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Abstract

This paper deals with the analysis of generic uniform observability for structured bilinear

systems. The proposed method is based on a graph-theoretic approach and assumes only the

knowledge of the system’s structure. We express, in graphical terms two conditions, the first

one is necessary and the second one is sufficient, to check whether or not they are generically

uniformly observable. These conditions are quite easy to verify because they are based on

comparisons of integers and on finding edges and subgraphs in a digraph. Therefore, our

approach is very well suited to study large scale and/or uncertain systems.

Keywords: Structured bilinear systems, uniform observability, graph theory, generic properties.

1 Introduction

For nonlinear systems, the observability notion is based on the concept of indistinguishability of

two initial states for every input. In fact, it results from [3,13,15,21,24] that a nonlinear system is

observable if it can be found an input such that any pair of initial states are distinguishable by ob-

servation of the corresponding output. The distinguishability of two initial states is thus depending

on the input applied to the system. In this respect, for nonlinear systems, the notion of universal

input is defined [13, 21] as an input for which every pair of initial states can be distinguished

by observation of the output. A system, for which every input is universal is said uniformly ob-

servable knowing that we are interested in the inputs which take only real values. We call these
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inputs admissible inputs. In other words, a system is uniformly observable when we can express

its whole state components in function of the measured variables and their derivatives for all the

admissible input values. The analysis of the uniform observability is important since it informs us

on the possible alteration of the state distinguishability for some input values. This information

is useful obviously for the design of nonlinear observers and also for control, fault detection and

isolation and reconfiguration schemes which both use the estimated state variables.

Many studies are dedicated to the uniform observability [10, 11, 24]. In most cases, either the

authors are interested only in the single output case or they provide geometric trivial conditions

to achieve uniform observability. These conditions are mainly difficult to apply to large scale sys-

tems because they are based on the computation of the rank of the observability matrix. Note that

some studies assume that the system can be transformed into some triangular form which ensures

the uniform observability and which is used in the design of nonlinear observers [2, 7, 14, 19].

Finally, in the single output case, a triangular canonical form for uniformly observable systems is

provided [9].

In this context, this paper is dedicated to the characterization of the uniform observability of a

particular class of nonlinear systems. According to their applicative interest and their intrinsic

simplicity, we focus on multi-output bilinear systems. This class of systems, whose dynamics

are jointly linear in the state and the input was introduced in control theory in the 1960’s. In-

dustrial process control, economics and biology (switched circuits, mechanical brakes, controlled

suspension systems, immunological systems, population growth, enzyme kinetics, . . . ) provide

examples of bilinear systems (BLS). Furthermore, this kind of systems are simpler and better un-

derstood than most other nonlinear systems. Finally, the usual linearization of a nonlinear control

system near an equilibrium point can be improved by using a bilinear approximation. For these

reasons many works deal with BLS.

Generally, BLS are studied in connection with the theories of time-variant linear systems and ma-

trix Lie groups [4, 16, 20]. However, the use of such tools assumes the exact knowledge of the

state space matrices characterizing the system’s model. In many modeling problems, these ma-

trices have a number of fixed zero entries determined by the physical laws while the remaining

entries are not known precisely. This is also true during the system conception stage. To study the

properties of these systems in spite of the poor knowledge we have on them, the idea is that we

only keep the zero/nonzero entries in the state space matrices. Thus, we consider models where

the fixed zeros are conserved while the nonzero entries are replaced by free parameters. There is

a huge amount of interesting works in the literature using this kind of models called structured
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models. These models are useful to describe the class of systems having the same structure and

they capture most of the structural available information from physical laws. Moreover, their study

requires a low computational burden which allows to deal with large scale systems. Because of

these features, we think that structured systems are suited to study the uniform observability and

subsequently this paper deals with this kind of systems.

Many studies on structured systems are related to the graph-theoretic approach. Until now, this

approach is principally dedicated to linear systems for which structural properties, such as con-

trollability, observability, solvability of several classical control problems including disturbance

rejection, input-output decoupling, fault detection and isolation, are studied. Survey paper [8] re-

views the most significant results in this area. From these works, it results that the graph-theoretic

approach provides simple and elegant solutions and so is very well suited to analyse large scale

or/and uncertain systems. Unfortunately, few works based on graph-theoretic methods deal with

nonlinear systems. Among them, [22] gives sufficient conditions to fulfill the observability of

bilinear systems and more recently, [1] provides sufficient conditions for checking the uniform

observability of nonlinear systems which are preliminarily put in a canonical form and where the

nonlinearities satisfy Lipschitz conditions.

The aim of this paper is to provide a necessary and a sufficient conditions to achieve the uni-

form observability of multi-output structured bilinear systems (SBLS). The study of this property

is based on a graphic representation, which does not necessitate any preliminary computation.

Comparatively with the results of [9] which enounce necessary and sufficient conditions to the

uniform observability of single output nonlinear systems, our results concern only a particular

class of nonlinear system, but for multi-output and structured systems. In the single output case,

our conditions are also necessary and sufficient. Moreover, in [24], the author give a geometric

necessary and sufficient criterion to the uniform observability of a multi-output bilinear system.

This criterion is not a structural one i.e. depends on the parameters of the system, is quite trivial as

it assesses that a system is uniformly observable if and only if the rank of the observability matrix

is equal to the dimension of the state for every input. This criterion is difficult to verify especially

in the case of large scale or uncertain systems. Starting from an equivalent criterion to the one

given in [24] and using original mathematical tools, we give two conditions (one necessary and

the other sufficient) to the uniform observability of structured bilinear systems which are more

"computable" and which depends only on the structure of the systems and not on its parameters.

The main interest of the proposed conditions are their easy computability and the fact that they

allows to handle system’s structure.
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The paper is organised as follows: after section 2, which is devoted to the problem formulation,

a digraph representation of SBLS is given in section 3. The main result of the paper is provided

in section 4 and is illustrated with an example in section 5. Finally, some concluding remarks are

made.

2 Problem statement

In this paper, we are interested in the uniform observability of SBLS:

(ΣΛ) :


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

















































ẋ = Aλx+

m
∑

i=1

uiB
λ
i x

y = Cλx

z
de f
= ẋ−

m
∑

i=1

uiB
λ
i x

(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are respectively the state vector, the input vector and the output

vector. New variable z ∈ Rn called dynamic variable, is introduced in this paper. Aλ ∈ Rn×n, Bλ
i
∈

Rn×n for i = 1, . . . , m and Cλ ∈ Rp×n represent matrices whose elements are either fixed to zero or

assumed to be free non-zero parameters. The vector of these parameters is Λ = (λ1,λ2, . . . , λh)T .

If all the non-zero parameters λi are fixed, we obtain an admissible realization of structured system

(ΣΛ). Theoretic properties of each realization can be studied according to the values of λi.

We say that a property is true generically if it is true for almost all realizations of the system or

equivalently for almost all parameter values [6]. Here “ for almost all parameter values ”is to be

understood [8] as “ for all parameter values (Λ ∈ Rh) except for those in some proper algebraic

variety in the parameter space ”. The proper algebraic variety for which the property is not true is

the zero set of some nontrivial polynomial with real coefficients in the h parameters of the system,

which can be written down explicitly. Recall that a proper algebraic variety is an algebraic variety

which has Lebesgue measure zero. A property which is true for almost all parameters values is

also said to be true generically or to be a generic property for the considered structured system.

In order to precise the notion of generic uniform observability, we adapt hereafter the definition of

the uniform observability [9, 24] to the SBLS:

Definition 1 Structured bilinear system (ΣΛ) is generically uniformly observable if, for almost all

its realizations and for any input value, any pair of initial states x0(0) and x1(0) are distinguishable

by observation of the corresponding outputs y0(t) and y1(t) for t ≥ 0.

From the latter definition, we deduce that a structured system is generically uniformly observable

iff for almost all its realizations and for all the input values we can express x(t) in function of y(t),
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u(t) and their derivatives i.e. there always exists a nonsingular function f such that:

x(t) = f
(

y(t), ẏ(t), y(2)(t), . . . ,y(κy)(t), u(t), u̇(t), u(2)(t), . . . ,u(κu)(t)
)

(2)

Indeed, according to Definition 1, if a structured system is generically uniformly observable then

we can always (for all the input values) express its initial conditions in function of the output and

its derivatives. In this case, using the system’s dynamics (ΣΛ), we can write an expression of the

form (2). Reciprocally, if we can write an expression like (2), then we can determine in a unique

way, using the system’s dynamics (ΣΛ), the initial conditions x(0) in function of the corresponding

output y(t), whatever the value of the known input u(t).

In the case of bilinear systems, since y(t) is a linear function of x(t) and since the dynamics are

jointly linear in the state and the input, if we have an expression of x(t) in function of the measured

variables, then it is necessarily in the form:

x(t) = Γ
(

u(t), u̇(t), u(2)(t), . . . ,u(κu)(t)
)
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












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ẏ(t)

.

.

.

y(κy)(t)
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


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
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

(3)

Γ
(

u(t), u̇(t), u(2)(t), . . . ,u(κu)(t)
)

is a matrix whose elements are polynomials in the input compo-

nents and their derivatives, κy < n and κu < n .

From the previous settings, a system is uniformly observable if and only if we can deduce from the

equations (ΣΛ), according to the differentiation of output y(t), a nonsingular system parameterized

by the input and its derivatives and where the unknown variables are the state components.

Hereafter, we enounce a first proposition which allows to define a triangular form ensuring the

generic uniform observability of a bilinear system:

Proposition 1 A structured bilinear system is generically uniformly observable if there exist ma-

trices Γλ
0
, Γλ

1
, . . . , Γλκ such that we can generically deduce from equations (ΣΛ) relations of the

form:

1st derivationorder o f the output

∣
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∣

∣

∣

∣

∣

∣

∣

Y0
de f
= y =Cλx

Γλ
0
Ẏ0 = Cλ

1
x+

m
∑

i=1

uiH
λ
0,iY0

2nd derivationorder o f the output
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∣

∣
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∣

∣

Y1
de f
=
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
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

Cλ

Cλ
1
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
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

x

Γλ
1
Ẏ1 = Cλ

2
x+

m
∑

i=1

uiH
λ
1,iY1

.

.

.

kth derivationorder o f the output
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k−1
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
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x

Γλ
k−1

Ẏk−1 = Cλ
k

x+

m
∑

i=1

uiH
λ
k−1,iYk−1

Yk
de f
=


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






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

Cλ

Cλ
k


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
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
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



x

(4)
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with g_rank
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= n.Note that, by construction of form (4), g_rank
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
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= g_rank

(

Cλ

Cλ
k

)

.

Here g_rank(Mλ) denotes the generic rank [8, 12, 17, 18] of structured matrix Mλ. Roughly

speaking the generic rank of a structured matrix Mλ with h free parameters λ1, . . . , λh is defined

as max
(λ1,... ,λh)T∈Rh

rank(Mλ).

In form (4), to be coherent with (ΣΛ)’s equations, Cλ
1

de f
= Γλ

0
CλAλ, Hλ

0,i
is such that Hλ

0,i
Cλ =Γλ

0
CλBλ

i

and for j = 1, . . . , k−1, Cλ
j+1

de f
= Γλ

j

(

Cλ

Cλ
j

)

Aλ and Hλ
j+1,i

is such that Hλ
j+1,i

(

Cλ

Cλ
j

)

= Γλ
j

(

Cλ

Cλ
j

)

Bλ
i
.

Proof:

Assume that we can put the system into the form (4), then we can write
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(5)

Since we have Y0(t) = y(t) and for j ≥ 1, Y j(t) =


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
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y(t)

Γλ
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i=1 ui(t)H
λ
j−1,i

Y j−1(t)
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,

then all the Y j can be expressed in function of the output, the input and their derivatives i.e.

Y j(t) = φ j

(

u(t), u̇(t), . . . ,u( j)(t)
)
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Therefore, we can write
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u(t), u̇, u(2)(t), . . . ,u(κu)(t)
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is equal to n = dim(x), we can write x(t) = (ΓT
x Γx)−1Φ

(

u(t), u̇, u(2)(t), . . . ,u(κu)(t)
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. Con-

sequently, starting from equations (4) we obtain, for any input value, an expression on the form

(3). This concludes to the generic uniform observability of structured system (ΣΛ). △

Remark 1 For single output systems as it was proved in [9], the condition of Proposition 1 is

necessary and sufficient to ensure the generic observability of a bilinear system. Nevertheless, in

the case of multi-output systems, the following counter-example shows that this condition is not

6



necessary:

ẋ1 = λ1x3+λ2u1x3+λ3x4

ẋ2 = λ4x3+λ5u1x4

ẋ3 = λ7x4

ẋ4 = λ8x3

y1 = λ9x1

y2 = λ10x2

(6)

This system cannot be put on the form 4 of the paper. The observability matrix (by differentiating

twice each output) is equal to

O(u, u̇) =











































































λ9 0 0 0

0 λ10 0 0

0 0 λ9(λ1+λ2u1) λ9λ3

0 0 λ10λ4 λ10λ5u1

0 0 λ9(λ2u̇1+λ3λ8) λ9λ7(λ1+λ2u1)

0 0 λ10λ5λ8u1 λ10(λ4λ7+λ5u̇1)











































































To establish the non-uniform observability of system (6) we must have simultaneously:

det

















λ1+λ2u1 λ3

λ4 λ5u1

















= 0, det

















λ1+λ2u1 λ3

λ2u̇1+λ3λ8 λ7(λ1+λ2u1)

















= 0, det

















λ1+λ2u1 λ3

λ5λ8u1 λ4λ7+λ5u̇1

















=

0, det

















λ4 λ5u1

λ2u̇1+λ3λ8 λ7(λ1+λ2u1)

















= 0, det

















λ4 λ5u1

λ5λ8u1 λ4λ7+λ5u̇1

















= 0 and

det

















λ2u̇1+λ3λ8 λ7(λ1+λ2u1)

λ5λ8u1 λ4λ7+λ5u̇1

















= 0.

Generically, u and u̇ cannot verify simultaneously all these equations. So, System (6) is generically

uniformly observable.

In the present work, we are interested in the question whether or not SBLS (ΣΛ) can be generically

transformed into the form (4) using a graph-theoretic approach. It turns out that this question can

be answered by checking some simple graphic conditions. These conditions are sufficient to the

generic uniform observability of SBLS (ΣΛ). Note that we provide also a necessary condition to

the generic uniform observability of SBLS (ΣΛ).

Before presenting the main results of the paper, we give, in the next section, some definitions

related to a graphical representation of SBLS.

7



3 Graphical representation of a structured bilinear system

This section is devoted to the definition of the digraph which is used to represent structured system

(ΣΛ). This digraph is noted G(ΣΛ) and is constituted by a vertex set V and an edge set E. More

precisely, the vertex set is defined by: V = X∪XU∪Y∪Z, where X = {x1, . . . ,xn} is the set of

state vertices, XU =
{

xjui|∃k ∈ {1, . . . ,n} such that Bλ
i
(k, j) , 0

}

is the set of X-U mixed vertices,

Y =
{

y1, . . . ,yp

}

is the set of output vertices, Z = {z1, . . . ,zn} is the set of dynamic variable vertices.

The edge set is E = I-edges ∪A-edges ∪C-edges ∪Bi-edges with I-edges = {(xi,zi), i = 1, . . . , n},

A-edges =
{

(zi,xj) |A
λ(i, j) , 0

}

, C-edges =
{

(yi,xj) |C
λ(i, j) , 0

}

, for i = 1, . . . , m, Bi-edges =
{

(xjui,zk) |Bλ
i
(k, j) , 0

}

.

Here Mλ(i, j) is the (i, j)th element of matrix Mλ and (s1,s2) denotes a directed edge from vertex

s1 ∈ V to vertex s2 ∈ V. Note that to differentiate the state, the output and the dynamic variables

from their corresponding vertices, the latter are written in bold fonts.

Hereafter, we illustrate our proposed digraph representation for SBLS with a simple example:

Example 1 Consider the SBLS defined by:

Aλ =

































λ1 λ2 0

0 0 λ3

0 λ4 λ5

































, Bλ
1
=

































0 λ6 0

0 0 0

0 0 0

































, Bλ
2
=

































0 λ7 0

0 0 λ8

0 0 0

































and Cλ =

(

λ9 0 0

)

. To such a model, we

associate the digraph in figure 1.

 
y1 x1 

x2 z2 z1 x3 
x2u1 

z3 
x2u2 

x3u2 
Figure 1: Digraph associated to Example 1

We give now some useful definitions and notations:

• For each edge e = (s0,s1) ∈ E, s0 is the begin vertex and s1 the end vertex of e.

• Two edges e1 = (s1,s
′
1
) and e2 = (s2,s

′
2
) elements of E are v-disjoint if s1 , s2 and s′

1
, s′

2
.

Note that e1 and e2 can be v-disjoint even if s′
1
= s2 or s1 = s′

2
. In Example 1, (x1,z1) and (x2,z2)

are v-disjoint. It is also the case for (y1,x1) and (x1,z1). Nevertheless, neither (z1,x1) and (z1,x2)

nor (x2u1,z1) and (x2u2,z1) are v-disjoint.

• Some edges are v-disjoint if they are mutually v-disjoint.

• A subgraph SG of G(ΣΛ) is defined by an edge subset SE ⊆ E and a vertex subset SV ⊆V such

8



that SV is constituted by the begin and the end vertices of all the elements of SE.

• An edge e belongs to a subgraph SG = (SE,SV) if e ∈ SE. A subgraph SG of G(ΣΛ) is said to

cover a vertex s if there exists an edge e belonging to SG such that s is the end vertex of e.

• A subgraph SG of G(ΣΛ) is a v-disjoint subgraph if all its edges are v-disjoint.

• For any V0 ⊆ V, we denote by 2V0 the power set of V0 composed of all the subsets of V0.

Function ϕ is defined by:

ϕ : 2V → 2V

V0 7→ V1 = ϕ(V0) = {s ∈ V / ∃s0 ∈ V0 where (s0,s) ∈ E}
(7)

Roughly speaking, ϕ(V0) represents the reachable set from V0 using any edge of E beginning at

V0. In Example 1, ϕ({y1, z3}) = {x1, x2, x3}. We define also function ϕ̄ such that:

ϕ̄ : 2Z → 2X∪XU

V1 7→ V̄0 = ϕ̄(V1) = {s ∈ X∪XU / ∃s1 ∈ V1 where (s,s1) ∈ E}
(8)

In Example 1, ϕ̄({z2, z3}) = {x2, x3, x3u2}.

• α is the function defined by:

α : 2XU → 2X

VXU 7→ VX = α
(

VXU

)

=
{

xi ∈ X / ∃ j ∈ {1, . . . , m} such that xiuj ∈ VXU

}
(9)

In Example 1, α
(

{x2u1, x2u2}
)

= {x2}.

4 Main results

In order to graphically analyse the generic uniform observability of SBLS, we follow an iterative

approach where the ith stage corresponds to the ith differentiation order of the output.

Hereafter, we detail the first step of our approach. As it is shown in the form (4), only combinations

Γλ
0
y such that we can deduce from (ΣΛ) an equation of the form:

Γλ0 ẏ =Cλ1 x+

m
∑

i=1

uiH
λ
0,iY0, Y0

de f
= y =Cλx (10)

are useful. In equation (10), Cλ
1
= Γλ

0
CλAλ and Hλ0,iC

λ = Γλ0CλBλi . Determining these combina-

tions amounts to find the combined vertices associated to some combinations Pλz which satisfy

Pλz = Γλ
0
ẏ−

∑m
i=1 uiH

λ
0,i

y. These vertices are called useful vertices. The first part of this section is

dedicated to the determination of these useful vertices.

Let us first precise the notion of combined vertices corresponding to combinations Pλz:

• We denote by zi1,i2, ... , ik the vertex associated to any combination of dynamic variables

9



zi1 , zi2 , . . . , zik whatever i1 < i2 < . . . < ik. zi1,i2,...,ik , which we call combined vertex, can be de-

fined by means of bijective function π associating a combined vertex to each nonempty subset of

Z:
{

zi1 , zi2 , . . . , zik

}

7→ π(
{

zi1 , zi2 , . . . , zik

}

)
de f
= zi1,i2,...,ik . We denote by π̄ the inverse function of π.

The set of combined vertices is noted ZC. Obviously, Z ⊆ ZC.

• For each vertex subset V0 ⊆ V∪ZC, card(V0) represents the cardinality of V0 i.e. the number

of vertices included in V0.

• A nonempty vertex subset VC ⊆ ZC is said “structurally minimal ” if

∀ V̄ ⊆ VC, card



















⋃

v∈V̄

π̄(v)



















− card
(

V̄
)

≥max
v∈V̄

[

card
(

π̄(v)
)

]

−1 (11)

For example, V1 =
{

z1, z2,3, z2,4

}

is structurally minimal while V2 =
{

z1,2,3, z2,3, z2,4

}

is

not structurally minimal because for V̄ =
{

z1,2,3, z2,3

}

, card



















⋃

v∈V̄

π̄(v)



















− card
(

V̄
)

= 3 − 2 and

max
v∈V̄

(card(π̄(v)))− 1 = 3− 1. Similarly, V3 =
{

z1,2, z1,3, z2,3

}

is not structurally minimal because

for V̄ = V3, condition (11) is not satisfied.

The notion of structural minimality is related to the notion of vector linear independence. Indeed,

consider a structurally minimal vertex subset VZ = {zΩ1
, zΩ2
, . . . , zΩk

} ⊆ZC and its associated vec-

tor z̃ =
(

zΩ1
, zΩ2
, . . . , zΩk

)T
=

(

Pλ
1
z,Pλ

2
z, . . . , Pλ

k
z
)T

, where Pλ
i
∈ R1×n. We can easily prove that the

family of vectors (Pλ
1
)T , . . . , (Pλ

k
)T is generically linearly independent because of the structural

minimality of VZ.

• To each VC ⊆ ZC, we can associate a vertex subset ℘(VC) constituted by all the elements s ∈ ZC

for which there exists V0 ⊆ VC such that:







































card

















⋃

v∈V0

π̄(v)

















− card(π̄(s)) = card(V0)−1,

∀ V̄0 ⊂ V0 | card(V̄0) = card(V0)−1,
⋃

v∈V̄0

π̄(v)∪ π̄(s) =
⋃

v∈V0

π̄(v)

(12)

For example, for VC =
{

z1,2, z1,3, z4

}

, we have ℘(VC) =
{

z1,2, z1,3, z2,3, z4

}

. Note that ∀VZ ⊆ Z we

have ℘(VZ) = VZ. Obviously, we have ∀VC ⊆ ZC, VC ⊆ ℘(VC).

• The definition of ϕ in section 3 is adapted for taking into account ZC. In the sequel, ϕe is such

that:

ϕe : 2V∪ZC → 2V

V0 7→ V1 = ϕe(V0) =

















⋃

s∈V0∩ZC

ϕ(π̄(s))

















⋃

ϕ(V0∩V)
(13)
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In Example 1, ϕe(
{

y1, z2,3

}

) = ϕ ({y1})∪ϕ ({z2})∪ϕ ({z3}) = {x1, x2, x3}.

We define, finally, function θ as:

θ : 2Y∪ZC → N

V0 7→ θ(V0) = maximal number of v-disjoint edges starting from V0

(14)

knowing that, to take into account ZC, we add virtually (there is no need to redraw the

digraph associated to the system) to the digraph the following edge subset AC-edges =
{

(zi1,i2,...,ik ,xj) i f ∃r ∈ {i1, i2, ..., ik} | A
λ(r, j) , 0

}

.

In Example 1, θ(Y∪Z) = 3
(

(y1,x1), (z1,x2), (z2,x3) are 3 v-disjoint edges starting from Y∪Z
)

and θ({z1, z2,3}) = 2
(

(z1,x2), (z2,3,x3) are 2 v-disjoint edges starting from {z1, z2,3}
)

.

Function θ has the following property:

P1. Consider VY = {yi1 , yi2 , . . . , yik} ⊆Y and its associated vector ỹ =
(

yi1 , yi2 , . . . , yik

)T
. Let us de-

note by C̃λ the matrix such that ỹ= C̃λx, then from the results on the matrices generic rank [18,23],

θ(VY) = g_rank(C̃λ).

Similarly, consider a structurally minimal vertex subset VZ = {zΩ1
, zΩ2
, . . . , zΩk

} ⊆ZC and its asso-

ciated vector z̃ =
(

zΩ1
, zΩ2
, . . . , zΩk

)T
=

(

Pλ
1
z,Pλ

2
z, . . . , Pλ

k
z
)T

, where Pλ
i
∈R1×n. Let Ẽλ =





































Pλ
1

Pλ
2

.

.

.

Pλ
k





































Aλ.

We have then z̃ = Ẽλx and so θ(VZ) = g_rank(Ẽλ).

This property can be directly deduced from the results of [23] or from the results related to the

maximum matching notion [17].

Using function θ, we define a particular vertex set V∗
M0 :

Definition 2 Let V∗
M0 be a subset of Y such that



















θ
(

V∗
M0

)

= card
(

ϕe(V∗
M0)

)

card
(

V∗
M0

)

is maximal
(15)

Moreover, we take the following notations V∗
X0 = ϕe(V∗

M0) and V∗
XU0 =

{

s ∈ XU such that ,α({s}) ⊆ V∗
X0

}

.

If V∗
M0 exists, then it is unique because if relation θ

(

VM

)

= card(ϕe(VM)) is satisfied for VM =VM1

and for VM = VM2
, then it is also satisfied for VM = VM1

∪VM2
.

We give now, in the following lemma, the necessary and sufficient conditions to be satisfied in

order to express state component xi by means of output y:

Lemma 1 Consider structured bilinear system (ΣΛ) represented by digraph G(ΣΛ). State compo-

nent xi can be generically expressed in function of the output i.e. there exists a matrix T λ
i

such that

11



xi = T λ
i

y, iff in G(ΣΛ)

∃VY ⊆ Y such that



















(i) xi ∈ ϕe(VY)

(ii) θ
(

VY

)

= card (ϕe(VY))
(16)

or equivalently xi ∈ V∗
X0

Proof:

Sufficiency: Assume that (16) is satisfied. Let xΩ be the part of the state vector associated to vertex

set ϕe(VY) and let yΩ be the output vector associated to VY. According to the graph construction,

there exists necessarily a matrix CΩ such that yΩ = CΩxΩ. If θ
(

VY

)

= card(ϕe(VY)) then using

Property P1 of function θ, the generic rank of CΩ equals card(ϕe(VY)) = dim(xΩ). Thus, there

exists generically a matrix TΩ of full row rank such that xΩ = TΩyΩ where TΩ is the pseudo-

inverse of CΩ. Since xi ∈ ϕe(VY), we have xi = T λ
i

y where T λ
i

is the row of TΩ corresponding to

the state component xi in the equality xΩ = TΩyΩ.

Necessity: Suppose that there exists a matrix T λ
i

such that xi = T λ
i

y, then there exists necessarily

a square nonsingular linear system of independent equations linking an output subvector yΩ to a

state subvector xΩ which includes xi i.e. there exists a square nonsingular matrix TΩ such that

xΩ = TΩyΩ. So, yΩ = T−1
Ω

xΩ. Let VY the vertex subset associated to the output components

included in yΩ, and Vx the vertex subset associated to the state components included in xΩ. On

the one hand, as yΩ = T−1
Ω

xΩ, we have that Vx = ϕe(VY) and since state subvector xΩ includes

xi, we have that xi ∈ Vx. On the other hand, as TΩ is of full rank, we have that g_rank(TΩ) =

g_rank(T−1
Ω

) = θ
(

VY

)

= card(Vx) = card(ϕe(VY)). △

4.1 Determination of the useful vertices

If θ(Y) = n, or equivalently V∗
X0 = X, then g_rank(Cλ) = n and so the system is generically uni-

formly observable. Otherwise, the first derivative of the output is necessary to achieve the state

observation. Hereafter, we study the conditions ensuring that a combination of dynamical vari-

ables zi can be expressed using y and u only i.e. there exists generically matrix Pλ such that

Pλz = Γλ
0
ẏ−

∑m
i=1 uiH

λ
0,i

y. This amounts to find matrix Γ0 of the form (4). To do so, our first objec-

tive is to construct a subset of ZC which represents all the output combinations having derivatives

independent from xiu j if xi cannot be expressed using only y. In this respect, the following lemma

aims to provide the conditions which guarantee that a combined vertex is useful.

Lemma 2 Consider system (ΣΛ), represented by digraph G(ΣΛ). Let V0 =
{

zi1 , zi2 , ..., zik

}

be

a subset of Z and note by π(V0) = zi1,i2,...,ik its corresponding combined vertex. Assume that

12



∄ V′
0
⊂ V0 such that π(V′

0
) is useful.

Combined vertex zi1,i2,...,ik is generically useful and there exists vector Pλ
k
∈ R1×k, such that

Pλ
k

(

zi1 , zi2 , . . . , zik

)T
can be expressed in function of ẏ and uiy only i.e. Pλ

k

(

zi1 , zi2 , . . . , zik

)T
=

Γλ
0
ẏ−

m
∑

i=1

uiH
λ
0,iy iff ∃ VY ⊆ Y satisfying:

θ
(

VY

)

+ k+ card
(

ϕ̄(V0)∩V∗
XU0

)

= card
(

ϕe(VY)∪ ϕ̄(V0)
)

+1 (17)

Proof:

Sufficiency: Assume that ∃ VY ⊆ Y such that (17) is satisfied and let us take the following nota-

tions:

• V∗
XU0 is the complementary set of V∗

XU0 in XU i.e. V∗
XU0 = XU\V∗

XU0 ;

• xΩ is the vector whose components correspond to the elements of subset ϕe(VY)∪ (ϕ̄(V0)∩X).

• xuΩ is the vector whose components correspond to the elements of vertex set ϕ̄(V0)∩V∗
XU0

;

• zΩ =
(

zi1 , zi2 , . . . , zik

)T
is the vector of dynamic variables associated to V0;

• XΩ =

















ẋΩ

xuΩ

















;

• yΩ is the vector of the output components associated to VY.

By construction of graph G(ΣΛ) representing system (ΣΛ), yΩ is a linear function of the state

components associated to ϕe(VY) and zΩ is a linear function of the state components associ-

ated to ϕ̄(V0). A part of ϕ̄(V0) can be directly written in function of y, particularly the part

associated to ϕ̄(V0)∩V∗
XU0 as it is proven in Lemma 1. Then, using our notations, there ex-

ist structured matrices CΩ, EΩ and Fi,Ω for i = 1, . . . , m such that we can write ẏΩ = CΩXΩ

and zΩ = EΩXΩ +
∑m

i=1 uiFi,ΩyΩ. Yet, we have that dim
(

Im(ET
Ω

)) = k, XΩ ∈ R
ν where ν =

card(ϕe(VY)∪ ϕ̄(V0)) − card
(

ϕ̄(V0)∩V∗
XU0

)

and from property P1 of θ, we have that θ
(

VY

)

=

dim(Im(CT
Ω

)). Therefore, relation (17) implies that generically

dim(Im(CT
Ω

))+dim(Im(ET
Ω

)) = ν+1 (18)

Obviously, CΩ and EΩ have ν columns and so Im(CT
Ω

) and Im(ET
Ω

) are subspaces of Rν. From

equation (18), we can conclude that dim
(

Im(ET
Ω

)∩ Im(CT
Ω

)
)

≥ 1. Consequently, generically there

exist matrices Pλ
k

and Γλ
0

such that Pλ
k
EΩ = Γ

λ
0
CΩ ⇒ Pλ

k
zΩ = Γ

λ
0
ẏ−

∑m
i=1 uiH

λ
0,i

y. This proves the

sufficiency of Lemma 2.

Remark 2 Note that θ
(

VY

)

+k ≥ card (ϕe(VY)∪ ϕ̄(V0))+1−card
(

ϕ̄(V0)∩V∗
XU0

)

is also sufficient

to prove the existence of vectors Pλ
k
∈ R1×k such that Pλ

k

(

zi1 , zi2 , . . . , zik

)T
= Γλ

0
ẏ−

m
∑

i=1

uiH
λ
0,iy.

Necessity: Assume that there exists vector Pλ
k
∈ Rk, such that Pλ

k
zΩ = Γ

λ
0
ẏ−

∑m
i=1 uiH

λ
0,i

y then at

least one combination of components associated to ϕ̄(V0) can be expressed using ẏΩ (yΩ is the

13



vector of components of y which intervenes in Γλ
0
ẏ i.e. Γλ

0
ẏ = Γλ

0,Ω
ẏΩ). Let VY be the vertex subset

associated to the components of yΩ.

From the construction of the digraph, Pλ
k
zΩ is a linear function of ẋ j where xj ∈ ϕ̄(V0) ∩X

and of xkul where xkul ∈ ϕ̄(V0) ∩ XU. To satisfy Pλ
k
zΩ = Γ

λ
0
ẏ +

∑m
i=1 uiH

λ
0,i

y, the variables

corresponding to ϕ̄(V0) are necessarily either eliminated in combination Pλ
k
zΩ or can be expressed

only in function y. On the one hand, a combination of k dynamical variables zi can eliminate

at most k − 1 elements of ϕ̄(V0). On the other hand, the variables associated to the vertices of

ϕ̄(V0)∩V∗
XU0 can be expressed in function of y and u as they are included in V∗

XU0 (Lemma 1). Let

q = card
[

ϕ̄(V0) \
(

ϕ̄(V0)∩V∗
XU0

)

]

. Thus, at least q− k+ 1 variables corresponding to the vertices

included in ϕ̄(V0) \
(

ϕ̄(V0)∩V∗
XU0

)

must be generically expressed in function of yΩ to satisfy

equation Pλ
k
zΩ = Γ

λ
0,Ω

ẏΩ +
∑m

i=1 uiH
λ
0,i

y. However, yΩ is a linear function of the state components

associated to ϕe(VY), which are not necessarily included in ϕ̄(V0). Thus, the components of

ϕe(VY) \
(

ϕ̄(V0)∩ϕe(VY)
)

must be added to the components which must be expressed using yΩ.

The number of state variables we can express using yΩ is equal to θ(VY). Thus, VY must satisfy

θ(VY) ≥ card(ϕe(VY)∪ ϕ̄(V0))− k+1− card
(

ϕ̄(V0)∩V∗
XU0

)

= n1.

Furthermore, assume now that there exists a vertex subset V′
Y
⊆ Y satisfying , θ(V′

Y
) = n′

1
> n1.

The latter inequality implies that θ(V′
Y

)≥ card
(

ϕe(V′
Y

)∪ ϕ̄(V0)
)

− (k−1)+1−card
(

ϕ̄(V0)∩V∗
XU0

)

.

Thus, that for all V′
0
⊂ V0 such that card(V′

0
) = card(V0) − 1 = k − 1, we have

θ
(

V′
Y

)

≥ card
(

ϕe(V′
Y

)∪ ϕ̄(V0)
)

− (k − 1) − card
(

ϕ̄(V′
0
)∩V∗

XU0

)

+ 1. According to the suffi-

ciency of Lemma 2 proved above π(V′
0
) is useful (see Remark 2). However, we take as hypothesis

∄ V′
0
⊂ V0 such that π(V′

0
) is useful. Consequently, ∄V′

Y
⊆ Y such that θ(V′

Y
) ≤ n1.

On the one hand, we have proved that the existence of a vector Pλ
k
∈ R1×k, such that

Pλ
k

(

zi1 , zi2 , . . . , zik

)T
can be expressed in function of ẏ and uiy implies the existence of VY ⊆ Y

such that θ(VY) ≥ n1. On the other hand, the hypothesis of lemma 1 imposes that there cannot

exist VY ⊆ Y such that θ(VY) > n1. Consequently, the existence of a vector Pλ
k
∈ R1×k such that

Pλ
k

(

zi1 , zi2 , . . . , zik

)T
can be expressed in function of ẏ and uiy implies the existence of VY ⊆ Y

such that θ(VY) = n1 = card(ϕe(VY)∪ ϕ̄(V0))− k− card
(

ϕ̄(V0)∩V∗
XU0

)

+1. △

The hypothesis of Lemma 2, which is in relation with the notion of structural minimality,

is necessary to ensure that the combined vertices verifying conditions of Lemma 2 represent

effectively the number of linear independent vectors Pλ such that Pλz can be expressed in function

of ẏ and uiy. Indeed, assume that z1 is useful and that {z1, z2} satisfies condition (17). We have

then two cases: either z2 is useful and in this case the vectors representing {z1}, {z2}, {z1, z2} are

14



not linearly independent. Or z2 is not useful and so only Pλ
1

representing z1 is such that Pλ
1
z can

be expressed in function of ẏ and uiy. In both cases, the fact that {z1, z2} satisfies condition (17) is

not significative in the search of useful vertices corresponding to vectors Pλ such that Pλz can be

expressed in function of ẏ and uiy.

Let us denote by Z1 the biggest (in the sens of cardinality) structurally minimal set of useful

vertices of ZC obtained after the first step. Since this set is structurally minimal, it represents

all the linearly independent combinations of the first derivative of the output components. Z1

represents then Γλ
0
Ẏ0−

m
∑

i=1

uiH
λ
0,iY0 =Cλ1 x and Y∪Z1 represents Y1 in relations (4).

If Z1
, ∅ then the first derivative of the output components can be exploited to give new

informations on the state components for any value of u. If θ(Y∪Z1) = card(X) = n then system

(ΣΛ) is uniformly observable. Otherwise, the output must be differentiated once again. At this

aim, a second step is necessary to determinate which vertices of ZC are useful for a second

differentiation of the output.

In this second step, we consider Y∪Z1 as the new output vertices of the system. This is equivalent

in form (4), to the fact that in the second step we differentiate Y1
de f
=

(

Cλ

Cλ
1

)

x to obtain a relation

on the form Γλ
1
Ẏ1 = Cλ

2
x+

m
∑

i=1

uiH
λ
1,iY1. As a matter of fact, this second step is similar to the first

one but with considering as an output Y1 instead of Y0 = y. Graphically, this amounts to consider

Y∪Z1 as output vertex subset instead of Y.

Therefore, in this second step, we can follow a similar approach than the one presented previ-

ously in Lemma 2 by replacing “∃ VY ⊆ Y ”by “∃ VY ⊆ Y and a structurally minimal subset

VZ ⊆ ℘(Z1) ”, V∗
M0 by V∗

M1 , V∗
X0 by V∗

X1 and V∗
XU0 by V∗

XU1 , where V∗
Mi , V∗

Xi and V∗
XUi for i ≥ 0

are defined by:

Definition 3 For i ≥ 1, V∗
Mi is the maximal (in the sens of the cardinality) subset of Y∪℘(Zi) such

that: VZ
de f
= V∗

Mi ∩ZC is structurally minimal and θ
(

V∗
Mi

)

= card
(

ϕe(V∗
Mi)

)

. We take the following

notations: V∗
Xi = ϕe(V∗

Mi) and V∗
XUi =

{

s ∈ XU such that ,α({s}) ⊆ V∗
Xi

}

.

Let us denote by Z2 the set of useful vertices representing linearly independent combinations

of the first and second derivatives of the output components. If θ(Y∪Z2) = card(X) = n then

system (ΣΛ) is generically uniform observable. Otherwise, we must differentiate the output once

again and so on. We present the algorithm which allows us to determine the set Z∗ which is the

limit of the structurally minimal subset sequence (Zi) and which represents the set of all useful

vertices:

Algorithm 1
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Initialisation : Z0 = ∅ and i = 0

Step i : Qi = ϕ
(

ϕe

(

Y∪Z0
))

, Zi+1 = ∅. Compute V∗
XUi according to Definition 3

Determination of the useful vertices:

for κ = 1 to card(Qi)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f or j = 1 to
(

card(Qi)
κ

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

let Vκ,j be the jth κ−subset o f Qi

i f ∀ V⊆Zi+1, card

















⋃

vr∈V

π̄(vr)∪Vj,κ

















−card(V)≥κ, (Cond1)

then i f there exist VY ⊆ Y and a structurally minimal vertex subset VZ ⊆ ℘(Zi) such that

θ
(

VY∪VZ

)

+ κ+ card
(

ϕ̄(Vκ,j)∩V∗
XUi

)

= card
(

ϕe(VY∪VZ)∪ ϕ̄(Vκ,j)
)

+1 (Cond2)

then Zi+1 = Zi+1∪
{

π(Vj,κ)
}

,

end

end

End of step i: If θ(Zi+1) , θ(Zi), we must differentiate y again: i← i+1 and we go to Step i

Else Z∗ = Zi

Remark 3

• Condition (Cond1) above ensures that Zi+1 is structurally minimal. Due to condition (Cond1),

if V0 ⊆ Z satisfies condition (Cond2) then either π(V0) belongs to Zi+1 or π(V0)∪Zi+1 is not

structurally minimal. This means that if V0 ⊆ Z satisfies condition (Cond2) then ∃V̄0 ⊆ V0 such

that π(V̄0) ∈ ℘(Zi+1). Furthermore, by construction of ℘(Zi+1), ∀ s ∈ ℘(Zi+1), π̄(s) satisfies condi-

tion (Cond2).

• It is easy to see from condition (Cond2) that for i ≥ 0, if s ∈ Zi then there exists s0 such that

π̄(s0) ⊆ π̄(s) and s0 ∈ Zi+1.

We illustrate hereafter the previous algorithm on a simple example:

Example 2 Consider the structured system defined by:

Aλ =

















































λ1 0 λ2 0

0 λ3 0 0

0 0 0 λ4

0 0 0 λ5

















































, Bλ
1
=

















































0 0 λ6 0

0 λ7 λ8 0

0 0 0 0

0 0 0 0

















































and Cλ =



















λ9 λ10 0 0

0 λ11 0 0



















. To such

a model, we associate the digraph in Figure 2.

For such a system, we apply algorithm 1 :

Step 0: Since θ
(

Y
)

= 2 and ϕe(Y) = {x1, x2} we have that V∗
M0 = Y = {y1, y2} satisfies condition

(15). So, we deduce V∗
X0 = ϕ(V∗

M0) = {x1, x2} and V∗
XU0 = {x2u1}. Q0 = {z1, z2}.

For V1,1 = {z1}, there does not exist any subset VY of Y (Z0 = ∅) which allows to satisfy

equality (Cond2). Indeed, for VY = {y1}, θ
(

VY

)

+ κ+ card
(

ϕ̄(V1,1)∩V∗
XU0

)

= 1+ 1+ 0 = 2 and
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Figure 2: Digraph associated to Example 2

card
(

ϕe(VY)∪ ϕ̄(V1,1)
)

+ 1 = 3+ 1 = 4. This is also the case for VY = {y2} where θ
(

VY

)

+ κ +

card
(

ϕ̄(V1,1)∩V∗
XU0

)

= 1+ 1+ 0 = 2 and card
(

ϕe(VY)∪ ϕ̄(V1,1)
)

+ 1 = 3+ 1 = 4 and for VY =

{y1, y2} where θ
(

VY

)

+ κ+ card
(

ϕ̄(V1,1)∩V∗
XU0

)

= 2+1+0 = 3 and card
(

ϕe(VY)∪ ϕ̄(V1,1)
)

+1 =

3+1 = 4.

We can do exactly the same computations to conclude that for V1,2 = {z2}, there does not exist any

subset VY of Y which allows to satisfy equality (Cond2). On the other hand, for V2,1 = {z2, z2}, if

we take VY = {y1, y2}, condition (Cond2) is verified: θ
(

VY

)

+κ+card
(

ϕ̄(V2,1)∩V∗
XU0

)

= 2+2+1=

5 and card
(

ϕe(VY)∪ ϕ̄(V2,1)
)

+1 = 4+1 = 5.

Thus, Z1 =
{

z1,2

}

. As θ(Z1) = 1 > θ(Z0) = 0, we go to step 1.

Step 1: Since, θ(Z1∪Y) = 3 and card
(

ϕe(Z1∪Y)
)

= card
(

{x1, x2, x3}
)

= 3, we have that V∗
X1 =

{x1, x2,x3} , V∗
XU1 = α(V∗

X1)= {x2u1,x3u1}. Furthermore, Q1 = {z1, z2, z3} and for each one-subset

of Q1 there exist VY ⊆ Y and a structurally minimal vertex subset VZ ⊆ ℘(Z1) such that equality

(Cond2) is satisfied:

• For V1,1 = {z1}, if we take VY = {y1, y2} and VZ = ∅, we have θ
(

VY ∪ VZ

)

+ κ +

card
(

ϕ̄(V1,1)∩V∗
XU1

)

= 2+1+1 = 4 and card
(

ϕe(VY∪VZ)∪ ϕ̄(V1,1)
)

+1 = 3+1 = 4.

• For V1,2 = {z2}, if we take VY = {y2} and VZ = ∅, we have θ
(

VY ∪ VZ

)

+ κ +

card
(

ϕ̄(V1,1)∩V∗
XU1

)

= 1+1+2 = 4 and card
(

ϕe(VY∪VZ)∪ ϕ̄(V1,1)
)

+1 = 3+1 = 3.

• For V1,3 = {z3} if we take VY = {y1, y2} and VZ = {z1,2} (VZ is obviously structurally mini-

mal and is included in Z1), we have θ
(

VY ∪VZ

)

+ κ+ card
(

ϕ̄(V1,1)∩V∗
XU1

)

= 3+ 1+ 1 = 5 and

card
(

ϕe(VY∪VZ)∪ ϕ̄(V1,1)
)

+1 = 4+1 = 5.

Moreover, since all the other subsets of Q1 do not satisfy condition (Cond1) because for any

Vκ,j ⊆Q1, κ ≥ 2,
{

π(Vκ,j)
}

∪{z1, z2, z3} is not structurally minimal. Thus, Z2 = {z1,z2,z3}.

Let us now do some comments about algorithm 1. At step 0, Y represents all output derivatives

of order 0 exploitable to reconstruct a part of the state for any value of input value u. Indeed

relation y = Cλx does not depend on input value u. We use Lemma 2 to compute Z1 which
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represents all vertices of ZC associated to all the linearly independent combinations of dynamic

variables which can be expressed in function of the output, its first derivative and the input: Pλz =

Γλ
0
Ẏ0 +

m
∑

i=1

uiH
λ
0,iY0 = PλAλx. This equation allows us to "observe" PλAλx for any value u. The

linear independence of such combinations is ensured by condition (Cond1) which imposes to Z1

to be structurally minimal and which ensures that the hypothesis of Lemma 2 is satisfied. Z1

represents then Γλ
0
Ẏ0−

m
∑

i=1

uiH
λ
0,iY0 =Cλ1 x defined in relations (4) and Y∪Z1 corresponds to Y1 .

Step i of the algorithm is equivalent to step 0 by enlarging the output components to Yi and so

the vertex set Y to Y∪Zi or, roughly speaking, to all the part of state vector observed in the

previous steps. Indeed, in form (4), Step i corresponds to the search of matrix Γi such that: Γλ
i
Ẏi =

Cλ
i+1

x+

m
∑

j=1

uiH
λ
i, jYi, where Yi

de f
=

(

Cλ

Cλ
i

)

x. This step is equivalent to step 0 by considering that the

output vector is enlarged to Yi. So, as in step 0, we mark in step i all the vertices of ZC which

correspond to linear independent combinations Pλz satisfying relation of the form (10) between

the first derivative of the variables associated to Y∪Zi, corresponding to vector Yi in (4), the input

and the state. Consequently, edges starting from Y∪Zi correspond to all relations, linking the state

to the input and the output derivatives of order less or equal to i+ 1, which allow us to observe a

part of the state for any input value. Due to the second item of Remark 3, Zi is a non-decreasing

sequence of structurally minimal subset w.r.t. the function θ (θ(Zi) ≤ θ(Zi+1)). Moreover, since

θ(Zi) is bounded by n, there exists an integer k for which θ(Zk+j) = θ(Zk), for all j ≥ 0. So after

a finite number of iterations the algorithm stops when θ(Zi+1) = θ(Zi) which means that in the

(i+ 1)th step, the (i+ 1)th output differentiation does not give any new relation useful to achieve

uniform observability of (ΣΛ). In this case, we pose Z∗ = Zk and vertex subset Y∪Z∗, represents

all the vertices of Y∪ZC which can be associated to output vector Yk =

(

C

Ck

)

x of relation (4).

These vertices can be associated to useful and independent relations between the outputs and their

derivatives and the state and which are exploitable to observe x for any input value. The system

can be put into the form (4) if and only if θ(Y∪Z∗) = n which is equivalent, according to the

construction of Z∗, to g_rank

(

Cλ

Cλ
k

)

= n.

4.2 Graphic conditions for generic uniform observability

The first part of this section suggests immediately the following proposition :

Proposition 2 Consider structured bilinear system (ΣΛ) represented by digraph G(ΣΛ). Struc-

tured system (ΣΛ) can be put into form (4) if and only if in graph G(ΣΛ), θ(Y∪Z∗) = n, where Z∗

is computed according to Algorithm 1.
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Proof: The proof of (1)⇔ (2) is immediate using Lemmas 1 and 2, algorithm 1 and Property P1

of function θ. △

Note that if the system can be put into form (4), then there exists an integer k such that V∗
Xk = X,

and V∗
XUk = XU. In this case, Zk+1 = Z∗ = Z. Thus, from Proposition 2, we can deduce the

following corollary which represents the main result of the paper:

Corollary 1 Consider structured bilinear system (ΣΛ) represented by digraph G(ΣΛ).

(1) (ΣΛ) is generically uniform observable only if, in graph G(ΣΛ), there exists a path from Y to

each state vertex and there exists a v-disjoint subgraph SG which covers all the state vertices.

(2) (ΣΛ) is generically uniform observable if Z∗ = Z, where Z∗ is computed using to Algorithm 1.

Note that the condition (1) of Corollary 1 is necessary because it means also the observability of

the generic observability of the system for u(t) = 0. Furthermore, from the results of [9], condition

(2) is obviously necessary and sufficient in the single output case.

The results of Corollary 1 and Algorithm 1 (used to compute Z∗) show that to achieve the uniform

observability, we can either add sensors or put some inputs to zero by removing some actuators.

The first solution is obviously more suitable. In the one hand it allows to enlarge Z∗ and to achieve

the first condition of Corollary 1, while the second one allows to enlarge Z∗ only. On the second

hand, the second solution is not always acceptable from a control point of view.

5 Example

In this section, we illustrate the results presented above with an example. The latter is intentionally

not very complicated. Nevertheless, it is clear that the algorithm we propose is well suited to large-

scale systems using combinatorial programming techniques.

Example 3 Consider the SBLS represented in the digraph of Figure 3. This system has 14 state

components. The matrix representation of this system is not given because of lack of space.

Nevertheless, it can be easily deduced from the digraph. First, note that necessary sufficient

condition (1) enounced in Corollary 1 is satisfied as it is shown by the v-disjoint subgraph (Figure

4) which covers all the state vertices.

We use now algorithm 1 to determine Z∗:

Step 0: First, we compute V∗
M0 = {y3, y5} , V∗

X0 = {x4, x8} , V∗
XU0 = {x4u1, x4u2} and graph-

ically we have Q0 = {z1, z2, z3, z4, z5, z6, z7, z8}. Because of the presence of x1u1 in ϕ̄({z2})

and the fact that ϕe({y1,y2}) = {x1, x2, x3}, we can not find a subset VY ⊆ Y (Z0 = ∅) which
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Figure 3: Digraph associated to Example 3
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Figure 4: v-disjoint subgraph covering all the state vertices for Example 3
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allows to satisfy equality (Cond2) for Vκ,j = {z1}, {z2}, {z3}, {z1, z2} or {z2, z3}. Neverthe-

less, for V2,2 = {z1, z3} there exists VY = {y1, y2}, which allows to verify condition (Cond2):

θ
(

VY

)

+ κ+ card
(

ϕ̄(V2,2)∩V∗
XU0

)

= 2+2+0 = 4 and card
(

ϕe(VY)∪ ϕ̄(V2,1)
)

+1 = 3+1 = 4.

Similarly, due to the presence of x12u1 in ϕ̄({z4}) and of x13u1 in ϕ̄({z6}) ϕ̄({z7}), there

cannot exist a subset VY ⊆ Y which allows to satisfy equality (Cond2) for any nonempty

subset Vκ,j ⊆ {z4,z5, z6, z7}. Otherwise, for V1,8 = {z8}, there exists VY = {y5}, which al-

lows to verify condition (Cond2): θ
(

VY

)

+ κ + card
(

ϕ̄(V1,8)∩V∗
XU0

)

= 1 + 1 + 0 = 2 and

card
(

ϕe(VY)∪ ϕ̄(V2,1)
)

+ 1 = 1+ 1 = 2. Thus, Z1 =
{

z8, z1,3

}

. As θ(Z1) = 2 > θ(Z0) = 0, we go to

step 1.

Step 1: Simple computations give V∗
M1 = {y3, y5, z8}, V∗

X1 = {x4, x8, x13}, V∗
XU1 =

{x4u1, x4u2, x13u1}, Q1 = ϕe

(

Y∪Z1
)

= {z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z13}.

For the same reasons than in step 0, we cannot find subsets VY ⊆ Y and VZ ⊆ ℘(Z1) which

allow to satisfy equality (Cond2) for Vκ,j = {z1}, {z2}, {z3}, {z1, z2}, {z2, z3}. Nevertheless, as

previously, for V1,8 = {z8} and for V2,2 = {z1, z3}, there exist subsets VY ⊆ Y and VZ ⊆ Z1

which allow to satisfy equality (Cond2) and so z1,3 and z8 belong to Z2. Besides, for

V1,13 = {z13}, there exists VY = ∅ and VZ = {z8} ⊆ ℘(Z1) which allow to verify condition (Cond2):

θ
(

VZ

)

+ κ+ card
(

ϕ̄(V1,13)∩V∗
XU1

)

= 1+1+0 = 2 and card
(

ϕe(VZ)∪ ϕ̄(V1,13)
)

+1 = 1+1 = 2.

Furthermore, as x12u1 ∈ ϕ̄({z4}), x1u1 ∈ ϕ̄({z9}) and x5u1 ∈ ϕ̄({z10}), no subset Vκ,j contain-

ing z4, z9 or z10 can satisfy (Cond1) and (Cond2). Finally, as x13u1 belongs to V∗
XU1 , for

V3,j = {z5,z6, z7} there exist VY = {y4} and VZ = ∅ which allow to verify condition (Cond2):

θ
(

VY

)

+ κ+ card
(

ϕ̄(V3,j)∩V∗
XU1

)

= 1+ 3+ 2 = 6 and card
(

ϕe(VY)∪ ϕ̄(V3,j)
)

+ 1 = 5+ 1 = 6. So,

after step 1, we have Z2 =
{

z8, z13, z1,3, z5,6,7

}

. As θ(Z2) = 4 > θ(Z1) = 1, we go to step 2.

Step 2: We have first compute V∗
M2 = {y3, y5, z8, z13}, V∗

X2 = {x4, x7, x8, x13}, V∗
XU2 =

{x4u1, x4u2, x13u1}. From the graph, we obtain Q2 = {z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z12, z13}

Using the same arguments than for step 1, we have that z8 and z13 belongs to Z3. As noth-

ing changes for z1, z2, z3, z4, z9, z10, only z1,3 belongs to Z3. Otherwise, for V1,7 = {z7},

there exist VZ = {z8, z13} ⊆ ℘(Z2) and VY = ∅ which allow to verify condition (Cond2):

θ
(

VZ

)

+ κ+ card
(

ϕ̄(V2,j)∩V∗
XU2

)

= 2+1+1 = 4 and card
(

ϕe(VZ)∪ ϕ̄(V1,13)
)

+1 = 3+1 = 3.

Furthermore, for V2,j = {z5, z6}, there exist VY = {y4} ⊆ Y and a structurally minimal subset

VZ = {z13, z8} ⊆ ℘(Z2) such that: θ
(

VY ∪ VZ

)

+ κ + card
(

ϕ̄(V1,13)∩V∗
XU2

)

= 3 + 2 + 2 = 7

and card
(

ϕe(VY∪VZ)∪ ϕ̄(V1,13)
)

+ 1 = 6 + 1 = 7. The previous settings lead to

Z3 =
{

z7, z8, z13, z1,3, z5,6

}

which is structurally minimal because of condition (Cond1). As

θ(Z3) = 5 > θ(Z2) = 4, we go to step 3.
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Step 3: First, we compute V∗
M3 =

{

y3, y4, y5, z7, z8, z13, z5,6

}

, V∗
X3 = {x4, x5, x6, x7, x8, x12, x13} ,

and V∗
XU3 = {x4u1, x4u2, x5u1, x5u2, x12u1, x13u1}. Graphically, we have Q3 =

{z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z12, z13}.

As x12u1 ∈ V∗
XU3 , we have that z4 belongs to Z4: for V1,4 = {z4} and for VY = {y4}, we have

θ
(

VY

)

+ κ+ card
(

ϕ̄(V1,4)∩V∗
XU3

)

= 1+1+1 = 3 and card
(

ϕe(VY)∪ ϕ̄(V1,4)
)

+1 = 2+1 = 3.

Moreover, the presence of z7 in Z3 implies that for V1,5 = {z5} there exist VY = {y4} ⊆ Y

and VZ = {z7, z13, z8} ⊆ ℘(Z3) such that condition (Cond2) is satisfied: θ
(

VY ∪ VZ

)

+ κ +

card
(

ϕ̄(V1,5)∩V∗
XU3

)

= 4+1+0 = 5 and card
(

ϕe(VY∪VZ)∪ ϕ̄(V1,5)
)

+1 = 4+1 = 5.

Finally, due also to the presence of z7 in Z3 we have that for V1,6 = {z6} and

for VZ = {z7, z8, z13} ⊆ ℘(Z3), θ
(

VZ

)

+ κ + card
(

ϕ̄(V1,6)∩V∗
XU3

)

= 3 + 1 + 2 = 6 and

card
(

ϕe(VZ)∪ ϕ̄(V1,6)
)

+1 = 5+1 = 6.

Similarly, since x5u1 ∈ V∗
XU3 we have that z12 belongs to Z4: for V1,12 = {z12} and for

VZ = {z8, z5,6, z13} ⊆ ℘(Z3), we have θ
(

VZ

)

+ κ + card
(

ϕ̄(V1,12)∩V∗
XU3

)

= 3 + 1 + 1 = 5 and

card
(

ϕe(VZ)∪ ϕ̄(V1,4)
)

+1 = 4+1 = 5. Therefore, we obtain Z4 =
{

z4, z5, z6, z7, z8, z12, z13, z1,3

}

.

As θ(Z4) = 7 > θ(Z3) = 5, we go to step 4.

Step 4: Firstly, we compute V∗
M4 = {y3, y4, y5, z5, z6, z7, z8}, V∗

X4 = {x4, x5, x6, x7, x8, x12, x13},

V∗
XU4 = {x4u1, x4u2, x5u1, x5u2, x12u1, x13u1}. We obtain graphically Q4 =

{z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13}.

z4 ∈ Z4 implies that for both V2,j = {z10, z11} and V4,j′ = {z1, z2, z9, z10}, there exist VY ⊆ Y

and a structurally minimal vertex subset VZ ⊆ ℘(Zi) such that (Cond2) is satisfied. Therefore,

Z5 =
{

z4, z5, z6, z7, z8, z12, z13, z1,3, z10,11, z1,2,9,10

}

. As θ(Z5) = 9 > θ(Z4) = 7, we go to step 5.

Step 5: As previously, V∗
M5 = {y3, y4, y5, z5, z6, z7, z8}, V∗

X5 = {x4, x5, x6, x7, x8, x12, x13},

V∗
XU5 = {x4u1, x4u2, x5u1, x5u2, x12u1, x13u1} and Q5 = Z. Since z1,10,11 ∈ Z5 and z1,2,9,10 ∈ Z5,

we can find VY ⊆ Y and a structurally minimal vertex subset VZ ⊆ ℘(Z5) such that (Cond2)

is satisfied for V2,j = {z1, z14}, {z1, z3}, {z3, z11} and {z10, z11}. Obviously it is also the case for

any 2-subset of {z1, z3, z10, z11, z14}, but we must choose only four of these 2-subsets to satisfy

condition (Cond1) which ensures the structural minimality of Z6. Moreover, we can also find

VY ⊆ Y and a structurally minimal vertex subset VZ ⊆ ℘(Zi) such that (Cond2) is satisfied for

V3,j = {z1, z2, z9}. Consequently, Z6 =
{

z4, z5, z6, z7, z8, z12, z13, z1,3, z1,14, z3,11, z10,11, z1,2,9

}

. As

θ(Z6) = 10 > θ(Z5) = 9, we go to step 6.

Step 6: We compute V∗
M6 =

{

y1, y2, y3, y4, y5, z4, z5, z6, z7, z8, z1,14, z1,3, z3,11, z10,11

}

and as

V∗
X6 = X, we can easily deduce that Z7 = Z = Z∗. According to Condition (2) of Corollary 1, we

can conclude to the generic uniform observability of the system.
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6 Conclusion

In this paper, we propose an analysis tool to study the generic uniform observability of structured

bilinear systems. Using a graphic representation dedicated to this class of nonlinear systems two

conditions are provided and expressed in graphic terms. The first one is a necessary condition and

can be checked directly from the digraph associated to the system. The second one is sufficient

and necessitates the use of an iterative algorithm providing the computation of a particular vertex

subset. The proposed conditions, which need few information about the system, are very easy to

check by means of well-known combinatorial techniques and simply by hand for small systems.

That makes our approach particularly suited for large-scale and sparse systems as it is free from

numerical difficulties. Indeed, the proposed algorithm and conditions can be easily implemented

because they require simple computations on integers and are based on finding edges and sub-

graphs in a digraph.

Starting from the presented results, we can study, as in [5] for linear systems, the optimisation of

the sensor location to achieve the generic uniform observability. Finally, sensor defects and also

the addition of new actuators to the system, for fault tolerant control strategy for example, can lead

to the lost of the generic uniform observability property. One of the perspectives of the presented

work can be also the study of the actuator placement and sensor redundancy in order to preserve

the generic uniform observability property.
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