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ABSTRACT.  Currently automatic control deals with the theoretical modelling techniques 
applied to formally define the behaviour of a control system when the system goals and the 
process behaviour to be controlled are well defined. Although these approaches are efficient 
in the design and implementation phases for controlling the dynamics of automatized systems, 
other tools are also required in the early stages of the process of engineering a system. This 
paper deals with a specification method aimed at proving that the system goals, as required 
by the users, are formally refined towards the real target automation system with 
completeness, consistency, unambiguousness and correctness guarantees. Our specification 
method is based on the B language to globally verify, from formal constructs, the predicate: 
Control Systems Requirements ∧ Process Systems Requirements ⇒ Production System 
Requirements. A case study illustrates our approach and opens issues on the way to 
industrial practice. 
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1. Introduction 
 
Industrial automation systems are embedding Information Technology (IT) 
intensively to achieve increasingly complex applications. Industrial automation 
standards, such as the safety-related IEC 615081, strongly recommend the use of 
formal methods to control the complexity of software-intensive applications and 
their related ease-of-use design techniques [POL 04][MOI 03]. 
 
Conceptual and practical approaches have been widely explored by organizations 
related to computer sciences and automatic control: examples are software 
verification [CRA 95], symbolic [CLA 00], timed and probabilistic [PAR 04] model 
checking, or automatic synthesis [CAS 99]. However, in spite of the consensus that 
early phases of a system definition are the most important in ensuring that the target 
system will satisfy the user’s requirements, most of these models and tools address 
the design and implementation phases. 
 
Over these later stages, many systems engineering and automation engineering 
practitioners [SHE 01][JOH 04] consider that the time is ripe to formalize the earlier 
stages of specification. This means providing a set of guidelines, generic constructs, 
and formal verification tools to establish a non-ambiguous, correct, consistent and 
complete model of understanding of what a system has to do according to the users’ 
requirements before designing its behaviour according to the multiple engineers’ 
practices and techniques [LHO 99].  
 
Writing formal specifications for a given system may be based on an a posteriori 
approach using automatic verification techniques, such as model checking [CLA 
00], as the mean of checking the link between the resulting specification and the 
required properties. Writing formal specifications may also be based on an a priori 
approach where the proof is used to progressively refine an abstract specification 
with simple properties to be checked into more and more tangible and precise 
models. In such a system proof-oriented specification, the models are related by a 
refinement relationship that is able to ensure specification correctness and 
consistency by preserving properties through the model transformations. 
 
Considering that the specification activity reflects the heuristic capabilities of 
human intuition, the process of specifying a system should be able to reuse acquired 
knowledge to facilitate elicitation of requirements and model definition. To this end, 
a model-driven specification of automation systems is based on the definition of 
reusable patterns and constructs that are generic for well-identified problem classes 
and whose completeness and non ambiguity have been established once and for all. 

                             
1 IEC 61508, Functional safety of electrical/electronic/ programmable electronic (E/E/PE) safety-related 
systems  
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This paper combines these two forms of reasoning to propose a formal specification 
method for automation systems where: 

– correctness and consistency of the models are ensured using a proof-oriented 
specification that allows the system goals to be progressively refined and split into 
process/control sub-systems models while preserving the link between the formal 
specification and required properties (goals); 

– completeness and non ambiguity of these specifications are supported by a 
model-driven specification that promotes the reuse of acquired knowledge in the 
definition of specific artefacts for the specific automation domain. 
 
Our work is first founded on Fusaoka’s automation predicate [FUS 83], which 
postulates that the design of automation systems consists in defining the (unknown) 
control rules of the (known) dynamics of a physical system, starting from the 
behavioural (known) goals to be met: 

Control Rules ∧  Dynamics ⊃ Goal (1). 

This predicate provides formal guidelines that strengthen the proposed formal 
specification method for automation systems by defining logical relationships 
between system goals specifications, process specifications, and control 
specifications [LAM 01] covering the various points of view involved in automation 
engineering (dynamics, behaviour, information, communication, etc): 

Control Specifications ∧ Process Specifications ⊃ System Specifications (2). 

After a brief overview of models and languages that approximately fulfil these 
requirements above, Section 2 introduces the B language as an efficient formalism 
to support model-driven specification and proof-oriented specification. A formal 
specification method based on the B language is then presented: B instantiation 
mechanisms are proposed to reuse formal automation constructs and 
correspondence between B objects and mechanisms, and mathematical operators of 
the predicate (2) are given to support the proof-oriented specification. This section 
ends with the description of a case study that is used to illustrate the method. 
 
Section 3 proposes an illustration of a model-driven specification through the 
formalization of generic constructs for physical processes modelling. Generic rules 
that help in establishing a complete and non ambiguous process specification are 
given and applied using the case study. 
 
Section 4 applies, using the same case study, a proof-oriented specification to refine 
the system goals into process/control sub-systems models while preserving 
correctness and consistency with regards to the initial properties. A global overview 
of this specification is given in the appendix using UML notation. 
 
The final section provides some conclusions and open issues to be resolved in order 
to put this method into industrial practice. 
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2. Formal specification for systems automation based on the B language 
 
Our objective is to propose a formal automation method that combines a proof-
oriented specification, based on an incremental reasoning, with a model-driven 
specification, based on the reuse of generic constructs. To support this approach, we 
require a formal abstract language that provides support for property verification, 
proved refinement, specification composition, and instantiation. 
 
2.1. Candidate models and languages for a formal specification method 
 
We briefly describe candidate models, methods, or languages that could be more or 
less able to cover these various requirements. Formal languages and methods are 
based upon mathematical models that allow a precise formulation of the properties a 
model has to satisfy and provide proof mechanisms that allow the verification of 
these properties. 
 
In the area of automatic control, and more precisely as far as the Discrete Events 
Systems are concerned, several approaches have been explored for: 

– the definition of provable models in the design phase, such as analysis 
techniques for Petri Nets or Finite State Automata [CAS 99], theorem proving and 
model checking [ABR 91][CLA 00], or control synthesis [RAM 87]; 

– the verification of PLC programs by applying formal techniques to check the 
properties satisfied by controllers implemented using IEC 61131-3 programming 
languages [CRA 95][FEL 99][ROU 02]. 
 
Even if these approaches have been proved to be efficient in the design and 
implementation phases, two common characteristics make them inadequate for the 
specification phase: 

– expression of the underlying mathematical representation is limited to the 
modelling of system dynamics, and hardly covers the description of other system 
properties as required for users’ requirements and automation constructs modelling; 

– most of these formalisms, except Petri nets, do not support incremental 
modelling, such as formal refinement mechanisms. 
 
At higher level of abstraction, systems engineering approaches or unified languages, 
such as UML,2 have proven, in practice, to represent useful views of systems as a 
result of static, dynamic, and functional diagrams, at different phases of the 
development cycle. Moreover, the concept of knowledge reuse is included in the 
UML object oriented approach because it contains extensibility mechanisms, called 
“UML profiles”, which can be used to tailor it to specific domains. A “profile” may 
be defined as a “specification that specialises one or several standard UML meta-
models, called “reference meta-models”. On this basis, Model Driven Architecture3 
                             
2 UML (2003). UML 2.0 superstructure specification, ptc/03608-02, OMG, www.uml.org. 
3 Model Driven Architecture is an OMG trademark, http://www.omg.org/mda/. 
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[MEL 04] provides a set of guidelines, generic knowledge, and IT constructs to 
make the definition of IT systems functionality as independent as possible from any 
technology platform. 
Even if UML provides a wide notation toolbox that covers the requirements in terms 
of expressiveness equally as well for the system specification as for the modelling 
and reuse of automation constructs [PAN 05], it suffers from a lack of 
methodological guidelines and formal semantics. Efforts have been made towards 
UML formalization [DUP 00][LED 02][LAL 02] and formal extensions, such as 
RT-UML [SEL 98] or UMsdL4. However, methodological rationales, which should 
underlay the modelling process with UML, such as an incremental reasoning based 
on the refinement of the models, are still unresolved issues.  
 
2.2. The B language 
 
Introduced by Abrial [ABR 96], the B Method is a formal method for the 
specification, design, and implementation of software applications that supports 
properties proofs. An abstract B model consists of a section defining the 
mathematical structures related to the problem to be solved and a section containing 
elements of state variables, operations, and invariance properties of the model. Proof 
obligations are generated from the model to ensure that properties are effectively 
met. A model is assumed to be closed, and this means that every possible change of 
state variables is defined by operations. 
The B language is founded on: 

– set theory with classical set operators (S U T, S I T, S c T, x e S, #S), 
function and relationship (A j B Í P A x B); 

– first order logic with classical operators of a 2-valued proposal logic (! P, P 
v Q, P ¶ Q, P fi Q, P ¤ Q) and quantifiers (A X . p, E X . p). 
A B model is defined by the structure shown in Figure 1. 
 

MACHINE m 
SETS s 
CONSTANTS c 
PROPERTIES p 
VARIABLES x 
INVARIANT I(x) 
INITIALISATION init(x) 
OPERATIONS 
 O1= Pre P1(x) Then S1(x) 
 … 
 On = Pre Pn(x) Then Sn(x) 
END 

Figure 1. B formal model 

                             
4 UMSDL European ITEA project n° 99028, ITEA office, www.itea-office.org. 
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A model has a name m; the clause SETS contains definitions of sets of the problem; 
the clause CONSTANTS allows the designer to introduce information related to the 
mathematical structure of the problem to be solved; and the clause PROPERTIES 
contains the effective definitions of the constants. Another point is that sets and 
constants can be considered similar to parameters. 
The second section of the model defines the dynamic aspects of the state variables 
and properties of variables using the invariant. Operations O1 … On are used to 
describe state variable modifications due to generalized substitutions; Si(x) contains 
the new value of variable x after the execution of operation Oi. The substitution of a 
variable is feasible with respect to its pre-condition or guard. The invariant I(x) 
states that variable x is always in a given set of possible values, which is assumed to 
be initialized with respect to the initial conditions and which is preserved by any 
operation of the list of operations. Conditions of verification, called proof 
obligations, are generated from the text of the model, and they express underlying 
hypotheses required for the preservation of invariant properties: 

(INV1) Init(x) fi I(x) 
(INV2) I(x) ¶ P(x) fi  I( S(x)) 

(INV1) states the initial condition that should establish the invariant. (INV2) should 
be checked for every operation Oi of the model; it states that starting from a 
situation where the precondition of Operation Oi and the invariant are verified, the 
variable transformation leads to a new value of x where the invariant is still 
preserved. The B proof mechanism is founded on rule-bases using an inference 
engine supported by the Atelier B tool5. Several proof techniques are available, but 
the proof tool is not able to automatically prove every proof obligation, and 
interaction with the proof tool is required. Each proven obligation enriches the set of 
known theories and can be used for other proofs. 
 
The refinement calculus is used to relate models at varying levels of abstraction by 
enriching variables and operation descriptions while preserving the already proven 
invariants.  We summarize the approach as follows: 

(M1,G1) refined by (M2,G2) refined by …. refined by (Mn,Gn) 
Mi is the ith model iteration that satisfies the goal Gi and the goals of lower iteration 
number. The refined by relationship ensures the preservation of goals, but the proof 
of refinement must be given. This means that if a new model is derived from (Mn, 
Gn), we should prove that the new model refines the previous model and preserves 
the new properties. Consider a refinement of the machine shown in Figure 1 given 
by variable y, invariant J(x,y), operation Oi(y) Í Pre Qi(y) then Ti(y), where J 
represents the formal link between the abstract variable x and the refined variable y 
and some local properties over y. Refinement proof obligations are generated from 
the following predicates for each operation Oi:  

I(x) ¶ J(x,y) ¶ Qi(y) fi Pi(x) ¶ J(Si(x), Ti(y)). 

                             
5 Atelier B is a product of ClearSy, http://www.clearsy.com. 
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The B language has proved its efficiency for software system development because 
of its powerful refinement mechanism that supports a complete process of 
engineering from specification to code, and because of the expressiveness that 
makes possible the B description of various system views, such as dynamical [LAN 
96] (see Figure 2) or informational [LAL 02]. Applying the B language for 
automation engineering has been addressed by academic [LAN 00][PET 98b] 
[MOR 04] as well as by industrial trials [LEC 02][AIT 02]. 
 

? p ∧ guard ! action

1 2
? p ∧ guard ! action

1 2
 

MACHINE G1 
SETS STATE, T /* sets of states and events*/ 
VARIABLES st1, st2, guard, p, s 
INVARIANT st1 ⊂ STATE ∧ st2 ⊂ STATE 
OPERATION t(s,p) = 
 PRE guard ∧ s ∈ st1 ∧ p ∈ T 
 THEN st1 := st1 – {s} || st2 := st2 ∪{s} || action 
END 

Figure 2. B formalization of a state-transition diagram [LAN 96] 
 
2.3. System model-driven specification using the B language 
 
The objective of model-driven specification is to formalize generic users’ and 
engineers’ expertise to provide a collection of generic constructs for a specific 
application domain. These constructs include, within a meta-model, syntactic and 
semantic building blocks derived from theoretical representations, or results from 
experience, as well as their assembly rules. Specification models can then be 
obtained (see Figure 3) by instantiating proved constructs, considered as modelling 
generic primitives, into a model with a well-defined form (syntax) and meaning 
(semantics). These generic constructs can aid establishing the goals, process, or 
control specifications of the predicate (2). 
 

Real system

System 
properties

System 
models

CS ∧ PS ⇒ Goals

Models 
properties

Metamodels
and

Constructs

Model constructs
properties

derivation

generalisationabstraction

concretisation

CS ∧ PS

 
Figure 3. Model-driven specification process 
 
Generic guidelines in the area of systems engineering [IUN 03] can be applied to 
ensure the completeness and non-ambiguity of the goals specification. Indeed, 
according to these guidelines, an abstract system model can be said to be composed 
of elementary processors provided with four kinds of information or material flows, 
stating what the system has to do, when the system has to do it, what it is required to 
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be able to do it, and what the system requires to know how to do it. In this context, 
generic constructs result from the formalization of elementary processors and their 
flow typology. Instantiating these constructs requires filling and identifying all 
connected flows and, consequently, helps in ensuring the completeness of the 
resulting specification. 
 
In the same way, the specification of process systems should take advantage of 
using the Paynter’s classification [PAY 61] as generic modelling guidelines for the 
physical variables and rules, to be sure of obtaining a model that is compliant with 
the physics of a process, expressed in term of causality or material and energy flows 
balance. Section 3 details the formalization of such expert knowledge. 
 
Finally, as far as the control specification is concerned, methodological expertise 
and approaches, such as structuring functional models through automation objects 
covering control, monitoring, and technical mode management issues [LHO 96] or 
action-based language for controlling cell manufacturing [WRI 88], can be used as 
inputs for the formalization of control generic constructs that ensures the 
completeness of the control specification. 
 
Formalization, using the B language, of these constructs is based on the definition of 
the domain constants and properties through the static part of a B machine, on the 
modelling of generic behaviour through the dynamical part of a B machine and, 
finally, on the identification by experts of some invariant of the domain. Note that 
these invariants’ properties can be local to a given construct, but can also define 
groupings of constructs and rules for valid groupings of constructs. 
 
Reusing the formalized constructs to establish a specification model requires 
defining an instantiation support for the B language. We propose a two-step 
mechanism. First, the collection of generic constructs is prefixed with a specific 
name associated with each instance; this leads to a collection of machines associated 
with each object involved in the specification to be established. The resulting 
specification is formalized within a single B machine built as a network of 
interconnected constructs that call the instantiated constructs using the clause 
EXTENDS. For example, a generic construct machine is instantiated into 
instance1.construct machine, which is called by the specification M1 machine 
through the clause, EXTENDS instance1.construct. The consequence of using the 
EXTENDS clause is that all the instantiated machines inherit from the clauses 
constants, sets, variables, invariants, initialisations, and operations defined in the 
generic construct machine. More precisely, the instantiated constructs verify the 
same invariants as those defined in the generic constructs. Moreover, if the 
constructs’ invariants contain the description of grouping rules, the specification 
model can be presumed to be correct with regards to these. In this sense, 
formalization of generic constructs efficiently contributes to the completeness and 
non-ambiguity of the specification. 
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2.4. System proof-oriented specification using the B language 
 
Proof-oriented specification for systems automation [MOR 04] consists of giving a 
formal meaning to the automation predicate operators to verify (see Figure 4a): 

– the local properties of each given specification that allows confirmation of 
their correctness with regards to syntactic or semantics rules; 

– the specifications’ consistency, especially by proving that the refinement 
relationship between system goals on one side and target process/control systems on 
the other side is established. 
 
Models involved in this predicate are formalized through B machines, whereas 
operators (∧ and ⊃ operators) are established with equivalent B structuring 
mechanisms (see Figure 4b). 
 

 

Process
Specification

Control
Specification

Consistency
checking

Control
specification

Specification
of expected

services

Process
specification

Composition

Correctness
checking Correctness

checking

Correctness
checking

 

System
Requirements

B Machine

Composition
(automated

System)

B Machine

B
Refinement

∧

Control
systems

B Machines

Process
systems

B Machines

B
Inclusion⊃

 
a) automation predicate b) B correspondence 

Figure 4. Automation predicate and B correspondence 
 
The System requirements machine represents all the users’ requirements in terms of 
abstract functional behaviour expressed using static information, dynamic 
information processing, and invariant safety properties of a B machine. A very 
powerful primitive of the B language is used to support this modelling. Consider the 
following B operation: operation O(v) Í any w where P(w) then v: = w, where v 
and w are machine variables and P a predicate over w. This means that the operation 
result v is equal to any w if w satisfies the predicate P. In other words, we are able 
to describe the properties an expected result has to satisfy (what the system has to 
do), without describing how this result may be obtained (how the system is doing 
it). 
 
The B composition machine formalizes the ∧ operator using the B object oriented 
features, allowing the operations call and the use of public variables. The primitives 
are used to interconnect B control and process machines that describe the functional 
behaviour of the components involved in automation systems, such as software 
control, the physical process or electrical wiring 
 
The B refinement mechanism is used to prove that the B system requirements 
machine can be correctly and consistently refined into the composition machine by 
proving that the initial invariants are preserved. 
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The resulting specification is then the foundation of the design and implementation 
phases that can be supported by the B language (for the software systems) or by 
dedicated techniques such as, for example, Matlab6 [LEC 02] or LUSTRE7 [AIT 02] 
which can be used for the design of the reactive control part (see Figure 5). 

STE STE STE

Specification documents

Interviews, contacts, memos

System level
B formal

specification
Hardware

specification
Hardware

implementation

Software
specification

Software
implementation

Dedicated models

 
Figure 5. From B specification towards design and implementation [LEC 02] 
 
2.5. Presentation of the case study 
 
The proposed formal automation method based on the B language is illustrated 
using the case study (see Figure 6). This case study is part of an industrial 
demonstrator which has been developed in European projects for evaluating the 
interoperability of distributed intelligent actuation and measurement field-devices 
[PET 98a]. The studied sub-system is limited to a tank and a valve. The tank is 
upstream fed by a water flow and the valve is used to control the level within that 
tank. Meaning of the variables is the following: Q0 and P0 are respectively the flow 
rate and the pressure of water flow entering the tank, V1 is the water volume within 
the tank, Q1 and P1 are respectively the flow rate and the pressure of water flow 
exiting the tank, Q2 and P2 are respectively the water flow rate and pressure in the 
circuit located after the valve and which feed the downstream system.  

(Q0, P0)

(Q2, P2)

Tank

(V1, P1)
(Q1, P1)

Valve

(Q0, P0)

(Q2, P2)

Tank

(V1, P1)
(Q1, P1)

Valve

 
Figure 6. Case study 
 
The model-driven specification is illustrated by formalizing generic constructs with 
reference to process modelling and more precisely to hydraulic systems. These 
constructs are instantiated for elaborating the specification model of the case study 
process.  According to the predicate (2) and its B correspondence, a proof-oriented 
specification is then used to ensure the consistency between the goals’ specification 
on one hand and the process and control specifications on the other hand.  
                             
6 Matlab/Simulink is a product of The Mathworks company. 
7 Lustre is a modelling and programming language for synchronous reactive systems. 
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3. Model-driven specification of the case study  
 
This section applies a model-driven specification process in the area of physical 
processes modelling. Recent work in this area [MAT 98] has highlighted the benefit 
of using object-oriented representations to mix theoretical modelling with 
identification techniques, when necessary. In this context, a physical system is 
modelled as a network of interconnected processors acting as white boxes in the 
case of theoretical modelling or black boxes in the case of identification. To 
facilitate their reusability, most of these processors are described independently of 
each other and without any causality constraints. However, when building a 
physical system representation by connecting these independent processors, the 
modeller has to take into account: 

– the relationships between input and output flows of each elementary 
processor, which may be constrained by some physical rules of conservation 
(energy or flow balance, specific features of the transformations, etc.); 

– the connection between elementary processors, which are physically limited 
to some enabled configurations (causality relationships between physical variables). 
In the context of our study, the key issue we wish to address is correctness 
checking, with regards to physical laws, of the process structure provided by object-
oriented representations. Our approach is based on the formalization, using the B 
method, of some expert knowledge in the area of physical systems modelling and on 
proven mechanisms that help in re-using the formalized knowledge. More precisely, 
our work refers to Paynter’s classification of the physical variables [PAY 61] and its 
application within a systemic approach proposed by Feliot [FEL 96]. We summarize 
these results before detailing their B formalization.  
 
3.1. Theoretical foundations 
 
Physical variables have been classified by Paynter into four basic sets: effort, flow, 
impulse, and displacement. Applied to hydraulic systems related to our case study, 
Effort, Flow, Displacement, and Impulse variables correspond respectively to 
variables of pressure, fluid flow, volume, and moment of pressure. Paynter’s 
tetrahedron of states (see Figure 7) provides the relationships between these 
variables. 

 

Pressure
Moment

IMP

Pressure
EFFORT

Volume
DISPL

Flow rate
FLOW

Pr⋅
⋅

=
g

AV
ρ

A
lQv 2

8Pr ⋅⋅⋅⋅= µπ

PpAlQv ⋅
⋅

=
ρ

Pp
dt
d=PrV

dt 
d Qv = 

 
Figure 7. B formal typology of state variables for physical systems 
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Considering that some of those physical variables are tightly coupled, Paynter has 
proposed considering three main couples: (effort, flow), known as power; (effort, 
displacement), known as potential energy; and (impulse, flow), known as kinetic 
energy. From these definitions, three main physical processors ensuring the couples’ 
transformation have been identified: from power to power (P/P), with a proportional 
relationship; from energy to power (E/P), with a derivative relationship, and from 
power to energy (P/E), with an integral relationship. 
 
Feliot has formally demonstrated [FEL 96] that these three processors are strictly 
equivalent to the three basic processors proposed by system theory: (P/P), (P/E), and 
(E/P) processors are respectively equivalent to Shape, Time, and Space systemic 
operators. From the process modelling point of view, Shape, Time, and Space 
operators respectively support the physical transformations of a product, its storage, 
and its transportation. Based on system theory, Feliot has proposed some structuring 
rules for interconnecting these operators. 
 
Our contribution consists in formalizing these theoretical foundations, using the B 
method, with two objectives: 

– to provide basic constructs for the modelling of process systems and more 
particularly, in the context of our case study, for the modelling of hydraulic systems; 

– to provide a formal framework for the modelling of a particular process 
system using the instantiation of the basic constructs. 
 
3.2. Formalisation of basic constructs for process modelling 
 
As a first level of abstraction, the systemic Feliot’s processors (Figure 8a) are 
formalized within B machines without taking into account a precise description of 
the dynamics of the supported transformations. It leads to the definition of three 
constructs that include: 

– a definition of the variable couples involved in the transformation; 
– the invariant relationships that link the two variables inside each couple, 

these relationships are those defined by the Paynter’s tetrahedron of states; 
– a very abstract description of the transformation by only specifying its inputs 

and output, which must maintain the previous invariant. 
Figure 8b presents the B formalisation of a Time processor in the area of hydraulic 
systems where (Q0, P0) and (Q1, P1) represent respectively the input and output fluid 
of the storage system with two couples (flow, pressure), whereas (V1, P1) represents 
the volume and the pressure within the tank. In the same way, the Shape processor 
has been formalized with (Flow, Pressure) as input, and another (Flow, Pressure) as 
the output, by taking into account the problem of energy dissipation, and the Space 
processor is defined as transforming (Volume, Pressure) and (Flow, Pressure) into 
(Flow, Pressure). Note that all the relationships described within the invariant and 
the operation involve some parameters, such as ‘A’ (tube or tank section), which 
should be further tuned when modelling a particular physical system and when 
technical features of the various actuators, sensors, and transmitters are known.  



13  

 

Storage
Time

Flow circulation
Space

Dissipation
Shape

(Q0, P0)

(Q1, P1)
(V1, P1)

(V1, P1)

(0, P0)
(Q1, P1)

(Q1, P1) (Q2, P02)

(Q1, P01)  
 
 
 

 

MACHINE Hydraulic_Time_processor 
SETS EFFORT, FLOW, DISP, IMPULSE 
CONSTANTS A, ρ, g 
VARIABLES V1,Q0,P0,Q1,P1 
INVARIANT 
 V1 ∈ DISP ∧ P1 ∈ EFFORT ∧ ... /* type checking */ 
∧ (V1 = (A / (ρ*g)) * P1) /* invariant relationships */ 
OPERATIONS (V1,P1) ← Time ((Q0,P0),(Q1,P1)) = 
 PRE (Q0, P0) ∈  FLOW → EFFORT   ∧   …   
 THEN  ANY newV1, newP1 
 WHERE (newV1, newP1) ∈ DISP → EFFORT 
   ∧ (V1 = (A / (ρ*g)) * P1) 
  THEN V1 := newV1 || P1 := newP1 
END 

 a) Feliot’s processors b) B formalisation of a Time processor 

Figure 8. B formal typology of physical processors 
 
As a second level of abstraction, we introduce a qualitative description of the 
transformation dynamics by detailing the behavioural trends of the transformation 
(see Figure 9). Our objective is to focus on the early phase of specification by 
providing a well-structured process model to be used for defining control goals; 
therefore, this qualitative description can be said to be sufficiently efficient.  
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REFINEMENT Hydraulic_Time_processor 
VARIABLES Vr1, Qr0, Pr0, Qr1, Pr1 
INVARIANT  
 (Vr1 ∈ DISP) ∧ (Vr1 = V1)  ∧ 

 (Qr1 ∈ FLOW) ∧ (Qr1 = Q1)  ∧ ... 
OPERATIONS 
(Vr1, Pr1) ← Time ((Qr0, Pr0),(Qr1, Pr1 )) = 
PRE (Q0, P0) ∈  FLOW → EFFORT ∧ … 
THEN 
 SELECT (Qr0-Qr1)>0 
 THEN ANY newV1, newP1 
 WHERE (newV1,newP1) ∈ DISP → EFFORT 
    ∧ newV1 > Vr1 ∧ (newV1 = (A / (ρ*g)) * newP1) 
 THEN Vr1 := newV1  || Pr1 := newP1 
END 

 

Figure 9. B formal qualitative behaviours for physical systems processors 
    
3.3. Completeness and non ambiguity checking 
 
Applying formal constructs to specify the physical process of the case study 
presented in the appendix consists of first identifying the generic constructs that 
have to be used. This means that the components involved in the case study process 
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(valve, tank, circuit, etc.) must be associated with a generic processor, as defined by 
the constructs (hydraulic_time, hydraulic_space, and hydraulic_shape processors). 
Note that the same process component can be associated with several generic 
constructs. For example, the valve is involved in water transport as a space 
processor, but also provokes water flow dissipation as a hydraulic_shape processor. 
Conversely, a generic construct can be associated with several process components: 
transport, for example, is performed using valves and circuits. 
The second step consists of defining the physical process model as a network of 
interconnected processors that are instantiated from the generic constructs (see 
Figure 10, a graphical representation of the network). 
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Figure 10. Network of basic processors 
 
This network is formalized in the Case_study_process B machine (see Figure 11). 
Hydraulic generic constructs are customized into specific case study processors by 
renaming constructs’ names, variables, and operations according to the instantiation 
mechanism defined in section 3.3. (Hydraulic_time_processor machine is 
customized into Tank.Time machine, Hydraulic_space_processor into Valve.Space 
machine, and Hydraulic_shape_processor into Valve.Shape machine). These 
machines are then invoked within the Case_study_process B machine by the 
“extends” B mechanism. Operations are called with parameters that depend on the 
edges of the network.  
 

Case Study Process

(Q0,P0) (V1,P1)

(Q2,P0)Case Study Process

(Q0,P0) (V1,P1)

(Q2,P0)

MACHINE Case_study_process 
VARIABLES Q0, P0, V1, P1, Q1, Q2, P01                   
EXTENDS Tank.Time, Valve.Space, Valve.Shape 
INVARIANT (V1=0 ⇒ Q2=0) ∧ (Q2=Q1) ∧ … 
OPERATIONS 
((Q2, P0),(V1, P1)) ← Case study process (Q0, P0) = 
(V1, P1) ← Tank.Time ((Q0, P0),(Q1, P1))  
|| (Q1, P1) ← Valve.Space ((V1, P1),(0, P0 )) 
|| ((Q2,P2),(Q1,P01)) ← Valve.Shape ((Q1,P1),(Q1,P01 )) 
END 

 

Figure 11. B formal network of the physical system 



15  

Two levels of model verification can then be performed. The first is directly linked 
to the instantiation process. Indeed, using the B extends clause requires that the 
invoked operations in the Case_study_process machine satisfy the invariant as 
defined in the generic constructs when the pre-condition (the assumption required to 
safely execute an operation) associated with the called operation is true. This pre-
condition mainly refers to the typology of physical variables and processors 
represented in the constructs. We illustrate this mechanism using the example of the 
Case_study_process machine shown in Figure 11: the tank.time invoked operation 
produces a couple of variables (V1, P1) that is used as input parameters by the 
valve.space invoked operation. The first level of verification consists of verifying 
that the pre-condition within the hydraulic_space construct is maintained true by 
applying the above input parameters. 
The second level of verification concerns new properties that can be locally added 
to the Case_study_process machine. These properties may refer to: 

– specific characteristics of the physical system expressed independently of the 
control or the users’ requirements; the invariant of Figure 11 mentions (a) that no 
output fluid can be observed when the tank is empty, and (b) that the flows out of 
the tank before (Q1) and after (Q2) the valve are the equal (only the power is 
changed due to the energy dissipation); 

– structural properties of the interconnected processes that represent legal 
sequences with respect to physical laws. 
 
As an example of the last point, Feliot has demonstrated that only some sequences 
of processes are enabled with respect to causality principles producing a set of legal 
sequences, such as Time/Space/Shape/Space/Time. Knowing that the Time, Space, 
and Shape processors are characterized by their input and output couples, the legal 
sequence is coded into an invariant that checks that the successive input/output 
processor flows have the correct type as follows:  
INVARIANT … /* see Figure 10 */ ∧ 
(Q0,P0) ∈ FLOW → EFFORT ∧ (Q1,P1) ∈ FLOW → EFFORT ∧ (V1,P1) ∈ DISPL → 
EFFORT ∧ ... the same type checking for all the operations parameters 
 
To conclude this section, proving a specification of the process system based on 
instantiated formal constructs means that: 

– from a structural point of view, the process system model is well structured 
with regards the physical rules; the network of interconnected processors is said to 
be compliant with the basic constructs and their assembly rules; 

– from a dynamical point of view, the variables involved in the process system 
behave as expected by the modeller. 
 
This process specification can then be further integrated, by the use of the B 
common language, into a more complex representation of the system, including the 
control model and the requirement model as recommended by the automation 
predicate. 
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4. Proof-oriented specification of the case study 
 
Proof-oriented specification is then used to ensure the consistency between the goals 
specification on one hand and the process and control specifications on the other 
hand according to the predicate (2) and the B correspondences given in section 2.4. 
To increase the comprehensibility of the B models, an informal representation of the 
relationship between these specifications is given in the appendix using an UML 
notation. B specification of the physical process system is assumed to be given by 
the Case_study_process machine of the previous section.  
 
4.1. Goals specification 
 
To illustrate the systemic approach, the requirement specification is proposed to 
merge classical control problems (such as level control loop and mode management) 
with information control problem (such as historic management). The System 
requirements machine (see Figure 12) defines these services using three operations: 
level_request, change_mode, and create_historic. 
 

MACHINE  System_requirements 
SETS  PRESSURE = NAT; FLOW = NAT; VOLUME = NAT, 
 MODE={Automatic, Manual}, MODECHG={M2A, A2M}, HISTORIC; 
CONSTANTS Lmax = 100, Input_flow_max = 100 
VARIABLES request, input_flow, output_flow, tank_level, mode, 
 historic, chg_mode_historic, monitoring, level 
INVARIANT  (tank_level = Lmax ⇒  Output_flow > 0)  ∧ …   (I1) 
 ∧ historic ⊆ HISTORIC ∧ monitoring ∈ historic → NAT (I2) 
OPERATIONS 
Level_control (request) = 
 PRE request ∈ NAT 
 ANY new_output_flow, new_tank_level 
 WHERE new_output_flow ∈ [0, 100] ∧  new_tank_level = request 
 THEN  tank_level := new_tank_level || output_flow := new_output_flow END 
Change_mode  = 
 ANY  newmode 
 WHERE  newmode ∈ NAT   
   ∧ (newmode = automatic ⇒ tank_level ∈ [request - 10, request + 10])) 
 THEN  mode := newmode 
Create_historic (h) =  
 SELECT  newmode = change_mode(mode) ∧ newmode # newmode$0 
 THEN  historic := historic ∪ {h} 
   || IF newmode = Automatic and newmode$0 = Manual 
   THEN monitoring(h) := A2M ELSIF monitoring(h) := M2A 
   || level := request END 
END 

 

Figure 12. B system requirement 
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Production functionality is described using the “any … where … then …” primitive 
described in section 3.4. The post-conditioned operation describes the initial values 
of variables to be processed (input_flow, request) and the result to be obtained 
(output_flow, tank_level). This simply postulates that we have to modify the output 
water flow (output_flow becomes new_output_flow) if we want the new level 
(new_tank_level) to equal the requested level (request). In other words, this abstract 
substitution simply states the input/output expected modification without any other 
behavioural details on its realisation. Invariant properties of the production activity 
are given in the invariant (I1), saying that reaching the maximum level of the tank 
provokes output valve opening, i.e., an output flow other than zero.  
 
Mode management is described using the same primitive, and details the conditions 
required for changing the production mode. Changing the mode of the system from 
automatic to manual can be done whatever the physical or control situations are, but 
changing from manual to automatic requires the system to be near a steady point 
where a control loop can be applied. 
 
The last operation formalizes the need to monitor and to produce a history of mode 
commutations. It is done with the help of a: 

– historic class having two attributes, the type of commutation (from Manual to 
Automatic or vice-versa noted M2A and A2M) and the corresponding request when 
the commutation is operated; 

– an invariant (I2) stating the relationships between class and attributes; 
– an operation describing when a new occurrence of historic class must be 

created and the value of its attributes (the $ operator in B is used to make the 
distinction between a variable value before and after execution of an operation). 
 
Note that, at this level of abstraction, the system variables are defined from an end-
user point of view. Only three physical variables are used: the input and output 
flows, and the level of the tank. We have seen that the physical reality is far from 
that when having to consider three different variables of flow (Q0, Q1, Q2), two 
pressure variables (P0, P1), and the volume of water (V1) inside the tank.  
 
4.2. Control specification 
 
The B Control machine results, in this example, from an intuitive modelling of the 
controller, which manages operation modes and the associated control actions (see 
Figure 13). In automatic mode, the control is supposed to maintain the level of the 
tank near the value given by the user request. This control is done by increasing or 
decreasing the percentage of valve opening (opening). Note that this abstract 
specification of control just states what has to be done to maintain the requested 
level without detailing the algorithm to be used (for example PID). Mode 
management describes the exact procedure for commutation taking into account the 
general recommendations given in the system_requirements machine. 
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MACHINE Control 
SETS  MODE = {manual, automatic} 
VARIABLES control_mode, level 
INVARIANT control_mode ∈ MODE ∧ request ∈ NAT ∧ opening ∈ NAT 
 ∧ level ∈ NAT ∧ … 
OPERATIONS   
opening ← Control (request, level) = 
 SELECT  control_mode = automatic ∧ request ∈ NAT ∧ level ∈ NAT 
 THEN IF request > level THEN opening . (opening<opening$0) 

 ELSIF request < level THEN opening . (opening>opening$0) 
 ELSIF request = level THEN opening . (opening=opening$0) 

  END 
 WHEN state = manual 
 THEN  IF request = 0  THEN opening := 0  
  ELSIF request = 100 THEN opening := 100 
  END 
 END 
mode_management = 
 SELECT  control_mode = automatic 
 THEN control_mode := manual 
 WHEN control_mode = manual ∧ level > request – 10 ∧ level < request + 10 
 THEN control_mode := automatic 
 END 
END  

Figure 13. B Control Machine 
 
Note that creation of the mode commutation history remains the same as in the 
systems_requirements machine in the absence of any detail of the database 
management system that should be used. The B variables, invariant, and operation 
related to this part are not presented again in the control machine. 
 
4.3. Consistency and correctness checking 
 
Next step consists in ensuring the refinement relationship between system 
requirements and a model of the automation system. 
 
4.3.1. Formalization of the automation system 
 
Abstract representation of the automation system is provided by combining the 
control and Case_study_process machines using the B structuring extends clause 
that allows invocation of operations (see Figure 14). Variables processed are 
defined as Qi for the input flow, Qo, Po for the output flow, and Vt, Pt, for the 
volume and pressure in the tank. 
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The use of the extends clause means that all the invariants described in the process 
and control machines must be preserved by the automation_system machine. This 
description leads to a failure notification by the theorem proof tool. 
 
MACHINE Automation_System  
EXTENDS  Case_study_process, Control 
VARIABLES  User_request, Chg_mode_request, Qo, Pi, Vt, Pt, Qi, 
OPERATIONS 
Level_control (request) =  
 ((Qo, Pi),(Vt, Pt)) ← Case study process (Qi, Pi)  || Qo ← Control (user_request, Vt); 
Change_mode = 
 SELECT Chg_mode_request ∈ BOOL 
 THEN mode_management  /* operation call from Control machine */ ; END 

 

Figure 14. Formalization of the Automation System machine 
 
Analysis of the proof obligations, i.e., the underlying hypotheses that have to be 
satisfied for a proof success, gives some indication as to what should be corrected in 
our specification: 
 

Vt ∈ DISP ⇒  Vt ∈ NAT ∧ Q ∈ EFFORT ⇒  Q ∈ NAT (extract of proof obligation) 
 

The problem highlighted is the following: the process model works with physical 
variables that belong to Paynter sets (effort, flow, displacement, and impulse), 
whereas the control machine deals with informational variables that belong to the 
set of natural or real numbers. 
Beyond this type checking problem, it appears that the conformance between the 
variables involved in the process and control models has not been considered. 
Indeed, the control model deals with an intuitive concept of level, whereas the 
process model speaks of a volume. In the same way, the control model is supposed 
to calculate the required opening percentage of the valve, whereas the process 
model deals with the output flow rate and tube section. 
An alternative to this conflict consists in defining new operations within the process 
model that will be in charge of transforming:  

– an opening percentage calculated by the control system into a physical effect 
understandable by the process model; this can be done by modifying the status of A 
(tube section) within the Valve.Shape machine that is now defined as a variable, and 
by introducing a new operation Set_parameters (A) whose function is to initiate the 
calculation within the Valve.Shape machine with the section value that is required 
by the control; 

– a physical volume (V ∈ DISP) into an informational variable (L ∈ NAT) that 
represents the level inside the tank; this can be done by introducing in the 
Tank.Time machine a new operation L ← Get_level (V) whose function is to supply 
a type transformation, and to calculate the level of the tank from the knowledge of 
its volume and section (due to a proportional relationship between the two values). 



20 

These two operations added respectively to the Valve.Shape and Tank.Time process 
machines are in fact systemic operators of Nature (that aim to modify the type of 
processed variables, from the physical world to the informational domain and vice-
versa). They actually represent the abstract behaviour of the Actuation and 
Measurement system. 
 
4.3.2. Refinement checking 
 
The last stage of our approach consists in verifying that the automation system we 
have defined satisfies the properties given by the requirements model. This 
consistency checking is performed using the B refinement mechanism. The 
properties to be proved are the following: 

– the services provided by the automation system are included in those 
required by the end-user; 

– the invariant properties of the automation system are included in those 
defined by the requirements model. 
These assumptions comply with the definition of the B refinement. What has to be 
proved is that the Automation_System machine actually constitutes a refinement of 
the System_requirements machine. We postulate that this refinement relationship 
exists, and we describe, using the B formalism, the logical links between the 
abstract variables defined in the requirements (input_flow, output_flow and 
tank_level) and the more tangible requirements (Qo Qi,Vt, Pi,Pt) processed in the 
Automation_system machine. This can easily be done by enriching the invariant as 
follows (see Figure 15). The B theorem prover is used to demonstrate that the 
assumed refinement relationship is preserved by the machines involved in our 
specification. 
 

REFINEMENT Automation_System 
REFINES  System_requirements 
CONSTANTS  atmospheric_pressure 
INVARIANT 

/* existing variables in both abstract and refined machines */ 
Qo = input_flow ∧ Qi = output_flow ∧ Vt = tanl_level  
/* not existing in the abstract machine */ 
∧ Pi = atmospheric_pressure ∧ Pt = k * tank_level  

OPERATIONS 
  /* same operations as those defined in Figure 14 */ 

 

Figure 15. Automation_system as a refinement of System_requirements 
 
A proof success implies that the combined operations included in the B refined 
machine (i.e., operations of the Automation_system machine and consequently the 
called operations supplied by the Control and Process machines) satisfy the 
invariant and the post-conditions (i.e., produce the same results) of the operation 
related to System_requirements machine. 
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In other words, proving the refinement ensures that the actual operations performed 
by the control and process systems are compliant with the functional operations 
expected within the system requirements. 
 
5. Conclusion 
 
There is a growing interest in methods and tools that facilitate the validation of 
software-intensive automation systems. This interest becomes a legal requirement 
when dealing with safety-critical systems; the IEC 61508 safety-related standard 
strongly recommends the use of verification methods to be applied in the 
certification process by the suppliers, integrators, or independent external 
authorities, but without defining how they can be applied. Among many techniques 
enabling improvement in quality, formal approaches appear to be suitable for 
checking, from the early phase of a project life cycle, the completeness, the non-
ambiguity, the consistency, and the correctness of all the various specifications a 
system is intended to meet. 
Most formal methods aim to check a posteriori the correctness of a designed system 
with regard to required goals. In this case, the formal statement is very sensitive to a 
host of implicit relationships inferred by the requirement process, itself based on 
natural or skill-oriented languages. This paper presents an alternative system 
strategy aimed at making a more robust automation by checking a priori proved 
properties from the earlier phases of specification. Our method combines model-
driven and proof-oriented specifications based on the B language and its refinement 
mechanism as a unique and integrating framework. 
 
Although these interdisciplinary exchanges between computer science and 
automation-related approaches demonstrate that this a priori formal method of 
modelling allows one to verify the highest levels of safety integrity of automation 
systems, common experiments on laboratory-scale and industrial-scale case-studies 
emphasize the effort that still must be employed to make the proposed engineering 
framework effective in practice. 
An important limitation for the acceptance of the proposed approach into a well-
established automation engineering process is the mathematically oriented notation 
of the B language. A means of bridging this gap at the specification level is to 
propose equivalent representations of a B specification using more accepted 
formalisms. To this end, translations of UML diagrams into B machines have been 
proposed [LED 02][LAL 02], as well as paraphrasing of the B model into a natural 
language text to facilitate its understanding [DIA 98]. As far as the design and 
implementation levels are concerned, formal refinements of B models towards skill-
oriented formalisms remain unresolved issues, although identified as crucial by 
industrial practitioners [AIT 02][MOI 03]. Some partial results are available for 
translating B into continuous [LEC 02], event-oriented [BER 03], reliability-
oriented [MOR 04], or timed [ABR 98] models, as well as into programming 
languages such as C code [BER 00]. 
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APPENDIX 
 
All UML graphical notations are very helpful in improving the readability of the B 
machines presented in this paper. The best practices found in the computer science 
literature start a UML study by defining the main objects classes involved in the 
application considered. This can be done using “Use case” diagrams, or more 
precisely, using class diagrams. 
Applying Fusaoka’s predicate to our case study leads to the following class diagram 
(see Figure 16), where the Automation_System class is composed of a 
Process_System class and a Control_System class. Associated operations represent 
the services provided by these two classes (physical transformations for the first and 
informational processing for the second). The dependency association between the 
Automation_System and Requirements classes represents the refinement relationship 
that must exist between these two classes. The Object Constraint Language (OCL) 
enables the expression of constraints applied on objects or associations of objects, 
and is used in the case study to express the invariant properties of the system. 

 

Requirements
+ch_mode_hostoric
+historic
+input_flow
+level
+mode
+monitoring
+output_flow
+tank_level
+change_mode(mode)
+create_historic(h)
+level_control(request)

Automated_System
+automatic_request
+energyLevel
+nominalValue
+Pt
+Q0
+user_request
+Vt
+level_control(request)
+change_mode

<< refine >>

Process_System
 
+setSection(section)
+case_study_process(Qi,Pi)
+control(request,V)

1

0..1

Control_System
+control_mode
+level
+control(level,request)
+mode_management(mode)

1

0..1

{context Requirements
inv :
    tank_level = Lmax implies output_flow > 0
}

 
 

Figure 16. UML class diagram of specifications according to Fusaoka’s predicate 
 
A further specification should enrich this static representation with additional details 
related to the dynamic behaviour of the objects. Unfortunately, even if many 
formalisms are available (information exchanges between objects can then be 
described using a collaboration diagram, scheduling of operations within a class can 
be described by a sequence diagram, control operation behaviour can be described 
through a State-Transition diagram, etc.), the refinement rationale, which is the 
accurate way to guarantee the consistency the specification process, is barely 
supported by UML. 


