01].
A similar behaviour is observed. Nevertheless, a
slightly better behaviour can also be appreciated,
where the proposed algorithm shows on average a
better preservation of the original energy.
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3. OPTIMAL CONTROL THEORY

3.1 Geometric formulation of optimal control problems

A general optimal control problem consists of a
set of differential equations

q̇i = Γi(q(t), u(t)) , 1 ≤ i ≤ n , (11)

where qi denote the states and u the control
variables, and a cost function L(q, u). Given some
boundary conditions (usually q0 = q(t0) and qF =
q(tf )) the aim is to find a C2-piecewise smooth
curve c(t) = (q(t), u(t)), satisfying the control
equations (11) and minimizing the functional

J (c) =

∫ tf

t0

L(q(t), u(t))dt . (12)

In a global description, one assumes a fiber bundle
structure π : U −→ Q, where Q is the configu-
ration manifold with local coordinates qi and U
is the bundle of controls, with local coordinates
(qi, ua), 1 ≤ i ≤ n, 1 ≤ a ≤ m.

The ordinary differential equations (11) on Q
depending on the parameters u can be seen as
a vector field Γ along the projection map π, that
is, Γ is a smooth map Γ : U −→ TB such that the
diagram

U TQ

Q

✲Γ

❅
❅
❅
❅❅❘

�
�

�
��✠

π τQ

is commutative. This vector field is locally written

as Γ = Γi(q, u)
∂

∂qi
.

The solutions of such problem are provided by
Pontryaguin’s maximum principle. If we construct
the Hamiltonian function

H(q, p, u) = L(q, u) + piΓ
i(q, u) (13)

where pi, 1 ≤ i ≤ n, are now considered as
Lagrange’s multipliers, then a curve γ : R → U ,
γ(t) = (q(t), u(t)) is an optimal trajectory if there
exists functions pi(t), 1 ≤ i ≤ n such that they
are solutions of the Hamilton equations:





q̇i(t) =
∂H

∂pi
(q(t), p(t), u(t))

ṗi(t) =
∂H

∂qi
(q(t), p(t), u(t))

(14)

and

H(q(t), p(t), u(t)) = min
v

H(q(t), p(t), v), (15)

with t ∈ [t0, tf ]. This last condition is usually
replaced by

∂H

∂ua
= 0, 1 ≤ a ≤ m (16)

when we are looking for extremal trajectories.



It is well known that the Pontryaguin’s neces-
sary conditions for extremality have a geometric
interpretation in terms of presymplectic hamilto-
nian system. The total space of the system will
be T ∗Q ×Q U . Let ωQ be the canonical sym-
plectic form on T ∗Q and consider the canonical
projection pr1 : T ∗Q ×Q U −→ T ∗Q. Denote
by ω = pr∗1ωQ the induced closed 2-form on
T ∗Q ×Q U . The 2-form ω is degenerate and its
characteristic distribution is locally spanned by
∂/∂ua, 1 ≤ a ≤ m. Define the Pontryaguin’s
hamiltonian function H : T ∗Q ×Q U −→ R as
followsH(αq, uq) = L(uq)+αq(Γ(uq)) where αq ∈
T ∗
q Q and uq ∈ pr−1(q). Obviously, the coordinate

expression of H is (13).

Equations (14) (15) and (16) are intrinsically
written as

iXω = dH (17)

Applying the Dirac-Bergmann-Gotay-Nester al-
gorithm to the presymplectic system (T ∗Q ×Q

U,Ω, H) we obtain that equations (16) correspond
to the primary constraints for the presymplec-
tic system: φa = ∂H

∂ua = 0. The equations have
solution along the first constraint submanifold
P0 determined by the vanishing of the primary
constraints. On the points of P0 there is at least
a pointwise solution of Equation (17) but such
solutions are not, in general, tangent to P0. These
points must be removed leaving a subset P1 ⊂ P0

(it is assumed tan P1 is also a submanifold). Then,
we have to restrict P1 to a submanifold where the
solutions of (17) are tangent to P1. Proceeding
further, we obtain a sequence of submanifolds

· · · →֒ Pk →֒ · · · →֒ P2 →֒ P1 →֒ P0 →֒ T ∗Q×Q U

If this algorithm stabilizes, i.e. there exists a
positive integer k ∈ N such that Pk = Pk+1

and dimPk 6= 0, then we will obtain an stable
submanifold Pf = Pk, on which a vector field
exists such that

(iXω = dH)|Pf
(18)

The constraints determining Pf are known in the
control literature as higher order conditions for
optimality. Therefore, a necessary condition for
optimality of the curve γ : R → U , γ(t) =
(q(t), u(t)) will be the existence of a lift γ̃ of γ
to Pf such that γ̃ will be an integral curve of a
solution of Equations (18).

In the regular case, the final constraint algo-
rithm is P0 (that is, P0 = Pf ) and all the con-
straints are second class following the classical
classification of Dirac. In such case (P0, ω0) is a
symplectic manifold, where Ω0 denotes the re-
striction of the presymplectic 2-form to the con-
straint submanifold P0. Locally, the symplecticity
of (P0, ω0) is equivalent to the regularity of the

matrix

(
∂2H

∂ua∂ub

)

1≤a,b≤m

. The dynamical equa-

tions for the optimal control problem will be

iXP0
ω0 = dH|P0

(19)

Taking coordinates (qi, pi) on P0, then the dynam-
ical equations are:





q̇i(t) =
∂H|P0

∂pi
(q(t), p(t))

ṗi(t) =
∂H|P0

∂qi
(q(t), p(t))

(20)

where we have substituted in (14) the control
variables ua by its value ūa = fa(q, p) apply-
ing the implicit function theorem to the primary
constraints φa = 0. In such case, there exists a
unique solution XP0

of Equation (19) and its flow
preserves the symplectic 2-form ω0, i.e. it is a
canonical transformation.

3.2 Generating functions of the second kind

Let (M,Ω) be an exact symplectic manifold (Ω is
symplectic and exact, Ω = −dΘ) and suppose that
F : M → M is a transformation from M to itself
and Graph(F ) the graph of F , Graph(F ) ⊂ M×
M. Denote by πi : M × M → M, i = 1, 2 the
canonical projections and the forms:

Θ̄ = π∗
2Θ− π∗

1Θ

Ω̄= π∗
2Ω− π∗

1Ω = −dΘ̄

Denote by iF : Graph(F ) →֒ M×M the inclusion
map. Then, F is a canonical transformation if
and only if i∗F Ω̄ = 0, that is, if Graph(F ) is a
lagrangian submanifold of (M×M, Ω̄). In such a
case, i∗F Ω̄ = −di∗F Θ̄ = 0 and, at least locally, there
exists a function S : GraphF → R such that

i∗F Θ̄ = dS (21)

Taking (qi, pi) as natural coordinates in Graph(F )
and (qi, pi,q

i,pi) the coordinates in M × M,
then, along Graph(F ), qi = qi(q, p) and pi =
pi(q, p) and pi dq

i − pi dq
i = dS(q, p). Suppose

that (qi,pi) are independent local coordinates on
Graph(F ) (see [Arn:78]); i.e. S = S(q,p) Since

pi dq
i − pi dq

i = −qi dpi + d(qipi)− pi dq
i = dS,

if we define S2(q,p) = qipi − S(q,p), where p

is expressed in terms of p and q, then qi dpi +
pidq

i = dS2(q,p)

Definition 3.1. The function S2(q,p) will be called
a generating function of the second kind of
the canonical transformation F .

Now, suppose that (M,Ω, H) is a hamiltonian
system and XH its hamiltonian vector field, say
iXH

Ω = dH . Denote by Fh : M → M its flow.



Theorem 3.2. Let a function SNh
2 be defined by

SNh
2 (q0, pNh) =

N−1∑

k=0

(Sh
2 (qk, pk+1)− qk+1pk+1)

where qk, 1 ≤ k ≤ N , and pk, 0 ≤ k ≤ N − 1, are
stationary points of the right-hand side, that is

qk+1 =
∂Sh

2

∂p
(qk, pk+1), 0 ≤ k ≤ N − 1

pk =
∂Sh

2

∂q
(qk, pk+1), 0 ≤ k ≤ N − 1

then SNh
2 is a generating function of the second

kind for FNh : M → M.

Proof: It is similar to that of Theorem 2.1.

Finally, we have the following

Proposition 3.3. A generating function of the sec-
ond kind for Fh is given by

Sh
2 (q0, ph) = phqh −

∫ h

0

(p dq −H dt)

where t → (q(t), p(t)) is an integral curve of
the Hamilton equations such that q(0) = q0 and
p(h) = ph.

3.3 Generating functions of the second kind and

discrete optimal control problems

From Proposition 3.3 a generating function of
the second kind for the Hamiltonian system
(P0,Ω0, H|P0

) which determines the dynamics of
the optimal control problem given by (11) and
(12) is

Sh
2 (q0, ph) = phqh

−

∫ h

0

(
p(t)q̇(t)−H|P0

(q(t), p(t))
)
dt (22)

where t → (q(t), p(t)) is an integral curve of the
vector field XP0

with (q(0), p(0)) = (q0, p0) and
(q(h), p(h)) = (qh, ph).

We now turn to the construction of a numerical in-
tegrator for the Hamiltonian system (P0, ω0, H|P0

)
by using an approximation of the generating func-
tion. The proposed methods also realize the inte-
gration steps by canonical transformations; there-
fore, they are symplectic integrators.

Example 3.4. Consider, for instance, the following
approximation to Sh

2 :

S̃h
2 (qk, pk+1) = pk+1qk+1 − hpk+1

(
qk+1 − qk

h

)

+hL̃d(qk, pk+1) + hpk+1Γ̃d(qk, pk+1)

where L̃d and Γ̃d are adequate approximations to
L|P0

and Γ|P0
, respectively.

Denote by f̃(qk, pk+1) the function f̃(qk, pk+1) =

hΓd(qk, pk+1)+qk. Since
qk+1 − qk

h
= Γ̃d(qk, pk+1)

then,

S̃h
2 (qk, pk+1) = L̃d(qk, pk+1) + pk+1f̃(qk, pk+1)

and hence the equations




pk =
∂S̃h

d

∂q
(qk, pk+1)

qk+1 =
∂S̃h

d

∂p
(qk, pk+1)

(23)

are exactly the discrete equations corresponding
to the classical discrete optimal control problem
(see [Lew:86]), determined by the control equa-
tions: qik+1 = f̃ i(qk, uk), ((q0) given) and with

associate perfomance index: J =
∑N−1

k=0 L̃d(qk, uk)
Observe that this discrete optimal control prob-
lem is symplectic in the sense explained in the
subsection above.
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Santamaŕıa A 2002 Geometric integrators and
nonholonomic mechanics Preprint IMAFF-

CSIC
[Lew:86] Lewis F.L 1986 Optimal Control (John

Wiley& Sons, New York)
[MarWes:01] Marsden J E and West M 2001 Dis-

crete mechanics and variational integrators
Acta Numerica , 357-514

[Marl:95] Marle Ch M 1995 Reduction of con-
strained mechanical systems and stability
of relative equilibria Commun. Math. Phys.

174, 295-318
[NeiFuf:72] Neimark J and Fufaev N 1972 Dynam-

ics of Nonholonomic Systems (Translations
of Mathematical Monographs Vol. 33 Prov-
idence: Am. Math. Soc.)


