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Several feedforward decoupling and estimation problems
are treated here in a unified setting, and their exact
geomelric solution Is extended to the general case where
the direct feedthrough matrices of all the systems involved
are possibly non-zero. To this end, the concepts of self-
boundedness and self-hiddenness are generalised and
investigated within the general context of non-strictly
proper systems, Then, for each problem considered,
solvability conditions are provided as well as the explicit
structure of the solving compensator or observer.
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1. Introduction

Disturbance decoupling and unknown-input estima-
tion problems have been extensively investigated in the
last four decades [1,3,4,9,18,19,23,28,30]; see also the
important textbooks {6,25,29]. The basic tool employed
for the solution of these two problems is the so-called
geometric approach to control theory. In this frame-
work, the soivability conditions for these problems are
usually expressed in terms of subspace inclusions
involving output-nulling and input-containing sub-
spaces, which can be therefore considered as the key
tools of the geometric approach.

E-mail; Int@ee.ummelb.edu.aun
*This work was partially supported by the Australian Research
Council (DP3664739).

In this paper, our attention is focused on two well-
known decoupling and estimation problems, namely
the measurable signal decoupling problem with stability
(MSDPs) via dynamic feedforward compensation —
sometimes referred to as the full information control
problem - and the unknown-input observation pro-
blem with stability (UIOs), which is the dual of the
MSDPs, [4]. Much research effort has been spent in
extending the geometric tools and the solvability
conditions of the basic decoupling problems to non-
strictly proper systems [1,12,24,25]. This extension is
important since the models derived from many phy-
sical systems often include algebraic relations between
inputs and outputs (the so-called feedthrough terms).
Moreover, when geometric techniques are employed
in the solution of linear-quadratic optimisation pro-
blems, the possibility of taking into account direct
feedthrough terms enables regular and singular pro-
blems to be treated in a unified framework.

In this paper, we are concerned with the issue
of generalising the solvability conditions for MSDPs
and the UlIOs to the case where all the feedthrough
matrices of the systems involved are possibly non-
zero. Moreover, the explicit structure of the decou-
pling filter for the MSDPs and of the observer for the
UIOs are given. Since in the strictly proper case the
solvability conditions for these problems can be con-
veniently expressed in terms of sell-bounded and self-
hidden subspaces, here an extension of these concepts
for non-strictly proper systems is proposed (seli-
bounded subspaces have been recently defined and
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studied for non-strictly proper systems in [21]; self-
hidden subspaces are generalised to systems with
direct feedthrough matrices here for the first time). As
for the strictly proper case, the use of self-bounded
and self-hidden subspaces in the expression of the
solvability conditions has several advantages over the
use of stabilisability and detectability subspaces. First,
by using seif-bounded and self-hidden subspaces the
computation of eigenspaces, which is often critical for
high order systems, is avoided, and the main sub-
spaces used for the determination of the explicit
structure of the controller/observer can be found by
resorting to the standard routines of the geometric
approach. Second, self-bounded and self-hidden sub-
spaces lead to compensators and observers of smaller
dimension than those obtained through stabilisability
and detectability subspaces. Third, the solution pro-
posed here based on self-bounded and seif-hidden
subspaces leads to decoupling filters and unknown-
input observers with minimal unassignable dynamics,
so that the maximum number of poles of the overall
system can be placed arbitrarily, [14]. The solution
based on self-bounded and self-hidden subspaces is
therefore the best in terms of pole assignment.
Numerous problems that may be useful in practice
fall in the category of full information decoupling,
since in many cases references or disturbances may
be accessible for measurement. In these cases, a better
performance is achieved by exploiting the measurement
of these external inputs by means of feedforward
actions. The interest in the MSDPs is also motivated by
the fact that such problem is the prototype of a large
class of other control problems, such as the model
matching problem [12,13,19] and the disturbance
decoupling with preview [2,8,27], see Remarks 5.1 and
5.2. On the problem of estimation i presence of
unknown inputs there has been a long stream of
research, that originated in the late 60s [4] and flourished
in the 80s [10,11]. However, this problem still represents
a lively research topic, mostly due to its relevance in the
context of fault detection, see for example, {20] and
the references therein. The solution of this problem will
be derived from that of MSDPs by duality in Section 6.
Notation. Throughout this paper, the symbol R™™
denotes the space of # x m1 real matrices. The image and
the null-space of matrix A are denoted by imd4 and
kerd, while 47 and A’ denote the transpose and the
Moore—Penrose pseudo-inverse of A4, respectively, The
symbol [, stands for the # x n identity matrix, while 0,
denotes the origin of the vectorspace R". If 4 : X — ¥
and 7 C A, the restriction of the map A to 7 is denoted
by A|7. If X = Y and J is A-invariant, the eigenvalues
of A restricted to .7 are denoted by o(A|7). If 7, and
J1 are A-invariant subspaces and Jy C J,, the
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denoted by A %ll Given the matrix 4 € R™" and the
subspace B of the linear space R”, the symbol < 4, B >
will stand for the smallest 4-invariant subspace of R”
containing 3. In what follows, whether the underlying
system evolves 1n continuous or discrete time is irrele-
vant and, accordingly, the time index set of any stgnal is
dencted by T, on the understanding that this represents
either R" in the continuous time or N in the discrete
time. The symbol C, denotes either the open left-hall
complex plane €™ in the continuous time or the open
unit disc C° in the discrete time.

mapping induTed by A on the quotient space 71/ 18

2. Statement of the Problems

The two problems that are considered in this paper are,
as aforementioned, the MSDPs with dynamic feed-
forward compensation and the UIOs; in both cases, all
the feedthrough matrices are assumed to be possibly
non-zero. We begin by presenting the formulation of
the MSDPs: consider a linear time-invariant (LTT)
system described by

px(t) = Ax(t) + Byult) + Baw(t),

.y(t) = Cx(f) -+ D]u(t) +D2W([), (1)

where the operator p denotes either the time derivative in
the continuous time, thatis, px{z) = x(1), or the unit time
shift in the discrete time, that is, px{#) = x(¢ + 1). Also, for
allt € T, x(¢) € X = R"is thestate, u(r) € 4 = R™ and
w(t) € W= R"™ are inputs and y{t) € Y =R is the
output, while 4, B|, By, C, D and D, are real constant
matrices of suitable dimensions. The signal u is the
control input, and is used to influence the dynamical
behaviour of the plant. The exogenous input w can be
essentially considered as a measurable process noise or a
driving disturbance belonging to some function space W
{e.g., in the continuous case the space W may be taken
equal to the class of piecewise continuous functions),
to be decoupled from the output y. We identify the
system characterised by the quadruple (4,[B, 8],
C.[Dy  D;l) with the symbol A.

Matrix 4 € R™" is assumed to be stable', that is,
a{d) < C,.

The MSDPs herein considered is stated as the
problem of finding a feedforward controller X con-
nected as in Fig. 1, having full information on the

'"Note that this condition is necessary as long as a pure fecdforward
solution is sought. However, it can be easily relaxed to the stabih-
sability of the pair (4,8}, In fact, in this case, a preliminary stabi-
lising state-feedback can be performed, and what follows will be
applied to the system thus obtained. In the case where the state of
the system is not accessible for measurement, if (4,58} is stabilisable
and {A,C)} is detectable, the systerm can be pre-stabilised by the jomt
action of an asymptotic observer and a static feedback.
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Fig. 1. Block diagram of the full information control problem.

exogenous mput w, such that the output y does not
depend on the disturbance w. This problem is stated in
more precise terms as follows.

Problem 2.1: Consider Fig. 1. Find an LTI compensator
Ye=(A.B.C.D.) governed by

Pfc(f) = Acfc(f) + Bcw([) (2)
u(t) = Cebo{r) + Dew(r)

where, for all t € T, £.(2) € X, = R™ is the srate of ¥,
such that

(1) the output function is not affected by the dis-
turbance w. That is, such that the transfer function
matrix

Tyw(()=1C DlCc}(g[g' 1(:]*[1; Bzfc

is zero;
(i) the overall system

$_ (X,E,aﬁ)é ([A B]Cc]’{BZ +BIDCJ’[C

0 A B.

is  asymptotically  stable,  that  is, 0(2) =
A BC, .
1o 4 C Cg. or, equivalently, such that
i

0(A:) C Cg since it has been assumed that o(4) C C,.

The complex variable ¢ in Problem 2.1 represents
either the Laplace variable s in the continuous tirme
of the z variable in the discrete time. Notice that (i)
is equivalent to the requirement of finding a
compensator (2) such that the output y of the overall

_l[Bz+Bch

system does not depend on the disturbance w. Reg-
uirement (i} guarantees that the compensator is such
that for all initial conditions x(0} € X and £{0) € X,
the output y(r) converges to zero as ¢ goes to infinity.

The second problem dealt with in this paper is the
unknown-input observation, that will be solved by
duality arguments. Consider an LTI system described by

ox(1) = Ax(r) + Bu(t),
z(1) = C\x{s) + Dyulr), (4)
y(7} = Cox{(r) + Daulr),

where, for all t € T, x(¢) € X' = R" is the state, u{s) €
i = R™ isaninput, p(r) € V = R is the measurement
output and z(t) € Z = R is the output to estimate,
while 4, B, C,, C5, D| and D, are real constant matrices
of suitable dimensions. The function v represents a
generic input which is not available for measurement: in
many applications, the signal « arises as a driving dis-
turbance. Matrix 4 € R"*" 15 assumed to be stable, that
is, #(4) C C;. We identify the system characterised by
the quadruple (4,8,(C] CJ]",[D] DJ]") with the
symbol 1. The unknown-input observation problem
with stability consists of finding a stable observer X, for

B } +{D;+ D\ D) {3}

D\C. ], D; +Dch>

the asymptotic estimation of the output z which exploits
the measurement represented by y. It is therefore
required that as ¢ goes to infinity, the estimation error
€ = z — Z converges to zero asymptotically.

Problem 2.2: Consider Fig. 2. Find an LTI urknown-
input observer 3, = (A,,B,,Cy,D,) governed by

pEolt) = Aoko(1) + Boy(1) (5)
E(I) — Co‘fo([) + Doy(t)
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Fig. 2. Block diagram of the unknown input observation scheme.

where, for all t € T, £,(1) € X, = R™ is the state of the
observer, such that

(1) the transfer function matrix
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theory which will be used in the sequel are recalled (for a
more detailed discussion on the topics herein introduced
we refer to [6,25,29]). In this section, we refer to the
quadruple ¥ = (A4, B, C, D), where A ¢ R"*", B € R™*™,
C € BP*" D € RP*™ In order to simplify notation, let
iy [g] inl(4 B BE [g] and C2C D],

An output-nulling subspace Vy, of 3 is defined as a sub-
space of R” satisfying the inclusion

AyVy C Ve &0, + imB. 7N

The set V(X) of output-nulling subspaces of T is
closed under subspace addition. Thus, the subspace

rw@=1c-ocr -Gl(oh ]| 5, jo])'[[Bﬁ)Q]HDI—DQDz) (©)

s zero;
(i) the overall system

o azanafl 4 01[ B
2=(ABCD)= ([Bocz Ac]’[BoDz

stable,  that s, 0(2) =
a([ A 0 }) C G, or, equivalently, such that

is  asymptotically

B, Cy A,
o(As) C Cg since 0(4) C C,.

Notice that according to the formulation of Problem
2.2 the system 2, is indeed an unknown-input observer.
In fact, if the transfer function matrix (6) from the input
u to the output e is zero and the overall system is stable,
then for all initial conditions x(0) € X and £,(0) € A
and for all admissible inputs u, the error e(f) converges
10 zero as ¢ goes to infinity. Since e{r) = z{¢) — () for
all r € T, this is equivalent to lim,—..,(2(z)) = z(1), that
is, the output of the observer ¥, converges to the
output z(7) to be estimated asymptotically.

It is easily seen that Problems 2.1 and 2.2 are dual
to cach other. To see this, it is sufficient to notice that
the transpose of T, ,.(¢) defined in (3) equals 7, (() in
(6) up to the replacement of (47,8, ,B/,C7.D],D])
with (4,C,C5,B,D,D5) and of {4/),B],CT.DT) with
(A6,Co,Bo Do)

3. Geometric Background

For the readers’ convenience, some fundamental defi-
nitions and results of the classic geometric control

:|a[Cl _DDC2 _Co]le ‘D0D2)

V3. 2 Y vew V € V(X) is the largest output-nulling
subspace of ?.. The subspace V5. represents the set of
all imtial states of X for which an input function exists
such that the corresponding output function is iden-
tically zero. Clearly, when D is zero, V5, reduces to the
maximal (A.B)-controlled invariant subspace con-
tained in the null-space of matrix C, [6,30}. In the
following lemma, the most important properties of
output-nulling subspaces are recalled.

Lemma 3.1: The following results hoid:

(i) The subspace Vy, is output-nulling for . if and only
if a matrix F e R™" exists such that

A+ BF
C+ DF

]VE C Vs b Op; (8}

(il) The sequence of subspaces (Vi.),_y described by the
E/ieN

recurrence
Ve = R ]
Ve = AN(VE'20,)+imB), i=N\0,
(9)
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is monotonically non-increasing. An integer k<n—1
exists such that V&' = V&. For such integer k the
identity Vi = VA& holds.

Any matrix Fsatisfying (8) is usually referred to as a
JSriend of the output-nulling subspace Vy.. We denote
by Fx(Vg) the set of friends of the output-nulling
subspace Vx. As a result of Lemma 3.1, the following
corollary holds.

Corollary 3.1: The r-dimensional subspace Vx is output-
mulling if and only if there exist Fe R™”" and X ¢ R™"
such that

)= Lo

where V eR™ is a basis of Vg and olX) =
o(4 + BFfVy).

Now we define the inpur-containing subspace S¢ of
¥ as a subspace of R” satisfying the inclusion

Ag{Ss@UNkerC) C Sx. (11)

The set §{Z) of input-containing subspaces of ¥ 1s
closed under subspace intersection, As such, the sub-
space Sg 2 MNses S € S(E) ts the smallest input-
containing subspace of ¥.

Lemma 3.2: The following results hold:

(i) The subspace S is input-conraining for X if and
only if a matrix G € R™? exists such that

[4+GC B+GD)(Sz®R™)C Sy (12)

(i) The sequence of subspaces (Sg).y, described by the
recurrence

Sy = Ap((S5' eU)nkerC), i=N\0,

(13)

is monotonically non-decreasing. An integer k<n—1
exists such that S&*' = SX. For such integer k the
identity S} = S% holds.

Any matrix G satisfying (12) is referred to as a friend
of the input-containing subspace Sy. We denote by
Gy (Sx) the set of friends of the output-nulling sub-
space Sy. The dual of Corollary 3.1 is as follows.

Corollary 3.2: The g-dimensional subspace Sy Is input-
containing if and only if there exist G € R™? and
A € Ri=DxU=9) o oh that

O[4+ GC B+ GD|=A[Q 0] (14)

where the full row-rank marrix Q € RV js such
that ker Q = Sy and o{A) = (T(A + chg—;).

As in the strictly proper case, any input-containing
subspace Sy is associatcd with the existence of an
observer, whose input is p, that maintains the infor-
mation on the canonical projection of the state x on
X /Sy (or, in other words, it maintains information on
the state of ¥ modulo Sx), see [6,25,26]. More pre-
cisely, given the input-containing subspace Sy, an
observer ruled by

ph{t) = Kh(t) + Ly(1),
w(t) = h(t),
exists such that if #(0) = x{0)/Sx, then #(t) = x(1)/Sx
for all r € T. To sce this, given two matrices G and A
such that {14) holds, consider the observer (13) with

K=A and L.= — QG, and definc the error variable
e=Qx —h. It is easily found that

pelt) = Qpx(0) — ph(t) = QAx(1) + QBu(1)
— AR(5) + QGCx({1} + QG Du(t)

x{r)
u([)] — Ah(r)

} — Ah(1) = Ae(1)

(15)

= Q4+ GC B+GD][

~[0 OJHK

so that, if A(0) = x{0)/Sx. that is, il (0) =0, it follows
that e(f) =0 forall s € T, implying that A(t) = x(1) /S
for ail r € T. The converse is true as well: suppose the
observer {15) maintains information modulo &, where

& is a subspace of X. Let [zo} e SaldnkerC. Let
i)

x(0)=x, and u(0)=uwu, Since xg € &, by choosing
h(0) = xp/S =0 we get Gx(t)=h(t) for all + € T,
which yields pQx(#) = ph(?) for all r € T, that can be
explicitly written as

Kh() + L(Cx(1) + Du(t)) = QAx(t) + QBu(r)
In particular, the former holds at r =0, leading to
0l A B][f’] =0, since #(0)=0 and by definition
0

X

Cxy+ Dug=0. It follows that [4 B] [ug] € 8. The

subspace & is therefore input-containing, QED. The
observer (15) therefore maintains information of the
state modulo Sy. The third fundamental subspace
that we need to define is the output-nulling rcach-
ability subspace on the output-nulling subspace Vy,
denoted by Ry, ket FER™" be a friend of the
output-nulling subspace Vy. The output-nulling
reachability subspace Ry, on Vg 1s the smallest
(A + BF)-invariant subspace of R containing the



494

subspace Vy N Bker D, where F & Fs(Vy). It can
be shown that Ry, is independent of the particular
friend F in §x(Vx). We denote by R} the output-
nulling reachability subspace on V5. The relation
Ry = V3 NS5 holds, [25, Theorem 8.22],

Now, consider an output-nulling subspace Vy, of 2
and define by Ry the reachable subspace on V. For ¥
in Fy(Vy), the eigenvalues of (4 + BF) restricted to
Vs, that is, o{4 + BF|Vs), can be split into two sets:
the eigenvalues of (A + BF|Ry) are all freely assign-
able by a suitable choice of the friend Fin §x(Vy). The

eigenvalues in FE"(VE)QJ(A+BF1%) are fixed,

that is, they do not depend on the choice of F, {1]; if
these eigenvalues are all in C,, the output-nulling Vg 1s
said to be internally stabilisable. Similarly, by denoting
with T2 the smallest A-invariant subspace containing

the image of B, the eigenvalues in G(A + BF|§E) are
VP+']§1)
Vg

split into two sets: the eigenvalues of (A + BF]

are all freely assignable by a suitable F e F5(Vy),
whereas the eigenvalues in

F%‘(Vz)éU(A+BF’v_:f_RO) are fixed for all Fe

xz(Vz). If the latter are all in C,, the output-nuiling
Vy, is said to be externally stabilisable. Hence, the set

T(Vg) £ Tt (Vg) w T2 (Vr) does not depend on the
choice of F € Fz(Vs). Note also that the elements of
rigl(vg) are the invariant zeros of X. In light of these
considerations, it turns out that if the r-dimensional
output nulling Vy is internally stabilisable, there
exist Fe R™ and X € R™" such that (10) holds,
where VER™ is a basis of Vy and o(X) =
a(d + BFlVy) C C,.

Dually, given the input-containing subspace Sy, and
a friend G € Gx(Sy), we define the subspace Qs, as
the largest (4 4+ GC)-invariant subspace contained in
Ss + CHimD. By duality, it is easy to see that the
largest {4+ GC)invariant subspace contained in
8% + C~'imD, here denoted by Q% is such that Q@ =
V5. + 8%. For G € Gg(Sx) and by denoting with Qg
the largest A-invariant contained in the null-space of
C, we find {4+ GC|Sg) =c{d+ GOSN Q)

&JU(A + GC‘S;?{QO),where S0Sg) 2 oA + GC|Sn

Qy) are fixed and O’(A + Gng;%ﬁCjo) are free for all

G e Se(8y);, if =ZPY(Ssg) C Ty, Sy is said to be

XY
Sg)

internally stabilisable. Similarly, cr(A+GC

o(4+GC|E) wo(4+GCL), where 2(Sy) =
cr(A +GC %f) are fixed while O’(A + GC}é—‘;) are free
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for all G € &x(Sy); if ZP(Sx) C C,, Sy: is said to be
externally stabilisable. As a result of this, if the ¢-
dimensional input-containing subspace Sy is exter-
nally stabilisable, there exist G cR"™ and Ac
RU-9%=9) cuch that (14) holds and o{A) = oA+
GC 5——’1;) C C,. With this choice of A, the associated

observer (15) is therefore stable, and equation
pelty = Ae(r) implies that now for any input function u
and for any pair of initial conditions x(0) and A(0), we
have lim, .., A(1) = x{£)/Sc. As such, not only does
the observer maintain information of x(¢)/Sy, but it
can also recover information modulo Sg. This
incomplete estimate may be fully satisfactory if, for
instance, it is not necessary to know the whole state,
but only a given linear function Hx{¢) of it: in this case,
the estimate of this function is complete if and only if
ker = 8y € ker AH. In fact, in this case a matrix K
exists such that H = KQ, so that the knowledge of
Ox(1) provides full knowledge of Hx(r).

If we design the observer (15} by using Qy, the
estimation error £ converges to zero with arbitrary

dynamic, since o(A) = U(A +GC|S—";) are all freely
assignable with a suitable choice of G € Gg(Qx).

4. Self-Bounded and Self-Hidden Subspaces

Now, the concept of self-bounded controlled mvar-
1ance defined in [5] is extended to systems with direct
feedthrough.

Definition 4.1: The output-nulling subspace Vs af %2 is
self-bounded if Vi, N Bker D C Vg.

Clearly, by definition both V5, and Rf are self-
bounded, as they both contain Vi, N Bker D. Unlike
V(Z), the set

B(2) 2 {Vg € V(5)|Vs 2 V3 1 Bker D}

of self-bounded output-nulling subspaces of £ admits
both a maximal and a minimal element. In fact, ®(¥)
is closed under subspace addition and intersection as
shown in [21]. Now, given V|, V; € ®(I), it is easily
seen that their sum V, + V), is the smallest element of
$(¥) containing both Vy and V,, and V, NV, is the
largest element of ®(X) contained in both ¥, and V,.
Hence, {®{%), + ,1; C) is a lattice. As such, it admits a
maximum element, which is V, and a minimum ele-
ment, which is Ry. By duality, the concept of self-
hidden conditioned invariance defined in [35] is exten-
ded to systems with direct feedthrough.
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Definition 4.2: The input-containing subspace Sy of
¥ is self-hidden if St + C~'imD 2 Sy.

Clearly, by definition both Qf and 5% are self-
hidden. The set

V() £{Sy; € S(B)ISE + € 'imD D Sy}

of self-hidden input-containing subspaces of X is
closed under subspace addition and intersection.
Therefore, it admits a largest and a smallest elements,
which are QF and S5, respectively.

Lemma 4.1. Ler Vy, V5 € ®(S). Then, Vi C Vg
implies Fs(Vg) C §n(Ve). Dually. given Sy, Ss €
U(X), S5 C Sy implies G5 (Sy) € 65(S8s).

A proof of the first part of this lemma — which is a
generalisation of Properties 4.1.7 and 4.1.9 in [6] — can
be found in [21]. The second part can be proved by
duality: in fact, it is not difficult to see that by defining
the dual of ¥ as the system described by the quadruple
' =(4",C7, BT, PT), then Vg € V(T} if and only if
Vg € S(ET) and V5 € U(T) if and only if Vi<
¥(XT). As a consequence of Lemma 4.1, given the
friend F of Vi, for any self-bounded subspace
Vs, € {3} the map F is a friend of V=. In the dual
setting, given the friend & of 8%, for any self-hidden
subspace Sg € ©(X) the map & is a friend of Sx.

5. Solution of MSDPS with Feedforward
Compensation

Before presenting the solution of Problem 2.2, some
useful results on self-bounded output-nulling sub-
spaces are introduced, which are the extension of the
Properties 4.2.1 and 4.2.2 in [6, pp. 220-221] to non-

5 ] and

purely dynamical systems. Let B 2 [ D
1

B2 [gi] and recall that we have defined A as the

quadruple (4,[B1 B:|,C,[D; D;]). Moreover, let
Y be described by (A, B, C, D).

Lemma 5.1: Let imB; C (V5 @& 0,) +imB,. The fol-
lowing facts hold:

(1) Vg = Vj;
(i) ®(A) C #(Z);
(i) For all Va € &(A)
(VA [S?] Op) + lmél ;
(iv) If an internally stabilisable output-nuliing subspace
Ve € V()  exists  such  thar  imB; C
(Ve @ 0,) +imbB, the subspace R =

there  holds imB; C

then

min ®(A) is internally stabilisable.

The statement /iv} is the extension of a well-known
property that was first presented as a conjecture by
Basile and Marro in [5), and then proved by
Schumacher in [22] in the case when both D and G are
zero. The proof of these properties for non-strictly
proper systems can be found in [21]. Notice that by
virtue of (i), in the case where imB; C (V5 @ 0,)+
imB, holds, the more stringent inclusion imB, C
(R4 ©0,) +imB, holds, as well, since R} is an ele-
ment of $(A). As a result, if imB C (V5 & 0,)+
imB, holds, two matrices of suitable dimensions II,
and II; exist such that

BZZ |:§:|H|+Bll—12 (]6)

where R 15 a basis matrix of R). Equation (16) is
linear, so that the set of all matrices I, and II, satis-
fying (16) are parameterised by the expression

HE IR

where K is a basis matrix of the null-space of the

(7

matrix {g gl] and Z is an arbitrary matrix of
l

suitable dimensions. Hence, the pair of matrices (II;,
11,) computed by means of (17) is not unique in gen-
eral, unless Ry N By ker D) = 0,.

The following theorem provides the necessary
and sufficient solvability conditions for Problem 2.1,
as well as the exphcit structure of the decoupling
filter ..

Theorem 5.1: Problem 2.1 admits solutions if and only if
Sfollowing two conditions hold:

(i) im B, € Vi 0, +im B;
(i) Ry is internally stabilisable.

In the case where dim(R}) > 0, let R be a basis
of Ry- Let also FeFp(R,) and X be such that
a{A+ BF) CC, and

[A+B|I~JR: [R]X,

C+ DF 0 (18)

so that o(X) C C,. Let (1, T15) be such that (16)
holds. A compensaior ¥, solving Problem 2.1 is des-
cribed by the quadruple

(ACaB(hCCsDC} - (X,H],FR, - HZ) (19)

If R}, = 0,, the decoupling filter reduces to static unit
D.= —1I.
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Proof: We first prove sufficiency of conditions (i) (i)
by showing that when dim(R%) > 0 the compen-
sator given by (19) indeed solves Problem 2.1. First,
notice that by (i) the subspace R} is internally stabi-
lisable, and, since A4 is assumed to be stable, then the
pair (4,B,) is stabilisable, so that R7, is externaily sta-
bilisable. Hence, a matrix F € §n(Rj) such that
o(A + B F) C C, indeed exists. The overall system b
from the input w to the output p is described by the

quadruple  (4.B,C,D), where 4= [g B];R}’
B [BZ‘IfIHZ ,C=[C DFR),D=D,—-DIL.
i

We need to show that the transfer function GE(C) =

6((;’1,,”: — ;f)—'E + D is zero. To this end, it suffices to
show that D = 0 and that the reachable subspace from
the origin of 5 is contained in the null-space of C, [30].
From (16), we find D, = D II,, so that D is zero. Now,

we show that C4%B = 0 for all k > 0; by using (16) and
(18), we find that

CA*B=[C DFR)

A% ST g FRYk ]

X*

By — BTl
i, {20)

= CA*(RII, + BIL,) - CA*B\I,
k=1 ‘ (21)

+CY " A'BFRYTUL - CRYM
=0
k-1

= CA*RIN + O (4'RY*! — 4" RY*1I0,

i=0
— CRX*1I,
(22)

which is zero for all k>0 since S5 ) (A4/RX*1—
AFIRY = RYY — 4* R0 Tt follows  that
Cim|B 4B A*F ...4~'B| =0, so that G~(¢)
is zero. In the case where R}, = 0, by (16) we ﬁndzthat
By = B1la. Using the control law w(z)= — l,n(1),
we get

I:p,\‘({)} _ [AX([) +(By - B[HE)W(I)
y{f) CX(I)+(Dz ‘D]Hz)w(!)

L. Nrogramarzidis

whose associated transfer function matrix is clearly
zero. The system matrix of the closed-loop system is
strictly stable since o(X) C C,.

Now we prove necessity of conditions (7)—(#). Let
¥, be a solution to Problem 2.2. Since G{(} is zero for
all ¢ € C, it follows that D, + D,D_=0. Now, let K be
the reachable subspace from the origin of the overall
system X, that is,

A A BC, B+ B D,
H‘<[O A, ]{ B, }>. (23)

Since % is stable, that 1s, a(;f) < C,, it follows that
G‘(Z‘H) C C, and U(Zﬁ%’fﬂ) C C,, that is, H is an

internally and externally stable A-invariant subspace.

Since it 1s assumed that the transfer function G(¢) is
zero, it follows that % C ker[C D), (C.]. Now, con-
sider a basis matrix of H partitioned as // = 1m {gl }

2

where the columns of A, span a subspace in X and
those of H, span a subspace in X.. We recall that the
projection B{H) of H on the state space X of the plant
¥ 1s defined as

m(H)%{xexuze}q: [;‘] eH}.

It is easy to check that im#&, = "B{H). From the A-
mvariance of H and from the inclusion
imB C M C ker C, two matrices L and ¥ exist such
that the following identities hold:

IR -
{g;]yh [BZ +B?]Dc]v (25)
(C D,CL.]E;} —0. (26)

Moreover, o(L) = o{A|H) C C,. From (25), it
follows that P(H) 2 im(B; + B D,). Combining the
‘ . . . . BQ + B;D[
latter with D> 4+ DD, = 0 yields 1m[D2 N DIDJ C

PB{H) & 0, which in turn implies

im[g‘;] C (P(H) ®0,) +im{g' } (27)

I

S
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Now we show that P(H) € V5. To this end, we
prove that B(#) is an internally stabilisable output-
nulling subspace of £. Combining the first row of (24)

. . A . ff[ _ Bl .
with (26) yields [CJ H = [ 0 }L [DlJCCHz, S0
that, since imH; = P(H), we get

[ﬂmWVWWM@%Mm%g}

Hence, PB(H) € V(E), so that P(H) < V;. Fur-
thermore, since as already observed o(L) C C,, T(H)
Is an internally stabilisable output-nulling subspace
for ¥. By Lemma 5.1, {iv), it follows that T} is
internally stabilisable, as well.

By using the decoupling filter (19) described in
Theorem 5.1, the set of eigenvalues of the overall
system Y is o(d)Wo{X), where o(X)=a{4+
BF|IRY) C C,, for a suitable F¢ §g(R}%), and the
order of the compensator equals the dimension of the
R%, that is, the smallest element of ®(A}). The
exploitation of self-bounded subspaces in stating the
solvability conditions and for the derivation of the
explicit structure of the compensator has several
advantages over the use of the stabilisability subspace
Ve often used in the literature, [24,30]. First, since
V; 2 R, the dimension of the compensator devised
here is smaller than that following from the use of V;.
Second, from a computational point of view checking
the conditions (i/—(ii) in Theorem 5.1 15 much easier
than checking the corresponding condition imB; C
(V; 20,) + im B involving Vi In fact, while R, can
be computed as the intersection V3, NSy = Vi NS4,
finding a base for V; requires eigenspace computation,
[7], which often leads to a heavy computational
burden. Third, the use of R}, ensures that when the
MSDP with stability is solvable, a maximal set of
eigenvalues of the overall system exists which is pre-
sent for any solution (these cigenvalues are usually
referred to as the fixed poles of the decoupling pro-
blem), and at least one feedback matrix F exists such
that all the remaining eigenvalues can be assigned
arbitrarily. From the results in [14] it turns out that
the fixed poles of the MSDPs are given by the union
(with repetition) of the eigenvalues of A4 and ['y{RR}).
The generalisation of this result for non-strictly
proper systems can be found n [21].

Remark 5.1: The solution herein presented for the
MSDPs can be used to solve the decoupling of pre-
viewed input signals in the discrete casc, see [2,8,17,27]
for the strictly proper case. Consider a discrete-time
system described by (1), where, with respect to Pro-
blem 2.1, some extra information is available on the
disturbance to be rejected w. More precisely, now not

Fig. 3. Block diagram of the previewed signal decoupling scheme,

only is the signal w available for measurement, but it is
supposed to be known in advance with a preview time
N >0, see Fig. 3. As such, if at time ¢ the input w(r) is
applied to the system, the compensator has access to
the future value w(r+ ), and hence also to
w(t— N+ 1)wit— N+2),... w{t). It is easily seen
from Fig. 3 that the N-delay stage accounts for the
pre-knowledge of the signal w{r) so that the compen-
sator %, exploits the preview information on w(?)
represented by w,(r) = w{r+ N). It follows that the
previewed signal decoupling can be solved by solving a
MSDPs, where now the plant is given by the series
connection of the N-delay and of the system A If we
consider any realisation (44, By Cg) of the N-delay,
the solution of this problem is the one given in The-
orem 5.1, where now A is described by the matrices

a_ (A BCi| oo |Bi| pa 0 A
o= ] = [0] e [a) -
€ D,;,C4, D = Dy, DS = 0. By substitution of the
matrices {A4,B1,B,,C.Dy,Dy} with (4°,B2 B .CA,
D‘;-\‘,O) in Theorem 5.1, it follows that the problem
admits solution if and only if

(i) imBS € Vi + B ker Df;
(ii) R is internally stabilisable.

where now & = (42,B8,C2,D%), The simplified form
of the structural condition (i} with respect to that
presented in Theorem 5.1 is due to D being zero. If
conditions (i} (ii} are satisfied, the inner structure of
the compensator 3, is given in Theorem 5.1 with the
obvious substitutions. Clearly, as » increases, condi-
tion {i} becomes more likely to be satisfied. In other
words, the more information on the disturbance w is
made available to the controller, the easier it becomes
for the controller to reject such disturbance.

Remark 5.2: Another important problem that can be
easily turned mnto a MSDPs is the so-called model
matching, see [12,13,16,19]. Given a system ¥ =
(A.B,C,D) along with a model &, = (4, 8m,Cn, D)
having the same output spaces, the exact model
matching consists of finding a compensator X, =
{Ac,B.,Ce, D) such that the mput/output behaviour of
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rt) e 5

Fig. 4. Block diagram for model matching.

the series connection between X and ¥, equals that of
the given model ¥,, or, equivalently, such that the
difference ¢ between the output of the original system
¥ and that of the model 2, is identically zero, see
Fig. 4. This problem can be turned into a MSDPs
where A is  described by the matrices

a_14 0 a_|B a_|0 O
] ) el e
[C —Cn], D2 =D, D®=-D,. The problem
admits solution if and only if the conditions in The-
orem 5.1 hold, where the matrices (4,8,,8,,C,D,Dh)
have to be replaced by (4%,B% B ,C2, D8 D).

6. Solution of the UIOs

As aforementioned, Problems 2.1 and 2.2 are dual to
each other. Hence, the counterpart of the results
presented so far for the solution of the MSDPs are
presented here in the dual context of UIOs without
proofs. Let X =(4,B,C;,D,). Moreover, let

C[ %[Cl Dl] and Cp_é {CQ DQ}.

Lemma 6.1: Let ker €| 2 (S}, &U) Nker Cy. The fol-
lowing facts hold:

(1) St = 55,

(i) ¥(5) € w(Q);

(i1} For all Sq € ¥(Q)
ker €} D {Sa 2 U) Nker Cy;

(iv) If an externally stabilisable input-containing sub-
space Sy € S(X) exists such that kerC| D
(Ss@lU)NkerCa, then the subspace Qf =
max W{Q) is externally stabilisable.

there holds

The proof of this lemina follows from that of
Lemma 5.1 by duality. In the case where ker C, 2
(St & U) N ker C; holds, the more stringent inclusion
kerC, D (Q4 ®U) Nker C; holds, since Qg 1s an ele-
ment of ¥ {€1). As a consequence, two matrices of
suitable dimensions TT; and [1, exist such that

G =M@ 0]+MG (28)

L. Niogramaizidis

where @ is a full row-rank matrix such that ker @ =
Q5. The set of matrices I, and II, satisfying (28) is
parameterised by the expressicon

i
| +xz

momi=fe o & P

where the rows of Z are linearly independent and span

0 D]
arbitrary matrix of suitable size. Hence, the pair of
matrices (I1,,I1;) satisfying (28) is unique if and only if
C:Qp, +1imD; = R” or, equivalently, if and only if
Qn + CylimD, = R™.

The following theorem is the dual of Theorem 5.1,
and provides solvability conditions for Problem 2.2,
as well as the explicit structure of the unknown-input
observer ©,.

o7 o . .
the null-space of the matrix , while Kisan

Theorem 6.1: Problem 2.2 admits solutions if and only if

(1) ker C| O (S5 @ U) Nker Cy;
(1) QF is externally stabilisable.

Let (i)-(ii) hold. If dim Q) < &, let Q be a full row-
rank matrix such that ker(Q = Qf. Ler also
G e 65(Q4) and A be such that a(A + GC) C C, and

QA+ GC, B+GD|=A[Q 0] (29}
so that a(A) C C,. Ler (T1,11;) be the such thar {28)
holds. An observer ¥, solving Problem 2.2 is described
by the quadruple (A,B4,Co.D0) = (A, — QGI1 ).
If Q) =R", the observer reduces to the static unit
D, =1l.

The proof follows by applying duality arguments to
the involved systems and subspaces, [6].

Remark 6.1: The solution proposed for UIOs can be
exploited to solve the problem of smoothing with fixed
lag for discrete systems, where preview information
shows up in the delay between the measurement and
the gencration of the estimate. Consider the discrete-
time case and suppose that in the system described by
(4) the task 1t to provide an estimation of z4(r) =
z{t -~ N), see Fig. 5. The N-delay stage now accounts
for the delay tolerated for the estimation of z, so that
zq{1) = z(t — N) represents the available latency in the
estimation problem. It follows that the fixed-lag
smoothing can be tackled by solving a UlOs, where
now the plant is given by the series connection of the
N-delay and of the system (. More precisely, if we
consider a realisation (4,B,Cy) of the N-delay, it
follows that the solution of this problem is the one
given in Theorem 6.1, where now 2 is described by the
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Q- )

Fig. 5. Block diagram of the fixed-lag smoothing scheme.

: Q_ A 0 Qo B Y
matrices A E[BdCl L B = BD, | C‘l -

[0 C4, DY =0, C§ =[C; 0], DY = D;. In fact, by
substitution of the matrices (4,B,C,D,C3,D,) with
(A%, B2, C,0,CY. D), it turns out that the problem
admuts solution if and only if

(i) ker € 2 S5 N (C) " imDY;
(ii) @ is externally stabilisable,

where now & = (4%,5%,C% DY), If conditions (i) (i)
are satisfied, the inner structure of the observer %, is
given in Thecrem 6.1 with the obvious substitutions.

7. Conclusions

By extending the nottons of self-bounded and self-
hidden subspaces, the selution of several exact control
and estimation problems has been provided in the
general case where all the systems involved are pos-
sibly non-strictly proper. For all these problems, the
solvability conditions have been expressed by (i} a
geometric inclusion involving output-nulling and
input-containing subspaces; (i) a so-called stability
condition, on a self-bounded subspace in the decou-
pling problems and on a self-hidden subspace in the
estimation problems. The use of self-bounded and
self-hidden subspaces enables the decoupling filter for
MSDPs and the unknown-input observer for UIOs
with the minimal unassignable dynamics to be expli-
citly derived through easily implementable procedures
that do not require eigenspace computations.
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