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rather general and its special cases are dissipation inequalities used to investigate stability, Lp stability,passivity, input-to-state stability, integral input-to-state stability, forward completeness, detectability,etc. (see for instance [11, 28, 32]). Applications of our results to investigation of input-to-state stabilityand passivity properties are presented in this paper to illustrate the generality of our approach.Since, in general, the exact discretization of a dynamic controller can not be computed exactly, weuse an approximate discrete-time model of the controller. In order to obtain a valid approximate model,the discretization of the dynamic controller should be carried out carefully. We introduce propertiesthat the discretized controller should satisfy in order to have preservation of the dissipation inequalityunder sampling. These properties, which are called one-step strong and weak consistency, are speci�edin De�nitions 2.4 and 2.5 and su�cient conditions for these properties to hold are given in Lemmas 2.1and 2.2 respectively, and are proved in the Appendix.In our main results we explore two types of dissipation inequalities for the discrete-time modelof the closed-loop sampled-data system: the weak and strong form. In De�nition 2.6 and 2.7, weintroduce properties associated to the weak and strong dissipation inequalities. A relationship amongthe properties is given in Theorem 2.1. For the weak dissipation result to hold, the discretized controllerneeds to satisfy the one-step weak consistency condition (De�nition 2.4) and the disturbances need to beuniformly Lipschitz (Theorem 3.1). It is shown in Proposition 3.2 that uniformly Lipschitz disturbancescan be obtained by �ltering bounded measurable disturbances through a strictly proper input-to-statestable (ISS) �lter. The strong dissipation inequality holds if the discretized controller satis�es the one-step strong consistency condition (De�nition 2.5) and in this case disturbances are allowed to be onlymeasurable (see Theorem 3.3). In general, strong and weak dissipation inequalities do not imply eachother and this is illustrated by Example 3.1. Similar results then follow for the static feedback andopen loop cases. The generality of our approach is illustrated by two applications of our results toinvestigation of input-to-state stability of sampled-data systems with emulated controllers and resultson preservation of passivity under sampling. A special case of the input-to-state stability results is aresult on preservation of stability under sampling, which is proved for a much general situation than anyof the results in the literature that we are aware of (see [3, 5, 24, 33]).Our main results are semiglobal and practical in nature and their important feature is that therequired sampling period can be computed using our method, although it may be conservative (smallerthan necessary) which is a consequence of the conservative Lipschitz bounds that we are using in theproofs. This is a common problem in numerical analysis literature [30] and the emulation design insampled-data systems [10, 33].The paper is organized as follows. In Section 2 we present preliminaries. Main results are stated anddiscussed in Section 3. Proofs of the main results and their applications are presented in Section 4 andSection 5 respectively. Finally, the conclusions are given in the last section. Su�cient conditions forone-step weak and strong consistency properties are proved in the Appendix.2 PreliminariesA function 
 : R�0 ! R�0 is of class-K if it is continuous, zero at zero and strictly increasing; it is ofclass-K1 if it is of class-K and is unbounded. A continuous function � : R�0�R�0 ! R�0 is of class-KLif �(�; �) is of class-K for each � � 0 and �(s; �) is decreasing to zero for each s > 0. For a given functiond(�), we use the following notation d[t1; t2] := fd(t) : t 2 [t1; t2]g. If t1 = kT; t2 = (k + 1)T , we use theshorter notation d[k], and take the norm of d[k] to be the supremum of d(�) over [kT; (k + 1)T ], that iskd[k]k1 = ess sup�2[kT;(k+1)T ] jd(�)j.Consider the continuous-time nonlinear plant model:_x = f(x; u; dc; ds) (1)y = h(x; u; dc; ds) ; (2)
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with the dynamic state feedback controller:_z = g(x; z; dc; ds)u = u(x; z; dc; ds) ; (3)where x 2 Rnx , z 2 Rnz , u 2 Rm and y 2 Rp are respectively the state of the plant, state of thecontroller, control input and output of the plant. dc 2 Rnc and ds 2 Rns are respectively \continuous"and \sampled" disturbance inputs to the system. The reason for distinguishing between dc and ds is thattheir role is di�erent in obtaining the discretization of the controller. dc is assumed to be a Lebesguemeasurable function, while ds is assumed to be constant during sampling intervals, when computingthe discrete-time model of the controller. For instance, dc can be a measurement noise modeled as aLebesgue measurable function, while ds may model the computation errors due to �nite word lengthe�ects in the digital controller. Moreover, separate investigation of dc and ds yields di�erent conditions,which explain when it is justi�ed to assume (when discretizing the controller) that all disturbances areconstant during sampling intervals.It is assumed that f , g, h and u are locally Lipschitz. We also assume that f(0; 0; 0; 0) = 0,g(0; 0; 0; 0) = 0, h(0; 0; 0; 0) = 0 and u(0; 0; 0; 0) = 0. The controller (3) covers the case of dynamicoutput feedback: _z = ~g(y; z; dc; ds) =: g(x; z; dc; ds)u = ~u(y; z; dc; ds) =: u(x; z; dc; ds) ; (4)where we assume that the feedback system (1), (2), (3) is Lipschitz well posed, that is the equations:y = h(x; u(y; z; dc; ds); dc; ds)u = ~u(h(x; u; dc; ds); z; dc; ds)have unique solutions y 2 Rp , u 2 Rm so that (1), (2) and (4) can be written in the form _� = F(�; dc; ds), = H(�; dc; ds) where � := (xT zT )T ,  := (yT uT )T and F and H are locally Lipschitz.The following de�nitions are used in the sequel.De�nition 2.1 The system (1), (2), (3) is said to be (V;w)-dissipative if there exist a continuouslydi�erentiable function V : Rnx � Rnz ! R, called the storage function, and a continuous functionw : Rnx � Rnz � Rnc � Rns ! R, called the dissipation rate, such that for all x 2 Rnx ; z 2 Rnz ; dc 2Rnc ; ds 2 Rns the following holds:@V@x f(x; u(x; z; dc; ds); dc; ds) + @V@z g(x; z; dc; ds) � w(x; z; dc; ds) : (5)�Remark 2.1 Dissipation inequality is sometimes expressed in terms of an integral, the result of inte-grating (5) along the solutions (see, for instance [32]), which takes the following form:V (x(t); z(t)) � V (x(t�); z(t�)) � Z tt� w(x(�); z(�); dc(�); ds(�))d� : (6)In this form, no di�erentiability assumptions are imposed on V (see, for instance, [32]). We will concen-trate mainly on the di�erential form of dissipation inequalities in this paper, but the same proof techniquecan be used to prove our main results using the integral form (6). We also note that it is usually assumedin the literature that V is positive semide�nite or positive de�nite. We do not use these conditions onV in De�nition 2.1 since they are not needed for the proofs. �De�nition 2.2 The system _x = f(x) is globally asymptotically stable (GAS) if there exists � 2 KL suchthat the solutions of the system satisfy jx(t)j � �(jx�j ; t); 8x� 2 Rn ;8t � 0 : �3



De�nition 2.3 The system _x = f(x; d) is input-to-state stable (ISS) if there exist � 2 KL and 
 2 Ksuch that for all x� 2 Rn and all d 2 L1, the solutions of the system satisfy:jx(t)j � �(jx�j ; t) + 
(kdk1); 8t � 0 : (7)�Emulation procedure: Suppose that, as a �rst step in the emulation design, we designed a controller(3) for the plant (1), (2) in the continuous-time domain, so that the closed-loop continuous-time systemis (V;w)-dissipative.As a second step, we discretize the controller and implement it using sample and zero order holddevices. The discretization of the controller is carried out as follows. First, we consider an auxiliarysystem where the state measurements are assumed to be constant during sampling intervals x(t) =x(kT ) =: x(k) and ds(t) = ds(kT ) =: ds(k) for all t 2 [kT; (k + 1)T ) in the di�erential equation (3),where T > 0 is the sampling period. Consider the following initial value problem:_z(t) = g(x(k); z(t); dc(t); ds(k)) ; z� = z(k) (8)where x(k); z(k); dc[k]; ds(k) are given. Denote the solution of the initial value problem (8) as z(t), andthen we obtain the exact discretization of the controller (3) (see also [5]):z(k + 1) = z(k) + Z (k+1)TkT g(x(k); z(�); dc(�); ds(k))d� =: GeT (x(k); z(k); dc[k]; ds(k))u(k) = u(x(k); z(k); dc(k); ds(k)) : (9)Note that in general the discretization (9) can not be implemented directly since GeT in (9) is usually im-possible to compute exactly (since we need to solve the nonlinear initial value problem (8) explicitly overone sampling interval), so we need to use instead an approximate discrete-time model of the controller:z(k + 1) = GaT (x(k); z(k); dc(k); ds(k))u(k) = u(x(k); z(k); dc(k); ds(k)) ; (10)which is obtained from (8) using one of the numerical integration methods (e.g. Runge-Kutta). Forinstance, if we use the forward Euler method, we obtain GaT (x; z; dc; ds) := x + Tg(x; z; dc; ds). It isobvious that in general we will have to use a su�ciently small sampling period T , since the approximatediscrete-time model (10) is usually a good approximation of the exact discrete-time model (9) typicallyonly for small T .The sampled-data closed-loop system consists of the continuous-time plant (1), (2) and the controller(10), which is between a sample and zero order hold device. In the sequel, we use the discrete-timemodel of this sampled-data system, which consists of (10) and the exact discrete-time model of theplant, which is obtained as follows. We assume that u(t) = u(kT ) =: u(k), ds(t) = ds(kT ) =: ds(k) forall t 2 [kT; (k + 1)T ] and consider the initial value problem_x(t) = f(x(t); u(k); dc(t); ds(k)) ; x� = x(k) (11)where x(k), u(k), dc[k] and ds(k) are given. The output y is measured only at sampling instants kT ,k � 0. Denote the solution of the initial value problem (11) as x(t). Then the exact discrete-time modelof the plant can be written as:x(k + 1) = x(k) + Z (k+1)TkT f(x(�); u(k); dc(�); ds(k))d� =: FT (x(k); u(k); dc[k]; ds(k))y(k) = h(x(k); u(k); dc(k); ds(k)) : (12)The discrete-time model of the sampled-data closed-loop system consists of (10) and (12).The sampling period T is assumed to be a design parameter which can be arbitrarily assigned. Inpractice, the sampling period T is �xed and our results could be used to determine if it is suitably small.4



We emphasize that FT in (12) is not known in most cases, and GeT in (9) can not be computed exactly,so we need to use GaT in (10) instead. Similarly to [22] we will think of FT , GeT and GaT as being de�nedglobally for all small T , even though the initial value problem (11) and (8) may exhibit �nite escapetimes. We do this by de�ning FT and GeT arbitrarily for (x(k); z(k); dc[k]; ds(k)) corresponding to the�nite escapes and noting that such points correspond only to states and inputs of arbitrarily large normas T ! 0, since f and g are assumed locally Lipschitz (and hence locally bounded). So, the behaviorof FT and GeT will re
ect the behavior of (11) and (8) respectively, as long as (x(k); z(k); dc[k]; ds(k))remain bounded with a bound that is allowed to grow as T ! 0. This is consistent with our mainresults that guarantee semiglobal dissipativity properties in the sampling period, that is as T ! 0 theset of states and inputs for which a dissipation inequality for the discrete-time model (10), (12) holds isguaranteed to contain an arbitrary large neighborhood of the origin.In order to prove our main results, we need to guarantee that the mismatch between the exactdiscrete-time model of the controller (9) and its approximation (10) is small in some sense. We de�netwo consistency properties that are used to limit the mismatch. Di�erent forms of the consistencyproperty are used in numerical analysis literature (see De�nition 2 [20], De�nition 1 [22] and De�nition3.4.2 [30]).De�nition 2.4 (One-step weak consistency) The family GaT is said to be one-step weakly consistentwith GeT if given any quintuple of strictly positive real numbers (�x;�z;�dc ;� _dc ;�ds), there exist afunction � 2 K1 and T � > 0 such that, for all T 2 (0; T �), jxj � �x, jzj � �z, jdsj � �ds and functionsdc(�) that are uniformly Lipschitz and satisfy kdc[0]k1 � �dc and 


 _dc[0]


1 � � _dc , we havejGeT �GaT j � T�(T ) : (13)�A su�cient condition for one-step weak consistency is the following (the proof is given in the Appendix):Lemma 2.1 Consider GeT and GaT of the controller (3). If GaT is one-step weakly consistent with GEulerT ,where GEulerT := z + Tg(x; z; dc; ds), then GaT is one-step weakly consistent with GeT . �In the following, we consider a more speci�c class of controllers that have the following form:_z = g(x; z; ds)u = u(x; z; ds) : (14)We assume that g and u are locally Lipschitz, g(0; 0; 0) = 0 and u(0; 0; 0) = 0. In a similar manner asfor controller (3), we de�ne the exact discrete-time model of the controller (14) as:z(k + 1) = z(k) + Z (k+1)TkT g(x(k); z(�); ds(k))d� =: GeT (x(k); z(k); ds(k))u(k) = u(x(k); z(k); ds(k)) ; (15)and its approximate discrete-time model:z(k + 1) = GaT (x(k); z(k); ds(k))u(k) = u(x(k); z(k); ds(k)) : (16)De�nition 2.5 (One-step strong consistency) The family GaT is said to be one-step strongly con-sistent with GeT if given any quadruple of strictly positive real numbers (�x;�z;�dc ;�ds), there existsa function � 2 K1 and T � > 0 such that, for all T 2 (0; T �), jxj � �x, jzj � �z, kdc[0]k1 � �dc ,jdsj � �ds, we have jGeT �GaT j � T�(T ) : (17)�5



A su�cient condition for one-step strong consistency is the following (the proof is given in the Appendix):Lemma 2.2 Consider GeT and GaT of the controller (14). If GaT is one-step strongly consistent withGEulerT , where GEulerT := z + Tg(x; z; ds), then GaT is one-step strongly consistent with GeT . �Remark 2.2 Consistency properties specify how the controller should be discretized for the emulationprocedure to yield desired results. Lemmas 2.1 and 2.2 present general checkable conditions under whichone-step weak and strong consistency properties hold. It is important to emphasize that if the exactdiscrete-time model of the controller can be obtained, then we do not have to use an approximate discrete-time model of the controller and consistency de�nitions become super
uous, i.e., they hold automatically.Two important such cases were considered in the literature: emulation for linear systems was consideredin [5] and emulation for static state feedback controllers was considered in [19]. However in linear systemcase, although the exact discrete-time model is computable, one may still implement its approximation.Finally, note that the weak and strong consistency de�nitions become equivalent when GeT and GaT areindependent of dc. �Remark 2.3 Note that the Euler approximation is one-step (weakly or strongly) consistent wheneverthe second condition in Lemma 2.1 or 2.2 is satis�ed, since the �rst condition automatically holds. Also,if we want to implement the Euler approximate model of the controller, that is GaT = z + Tg(x; z; ds),then we can regard the closed-loop system (1), (2) and (3) as an augmented plant of the form_x = f(x; u; dc; ds)_z = vcontrolled by the static state feedback controller of the form:u = u(x; z; ds)v = g(x; z; ds)which is implemented between the sample and zero order hold device(s). Note that, this form is validonly when g is independent of dc. In this case, one can use results in [19] on emulation for static statefeedback controllers. However, if we want to use an approximate discretization GaT other than Euler, thismethod is not applicable and we need to use results proved in this paper that use the notion of consistencyfor general discretizations. �Remark 2.4 There is a strong motivation to consider controller discretizations other than Euler, al-though even the simple Euler discretization may sometimes yield satisfactory performance (see for in-stance [8, 22]). Indeed, a number of studies have shown that the Euler approximation of the controllerdynamics is not always appropriate to use. For instance, the Euler approximation is, in general, notrecommended to use for singularly perturbed systems that exhibit two-time scale behavior (see [18] and[4]). Using a comparative study in [7], the authors showed that the Tustin (bilinear) approximation issuperior to Euler for the particular application. Moreover, even for linear systems, some examples in[1, 12] indicate that if the sampling period is given and �xed, then most of the classical discretizationmethods (such as Euler) might fail to yield acceptable performance or even stability. For linear systems,this has led to more advanced techniques for controller discretization that obtain the approximate modelas a solution of an optimization problem (see [1] for more details). Similar results for nonlinear systemsare yet to be proved.The consistency properties that we use provide a general and uni�ed framework for investigation ofa range of di�erent controller discretizations. Moreover, they generalize in a natural way the consis-tency de�nitions commonly found in the numerical analysis literature that apply to ordinary di�erentialequations without inputs (see for instance De�nition 3.4.2 in [30]). A range of di�erent consistent dis-cretization can be de�ned using the results in [16]. Indeed, if the controller dynamics do not depend ondc then the results in [16] can be used to write the solution of the initial value problem (8) as a seriesexpansion in the sampling period T . Finite truncations of these expansions give a range of approximatediscretization of the controller that are one step consistent. Moreover, classical Runge-Kutta integrationschemes can also be used to obtain one step consistent approximations (see for instance [30]). �6



We also introduce the following properties (Properties P1, P2 and P3), in order to precisely statethe main results.De�nition 2.6 Let V be continuously di�erentiable and w be continuous. The system (10), (12) is saidto have Property P1 (respectively, have Property P2) if given any 6-tuple of strictly positive real numbers(�x;�z ;�dc ;� _dc ;�ds ; �), there exists T � > 0 such that for all T 2 (0; T �) and all jxj � �x, jzj � �z,jdsj � �ds and for all disturbances dc(�) that satisfy kdc[0]k1 � �dc , 


 _dc[0]


1 � � _dc the followingholds:V (FT (x; u(x; z; dc; ds); dc[0]; ds); GaT (x; z; dc; ds))� V (x; z)T � 1T Z T0 w(x; z; dc(�); ds)d� + � ; (18)(respectively the following holds for the system (10), (12):V (FT (x; u(x; z; dc; ds); dc[0]; ds); GaT (x; z; dc; ds))� V (x; z)T � w(x; z; dc; ds) + � ): (19)�De�nition 2.7 Let V be continuously di�erentiable and w be continuous. The system (10), (12) is saidto have Property P3 if given any quintuple of strictly positive real numbers (�x;�z;�dc ;�ds ; �), thereexists T � > 0 such that for all T 2 (0; T �) and all jxj � �x, jzj � �z, kdc[0]k1 � �dc , jdsj � �ds theinequality (18) holds. �Remark 2.5 We de�ned several di�erent properties (Properties P1, P2 and P3) since each of themmay be useful in a particular situation. For instance, Properties P1 or P2 are useful when the inputdc is �ltered through an input-to-state stable �lter (see Proposition 3.2) or when all inputs are constantduring the sampling intervals (see application of our results to preservation of passivity under samplingin Section 5). On the other hand, Property P3 is useful when the disturbance dc is only assumed to be ameasurable function of time, which is important, for instance, in investigation of input-to-state stability(see Section 5). �The following preliminary result that is proved in Section 4 shows that Properties P1 and P2 inDe�nition 2.6 are equivalent.Theorem 2.1 The system (10), (12) has Property P1 if and only if it has Property P2. �The main di�erence between the Properties P1 and P3 (or P2 and P3, since Properties P1 and P2are equivalent) is that Property P1 requires the disturbances dc to be Lipschitz, uniformly in T , forthe inequality (18) to hold, whereas the inequality (18) in Property P3 must hold for non-uniformlyLipschitz disturbances as well. The dissipation inequalities in Properties P1 and P2 (since they areequivalent) are said to have the \weak" form (since they hold for a smaller class of disturbances) andthe dissipation inequality in Property P3 is said to have the \strong" form (since it holds for a largerclass of disturbances).3 Main resultsIn this section we state the main results (Theorem 3.1 and 3.3) which assume that the continuous-timesystem is (V;w)-dissipative. Theorem 3.1 states that if one-step weak consistency holds and disturbancesdc(�) are uniformly Lipschitz, then the (equivalent) Properties P1 and P2 hold for discrete-time model ofthe sampled-data system. Since in most cases we do not know whether the disturbances are uniformlyLipschitz or not, in Proposition 3.2 we prove that if we �lter a bounded measurable signal using a strictlyproper input-to-state stable �lter, we obtain a �ltered signal which is bounded and uniformly Lipschitz.If disturbances are only measurable (but not uniformly Lipschitz) then the inequality (19) may not holdin a semiglobal practical sense while the inequality (18) still holds (see Example 3.1). In Theorem 3.3we show that for a smaller class of controllers, if dc(�) are measurable (but not uniformly Lipschitz) andone-step strong consistency holds then the discrete-time model has Property P3.7



Theorem 3.1 (Weak form of dissipativity) Let GaT (10) be any approximate discrete-time model of thecontroller (3), which is one-step weakly consistent with the exact discrete-time model of the controllerGeT (9). If the system (1), (2), (3) is (V;w)-dissipative, then the system (10), (12) has Property P1(equivalently, Property P2). �Note that Properties P1 and P2 require dc(�) to be uniformly Lipschitz. The following example showsthat indeed the uniformly Lipschitz condition on dc(�) is necessary, since the inequality (19) may nothold if dc(�) is not uniformly Lipschitz.Example 3.1 [19] Consider the continuous-time system _x = u(x) + dc = �x + dc, where x; dc 2 R.Using the storage function V = 12x2, the derivative of V is _V = �x2+xdc � � 12x2+ 12d2c, and the systemis ISS. It was shown in [19] that if a family of bounded disturbances dc(t) = cos � t+2TT � is considered,then the inequality �VT � � 12x2 + 12d2c + � does not hold in a semiglobal practical sense, which impliesthat Property P2 does not hold! This is due to the fact that the family of disturbances is not Lipschitz,uniformly in T , since 


 _dc


1 = 1=T . This illustrates that, in general, the Lipschitz condition, uniformin T , on dc(�) in Theorem 3.1 is necessary for the result to hold. NThe following result shows that if we can �lter any bounded measurable disturbances using a strictlyproper input-to-state stable �lter, then the �ltered disturbances are bounded and uniformly Lipschitz.This further motivates Theorems 2.1 and 3.1 that require disturbances to be uniformly Lipschitz.Proposition 3.2 Consider any nonlinear �lter:_� = f(�; dc) (20)� = h(�) ; (21)which is input-to-state stable with respect to input dc and where f and h are locally Lipschitz. Then,given any dc(�) 2 L1 and any �� 2 Rn� we have that the output �(�) is bounded, that is �(�) 2 L1.Moreover, _�(�) 2 L1, which implies that there exists L > 0 such that j�(t1)� �(t2)j � L jt1 � t2j ;8t1; t2.�The use of �lters in sampled-data systems is standard (see for instance [5]). In particular, �lters thatare strictly proper, stable, linear and time invariant:_� = A� +Bdc (22)� = C� ; (23)were considered in [5] in the context of Lp stability of linear sampled-data systems. In this case, wehave that the �lter satis�es all conditions of Proposition 3.2 and consequently for any �� and dc 2 L1we have that �; _� 2 L1.Example 3.1 showed that if disturbances dc(�) are not uniformly Lipschitz, then Properties P2 maynot hold. It is of interest to investigate conditions, under which Property P3 still holds, for the casewhen dc(�) are not uniformly Lipschitz. To prove a general result for this case it is necessary to restrictour attention to the controllers of the form (14) (see Example 3.2 below). Note that the controller (14)does not have dc(�) as its input and the following example shows that this is necessary in general if wewant to prove that the discrete-time model of the sampled-data system has Property P3.Example 3.2 [19] Consider the system _x = u, where u = �dc, where dc(0) = 0 and dc(t) = 1; 8t > 0.The storage function that we consider is V (x) = x, so that the derivative: @V@x (�dc) = �dc, and hence thedissipation rate is w(x; dc; ds) = �dc. Since u is sampled and dc(0) = 0, we have that x(t) = 0;8t 2 [0; T ]and so �V=T = 0. On the other hand R T0 w(dc(�))d� = �T . Hence, if Property P3 was hold, then wewould obtain 0 � �1 + �, which is not true for small �. N8



Compared to Theorem 3.1, the following result on strong form of dissipativity considers a larger classof measurable disturbances dc.Theorem 3.3 (Strong form of dissipativity) Let GaT (16) be any approximate discrete-time model of thecontroller (14), which is one-step strongly consistent with the exact discrete-time model of the controllerGeT (15). If the system (1), (2), (14) is (V;w)-dissipative, then the system (12), (16) has Property P3.� Two important special cases of our main results are the static state feedback and open-loop system.All of the results given below follow directly from the more general case of dynamic state feedback andwe describe below the connections.3.1 Static state feedback resultsThe static state feedback: u = u(x; dc; ds) (24)is a special case of (3), where nz = 0. Similarly, the controller:u = u(x; ds) (25)is a special case of the controller (14). Obvious changes are introduced in de�nitions of Properties P1,P2 and P3 to cover the static state feedback case and we list them below for ease of reference. Theinequality (5) in the (V;w)-dissipativity property is replaced by@V@x f(x; u(x; dc; ds); dc; ds) � w(x; dc; ds) : (26)The discretized controllers of (24) and (25) take respectively the following forms:u(k) = u(x(k); dc(k); ds(k)); k � 0 ; (27)u(k) = u(x(k); ds(k)); k � 0 ; (28)and they are implemented using a sample and zero order hold. As already indicated in Remark 2.2, theconsistency properties are always satis�ed since the controller has no dynamics. Since nz = 0, we omitall conditions on z variable in Properties P1, P2 and P3. Consequently, the inequalities (18) and (19)are respectively replaced by the following inequalities:V (FT (x; u(x; dc; ds); dc[0]; ds))� V (x)T � 1T Z T0 w(x; dc(�); ds)d� + � ; (29)and V (FT (x; u(x; dc; ds); dc[0]; ds))� V (x)T � w(x; dc; ds) + � : (30)Direct consequences of Theorems 3.1 and 3.3 are the following corollaries.Corollary 3.1 If the system (1), (2), (24) is (V;w)-dissipative, then the exact discrete-time model (12),(27) of the system has Property P1 (equivalently, Property P2). �Corollary 3.2 If the system (1), (2), (25) is (V;w)-dissipative, then the exact discrete-time model (12),(28) of the system has Property P3. �Example 3.1 (cont'd) Note that since the state feedback of the system in Example 3.1 is static and itdoes not depend on dc, all conditions of Corollary 3.2 are satis�ed and the exact discrete-time model hasProperty P3. N9



3.2 Open-loop con�guration resultsBesides the static feedback results, the results on preservation of dissipation inequalities under samplingfor open-loop systems are also a direct consequence of our main results on dynamics state feedbackcontrollers. Indeed, the open-loop systems can be viewed as a special case of \closed-loop" systems,with m = 0 and nz = 0. The continuous-time system (1), (2) can be rewritten as_x = ~f(x; dc; ~ds) := f(x; u; dc; ds) (31)y = ~h(x; dc; ~ds) := h(x; u; dc; ds) ; (32)where ~ds := (uT dTs )T and the control u can be treated in the same way as the disturbance ds.For ease of reference we list the changes needed in Properties P1, P2 and P3 to cover the open-loopcase. We replace (5) of the (V;w)-dissipativity property with@V@x f(x; u; dc; ds) � w(x; u; dc; ds) : (33)Since there is no controller in this case, the consistency properties are super
uous. The exact discrete-time model of the open-loop system is given by (12). The statements of Properties P1, P2 and P3 arechanged in the following way: \... given any quintuple of strictly positive numbers (�x;�u;�dc ;�ds ; �)there exists T � > 0 such that ...". The inequalities (18) and (19) are respectively replaced by thefollowing inequalities:V (FT (x; u; dc[0]; ds))� V (x)T � 1T Z T0 w(x; u; dc(�); ds)d� + � ; (34)and V (FT (x; u; dc[0]; ds))� V (x)T � w(x; u; dc; ds) + � : (35)The following results are direct consequences of our main results.Corollary 3.3 If the system (31), (32) is (V;w)-dissipative, then the exact discrete-time model (12) ofthe system has Property P1 (equivalently, Property P2). �Under slightly stronger conditions we can prove a stronger result that is useful in some situations:Proposition 3.4 If the system (31), (32) is (V;w)-dissipative, with @V@x being locally Lipschitz and@V@x (0) = 0, then given any quintuple of strictly positive real numbers (�x, �u, �dc , � _dc , �ds), thereexist T � > 0 and positive constants K1;K2;K3;K4;K5 such that for all T 2 (0; T �) and all jxj � �x,juj � �u, jdsj � �ds and functions dc(�) that are uniformly Lipschitz and satisfy kdc[0]k1 � �dc ,


 _dc[0]


1 � � _dc , we have for the exact discrete-time model (12) of the system:V (FT (x; u; dc[0]; ds))� V (x)T� w(x; u; dc; ds) + T �K1jxj2 +K2juj2 +K3jdsj2 +K4 kdc[0]k21 +K5 


 _dc[0]


21� : (36)�Analogous to Theorem 3.1, we need the uniformly Lipschitz condition on dc(�) for Corollary 3.3 andProposition 3.4 to hold. For the case when dc(�) is not uniformly Lipschitz, results similar to Theorem 3.3are stated in the following. Note that in this open-loop case, for either the weak or strong dissipativityresult, there is no dependency of control on dc, since the control is an external input.10



Corollary 3.4 If the system (31), (32) is (V;w)-dissipative, whereas dc(�) is measurable but not nec-essarily uniformly Lipschitz, then the exact discrete-time model (12) of the system has Property P3.�Proposition 3.5 If the system (31), (32) is (V;w)-dissipative, with @V@x being locally Lipschitz and@V@x (0) = 0, then given any quadruple of strictly positive real numbers (�x;�u;�dc ;�ds) there existT � > 0 and positive constants K1;K2;K3;K4 such that for all T 2 (0; T �) and all jxj � �x, juj � �u,kdc[0]k1 � �dc , and jdsj � �ds we have for the exact discrete-time model (12) of the system:V (FT (x; u; dc[0]; ds))� V (x)T � 1T Z T0 w(x; u; dc(�); ds)d� + T �K1jxj2 +K2juj2 +K3 kdc[0]k21 +K4jdsj2� :�4 Proofs of main resultsProof of Theorem 2.1:(P1) =) (P2) Suppose that Property P1 holds. Let (�x;�z;�dc ;� _dc ;�ds ; �w) be given and let T �s > 0(from Property P1) be such that for all jxj � �x, jzj � �z, kdc[0]k1 � �dc , 


 _dc[0]


1 � � _dc , jdsj � �dsand all T 2 (0; T �s ) the following holds:�VT � 1T Z T0 w(x; z; dc(�); ds)d� + �w2� w(x; z; dc; ds) + �w2 + 1T Z T0 jw(x; z; dc(�); ds)� w(x; z; dc; ds)j d� ; (37)where the second inequality was obtained by adding and subtracting w(x; z; dc; ds). Since dc(�) is uni-formly Lipschitz with Lipschitz constant � _dc , we can write jdc(�) � dcj � � _dc� . Moreover, since w iscontinuous, it is uniformly continuous on compact sets, and given any " > 0 there exists Ts > 0 suchthat for any � 2 [0; Ts], jxj � �x, jzj � �z , kdc[0]k1 � �dc , 


 _dc[0]


1 � � _dc , jdsj � �ds we have thatjw(x; z; dc(�); ds)� w(x; z; dc; ds)j � ". Let " = �w2 and let this �x Ts. Let T �w = minfTs; T �s g. Thenusing (37) we have that for all T 2 (0; T �w), jxj � �x, jzj � �z , kdc[0]k1 � �dc , 


 _dc[0]


1 � � _dc ,jdsj � �ds : �VT � w(x; z; dc; ds) + �w2 + 1T Z T0 �w2 d� = w(x; z; dc; ds) + �w2 + �w2 ; (38)which shows that Property P2 holds.(P2) =) (P1) follows a similar way as the proof for (P1) =) (P2), to show that if Property P2 holds,then Property P1 holds. �Proof of Theorem 3.1: To shorten the notation we de�ne u := u(x; z; dc; ds), f := f(x; u; dc; ds),g := g(x; z; dc; ds), FT := FT (x; u; dc[0]; ds), GeT := GeT (x; z; dc[0]; ds) and GaT := GaT (x; z; dc; ds).De�nition of T �: Suppose that the continuous-time system (1), (2), (3) is (V;w)-dissipative, that is forall x 2 Rnx , z 2 Rnz , dc 2 Rnc , ds 2 Rns , the inequality (5) holds. Let GaT be one-step weakly consistentwith GeT , and let a 6-tuple of strictly positive real numbers (�x, �z, �dc , � _dc , �ds , �) be given. Letthese data generate � 2 K1 from the de�nition of one-step weak consistency. De�ne Rx := �x + 1 andRz := �z + 1. Let L > 0 be the Lipschitz constant of f and g on the sets where jxj � Rx, jzj � Rz,11



jdcj � �dc , jdsj � �ds , and let b > 0 be a number that satis�es max���@V@x �� ; ��@V@z �� ; jf j ; jgj	 � b for alljxj � Rx, jzj � Rz, jdcj � �dc , jdsj � �ds . De�ne � := �x +�z +�dc +�ds .We assume without loss of generality that � � 1 and b � 1 and de�neT �1 := min� 12b ; ��1 � �2b�� : (39)Note that T �1 � 12b � 12 < 1. Let T �2 > 0 be such that the following holds:bL�(� + 1)exp(LT )� 1� LTLT + 12� _dcT� � �8 ; 8T 2 (0; T �2 ) : (40)It is easy to see that such a T �2 always exists. Let x1 := x+�1Tf and z1 := z+�2Tg where �1; �2 2 (0; 1).Let T �3 > 0 be such that: b ����� @V@x ����(x1;z+Tg) � @V@x ����(x;z)����� � �8 ; (41)for all T 2 (0; T �3 ), jxj � Rx, jzj � Rz , jdsj � �ds , and dc(�) such that kdc[0]k1 � �dc , and 


 _dc[0]


1 �� _dc . The required T �3 always exists, which can be proved as follows. From the continuity of @V@x ,which implies that @V@x is uniformly continuous on the compact sets, and since jx1 � xj � T jf j � Tband j(z + Tg)� zj = T jgj � Tb , it follows that given any � > 0 there exists T� > 0 such that��� @V@x ��(x1;z+Tg) � @V@x ��(x;z)��� � �; 8T 2 (0; T�), jxj � Rx, jzj � Rz, jdcj � �dc and jdsj � �ds . Hence, wecan choose �� := �=(8b) and let this �x the desired T �3 := T�� for which (41) holds.In exactly the same way we choose T �4 > 0 such thatb ����� @V@z ����(x;z1) � @V@z ����(x;z)����� � �8 ; (42)for all T 2 (0; T �4 ), jxj � Rx, jzj � Rz , jdsj � �ds , and dc(�) such that kdc[0]k1 � �dc , and 


 _dc[0]


1 �� _dc . Finally, we de�ne T � := minfT �1 ; T �2 ; T �3 ; T �4 g : (43)Proof that Property P1 (P2) holds: We will show �rst, that Property P2 holds. Consider arbitraryT 2 (0; T �), jxj � �x, jzj � �z, jdsj � �ds , and dc(�) such that kdc[0]k1 � �dc , and 


 _dc[0]


1 � � _dc .Since T < T � � 12b , the solutions x(t) and z(t) of the initial value problems (11) and (8) exist andjx(t)j � �x + 12 , jz(t)j � �z + 12 , 8t 2 [0; T ], which impliesjFT j � �x + 12 < Rx ;jGeT j � �z + 12 < Rz : (44)From the second inequality in (44), one-step weak consistency and the choice of T �1 we have:jGaT j � jGeT j+ jGaT �GeT j< �z + 12 + �(T �1 )� �z + 12 + 12= Rz : (45)12



From the local Lipschitz properties of f and g and the fact that they are zero at zero, we can writejx(�) � xj � (� + 1)[exp(L�)� 1] ; 8� 2 [0; T ] (46)jz(�)� zj � (� + 1)[exp(L�)� 1] ; 8� 2 [0; T ] (47)and since dc(�) is uniformly Lipschitz, with Lipschitz constant � _dc , we can write that for all �jdc(�)� dcj = jdc(�) � dc(0)j � � _dc� : (48)We consider�VT = V (FT ; GaT )� V (x; z)T= @V@x ����(x;z) f + @V@z ����(x;z) g| {z }1 + 1T �V (FT ; GaT )� V (x+ Tf; z + Tg)�| {z }2+ 1T �V (x + Tf; z + Tg)� V (x; z)� @V@x ����(x;z) Tf � @V@z ����(x;z) Tg�| {z }3 ; (49)where the second equality holds since we just added and subtracted 1T V (x+Tf; z+Tg), @V@x ��(x;z) f and@V@z ��(x;z) g. Now we bound each term in (49).Term 1: It follows from (V;w)-dissipativity of the continuous-time system (1), (2), (3) that:@V@x ����(x;z) f + @V@z ����(x;z) g � w(x; z; dc; ds) : (50)Term 2: Applying the Mean Value Theorem to the Term 2, we have by adding and subtracting1T V (x+ Tf;GaT ):1T �V (FT ; GaT )�V (x + Tf; z + Tg)�� 1T ����� @V@x ����(x2;GaT )����� jFT � (x+ Tf)j| {z }2a + 1T ����� @V@z ����(x+Tf;z2)����� jGaT � (z + Tg)j| {z }2b ; (51)where x2 = �3FT + (1� �3)(x + Tf) and z2 = �4GaT + (1� �4)(z + Tg) and �3; �4 2 (0; 1).Since maxfjFT j; jx+Tf jg � Rx (see (44)), then jx2j � Rx. Moreover, since maxfjGaT j; jz+Tgjg � Rz(see (44) and (45)), this implies jz2j � Rz. Hence, we have that ��� @V@x ��(x2;GaT )��� � b and ��� @V@z ��(x+Tf;z2)��� � b.

13



Term 2a: Since ��� @V@x ��(x2;GaT )��� � b and f is locally Lipschitz, we can write1T ����� @V@x ����(x2;GaT )����� jFT � (x + Tf)j � bT jFT � (x+ Tf)j= bT �����Z T0 f(x(�); u; dc(�); ds)d� � Z T0 f(x; u; dc; ds)d� ������ bT (L Z T0 jx(�) � xj d� + L Z T0 jdc(�) � dcj d�)� bLT ((� + 1) Z T0 [exp(L�)� 1]d� +� _dc Z T0 �d�)= bL�(� + 1)exp(LT )� 1� LTLT + 12� _dcT�� �8 ; (52)where we �rst added and subtracted bT R T0 f(x; u; dc(�); ds)d� , then used the local Lipschitz property off , then used bounds (46) and (48) and �nally exploited the de�nition of T �2 .Term 2b: We use the fact that ��� @V@z ��(x+Tf;z2)��� � b, then add and subtract GeT to the last factor ofTerm 2b to obtain:1T ����� @V@z ����(x+Tf;z2)����� jGaT � (z + Tg)j � bT jGaT � z � Tgj� bT jGaT �GeT j+ bT jGeT � z � Tgj� b�(T ) + bT �����Z T0 g(x; z(�); dc(�); ds)d� � Tg(x; z; dc; ds)������ b�(T ) + bT Z T0 L jz(�)� zj d� + bT Z T0 L jdc(�) � dcj d�� b�(T ) + bL�(� + 1)exp(LT )� 1� LTLT + 12� _dcT�� �2 + �8 ; (53)where we �rst used one-step weak consistency and de�nition of T �1 , then the local Lipschitz property ofg, then inequalities (47) and (48) and �nally the de�nition of T �2 .Term 3: From the di�erentiability of V , we apply the Mean Value Theorem to Term 3 (where x1 and
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z1 are de�ned just before (41)) to obtain:1T �V (x + Tf; z + Tg)�V (x; z)� @V@x ����(x;z) Tf � @V@z ����(x;z) Tg�� @V@x ����(x1;z+Tg) f + @V@z ����(x;z1) g � @V@x ����(x;z) f � @V@z ����(x;z) g� jf j � ����� @V@x ����(x1;z+Tg) � @V@x ����(x;z)�����+ jgj � ����� @V@z ����(x;z1) � @V@z ����(x;z)������ b ����� @V@x ����(x1;z+Tg) � @V@x ����(x;z)�����+ b ����� @V@z ����(x;z1) � @V@z ����(x;z)������ �8 + �8 :
(54)

In deriving (54) we �rst used the de�nition of b and then de�nitions of T �3 and T �4 . Combining (49),(50), (52), (53) and (54) complete the proof that Property P2 holds. The proof for Property P1 to holdfollows directly from Theorem 2.1. �Proof of Proposition 3.2: It is trivial; since dc 2 L1 and (20) is ISS, then � 2 L1. Since f and hare continuous, then _� 2 L1 and v 2 L1. Finally, since h is locally Lipschitz, thenj _vj = ���� lim�!0 h(�(t+ �))� h(�(t))� ����� L lim�!0 �����(t+ �)� �(t)� ����� L ��� _���� ;which implies _v 2 L1. �Proof of Proposition 3.4:The proof of the proposition follows the same steps as the proof of Theorem 3.1. Using the idea from thetheorem, we �rst take any number � > 0, and do the computation of T � in the same way as we have donein the proof of Theorem 3.1. Then, we show how we can further reduce T � to obtain K1;K2;K3;K4;K5so that the desired bound holds.We arrive at the following, which comes from (49) after some changes to match the open-loop case:�VT = V (FT )� V (x)T= @V@x ����x f| {z }1 + 1T fV (FT )� V (x+ Tf)g| {z }2 + 1T �V (x+ Tf)� V (x) � T @V@x ����x f�| {z }3 ; (55)where the second equality holds since we just added and subtracted V (x+Tf)=T and @V@x ��x f to �V=T .The following changes are then used in the proof. Since @V@x is locally Lipschitz and @V@x (0) = 0, we canwrite for all jxj � �x + 1, juj � �u, jdcj � �dc , jdsj � �ds that ��@V@x �� � L jxj. Also, since f is locallyLipschitz and f(0; 0; 0; 0) = 0, we can write for all jxj � �x + 1, juj � �u, jdcj � �dc , jdsj � �ds :jf(x; u; dc; ds)j � L(jxj+ juj+ jdcj+ jdsj) : (56)Since ��� @V@x ��x2��� � L jx2j, where x2 = �3FT + (1 � �3)(x + Tf), �3 2 (0; 1), then we have that Term 2 in
15



(55) can be bounded as:1T fV (FT )� V (x+ Tf)g � 1T ����� @V@x ����x2����� jFT � (x+ Tf)j= 1T L jx2j �����Z T0 f(x(�); u; dc(�); ds)d� � Z T0 f(x; u; dc; ds)d� ������ 1T L jx2j(L Z T0 jx(�) � xj d� + L Z T0 jdc(�) � dcj d�)� 1T L2 jx2j(Do Z T0 [exp(L�)� 1]d� + 


 _dc[0]


1 Z T0 �d�)= L2 jx2j�Do exp(LT )� 1� LTLT + 12 


 _dc[0]


1 T�� TL2 jx2j�DoK + 12 


 _dc[0]


1� ;
(57)

for some K � exp(LT )�1�LTLT 2 , 8T 2 (0; T �), where Do := jxj+ juj+ kdc[0]k1 + jdsj. We can writejx2j � jxj+ L Z T0 jx(�) � xj d� + Z T0 jdc(�) � dcj d�!+ T jf(x; u; dc; ds)j : (58)Using calculations similar to (46) and (48), we obtain:Z T0 jx(�) � xj d� + Z T0 jdc(�) � dcj d� � Z T0 �Do(exp(L�)� 1) + 


 _dc[0]


1 �� d�� Do exp(LT )� 1� LTL + T 22 


 _dc[0]


1� T 2 �DoK + 12 


 _dc[0]


1� ; (59)and substitute (56) and (59) into (58) to obtainjx2j � jxj+ LT 2 �DoK + 12 


 _dc[0]


1�� jxj+ LTDo(TK + 1) + 12LT 2 


 _dc[0]


1 : (60)Hence, there exists �K > 0 such that for all su�ciently small T we can write:jx2j � (1 + �K) jxj+ �K �juj+ kdc[0]k1 + 


 _dc[0]


1 + jdsj� :Since x1 = x+ �1Tf , where �1 2 (0; 1), then jx1 � xj � T jf(x; u; dc; ds)j. By referring to (54), Term 3in (55) can be bounded by:L jx1 � xj jf(x; u; dc; ds)j � TL3 (jxj+ juj+ kdc[0]k1 + jdsj)2 :Direct but lengthy calculations show the existence of K1;K2;K3;K4;K5. �The proof of Theorem 3.3 is omitted, since it follows the same steps as that of Theorem 3.1. Theonly di�erence is that instead of using one-step weak consistency, we use one-step strong consistency.Corollaries 3.1 and 3.3 follow directly from Theorem 3.1 and Remark 2.2. The proofs for Corollaries3.2 and 3.4 and Proposition 3.5 are carried out similarly as the proofs of Corollaries 3.1 and 3.3 andProposition 3.4 respectively, by using Theorem 3.3.16



5 ApplicationsWe present now two applications of our results. First, we consider ISS with respect to non-sampledinputs. It is interesting to see that we have to use strong dissipation inequalities in this case, since theuse of weak dissipation inequalities would yield a weaker conclusion. Second, we consider preservationof passivity under sampling where the inputs are assumed to be controls that are constant during thesampling intervals. In the �rst and second applications we apply our results on, respectively, the dynamicfeedback case and open-loop case. An asymptotic stability result is stated as a special case of the ISSresult (see [19]). Further applications of our results to Lp stability, integral ISS, etc. are possible andare left for later exposition.5.1 Input-to-state stabilityIt was shown in [31] that if an ISS controller is emulated then the ISS property is preserved in a semiglobalpractical sense for the sampled-data system. Detailed proofs were given in [31] only for the case whenEuler method was used to �nd the approximate discrete-time model of the controller (see Remark 2.3),while the case of higher order approximation was only commented on. Below we use the main results ofthis paper to provide a sketch of proof for the case of emulation of dynamic ISS controllers, when anyone-step strongly consistent approximation is used. Suppose that the nonlinear plant_x = f(x; u; dc) (61)can be rendered ISS using the dynamic feedback controller_z = g(x; z)u = u(x; z) ; (62)where f , g, and u are locally Lipschitz. Suppose that the dynamic feedback controller is emulated andthen implemented digitally using a sample and zero order hold, where we use an approximation of thedynamic controller, so that: z(k + 1) = GaT (x(k); z(k))u(k) = u(x(k); z(k)) ; (63)Assume that the approximate discrete-time model of the dynamic controller GaT is one-step stronglyconsistent with the exact discrete-time model GeT (see De�nition 2.5 and Lemma 2.2). Motivated bydiscussions in [5, 23] we introduce the state of the sampled-data system �(t) := (xT (t) xT (k) zT (k))Tfor t 2 [kT; (k + 1)T ). We write (x; z) to denote the vector (xT zT )T . We also assume that:Assumption 5.1 There exists 
g 2 K1 such that given any � > 0 there exists T � > 0 such that forall j(x; z)j � � and T 2 (0; T �) we have:jGaT (x; z)j � 
g(j(x; z)j) : (64)�Remark 5.1 Note that since f and g are assumed to be locally Lipschitz and zero at zero, if we letL > 0 be the Lipschitz constant on the set j(x; z)j � 2�, then we can write that for all j(x; z)j � � andall T 2 (0; ln(2)L ) that jGeT (x; z)j � 2 j(x; z)j :If, in addition, a slightly stronger consistency holds in the following sense: given any � > 0 there existT � > 0 and 
1 2 K1 such that for all j(x; z)j � � and T 2 (0; T �) we have:jGeT (x; z)�GaT (x; z)j � 
1(j(x; z)j) ;then Assumption 5.1 holds (just apply the triangular inequality). This stronger form of consistency isknown to hold for a large class of Runge-Kutta methods (see for instance Theorem 4.6.7 in [30]). �17



Remark 5.2 Since f and u are locally Lipschitz and zero at zero, and Assumption 5.1 holds, the fol-lowing is true: there exist 
1; 
2 2 K1 such that given any strictly positive numbers �1;�2, there existsT � > 0 such that for all T 2 (0; T �) and t� � 0 the solutions of the sampled-data system (61), (63)satisfy: j�(t)j � 
1(j�(t�)j) + 
2(kdck1); 8t 2 [t�; t� + T ] ;whenever j�(t�)j � �1 and kdck1 � �2. This conditions is referred to as uniform boundedness over T(UBT) in [23]. �We can state and prove the following result using Theorem 3.3:Corollary 5.1 If the continuous time system (61), (62) with f , g and u locally Lipschitz is ISS, thengiven any approximate discrete-time model GaT of the dynamic controller which satis�es Assumption 5.1and is one-step strongly consistent with the exact discrete-time model of the dynamic controller GeT , thereexist � 2 KL; 
 2 K such that given any triple of strictly positive real numbers (��;�dc ; �), there existsT � > 0 such that 8T 2 (0; T �), j�(t0)j � ��, kdck1 � �dc , the solutions of the sampled-data system(61), (63) satisfy:j�(t)j � �(j�(t�)j; t� t�) + 
(kdck1) + �; 8t � t� � 0 : (65)�Sketch of proof of Corollary 5.1: Since the continuous time system (61), (62) is ISS, it implies (seeTheorem 1 in [29]) that the system (61), (62) is (V;w)-dissipative, where V is smooth and there exist�1; �2; �3; �4 2 K1; 
1 2 K such that�1(j(x; z)j) � V (x; z) � �2(j(x; z)j)w(x; z; dc) = ��3(j(x; z)j) + 
1(jdcj) (66)�����@V@x ; @V@z ����� � �4(j(x; z)j) :Then it follows from Theorem 3.3, that given any GaT which is one-step strongly consistent with GeT ,and given any (�1;�2;�3; �1) there exists T �1 > 0 such that for all T 2 (0; T �1 ) and jxj � �1; jzj ��2; kdc[0]k1 � �3, the discrete-time model of (61), (63) satis�es:�VT � 1T Z T0 [��3(j(x; z)j) + 
1(jdc(�)j)] d� + �1� ��3(j(x; z)j) + 
1(kdc[0]k1) + �1 : (67)This implies (see Lemma 4 of [21]) that there exists �2 2 KL; 
2 2 K such that if all the assumptions onGaT hold and given any (�4;�5;�6; �2) there exists T �2 > 0 such that for all T 2 (0; T �2 ) and jx(0)j � �4,jz(0)j � �5, kdck1 � �6, the discrete-time model of (61), (63) satis�es:j(x(k); z(k))j � �2(j(x(0); z(0))j; kT ) + 
2(kdck1) + �2; 8k � 0 : (68)From Lemma 2 in [23] it follows that there exist �3 2 KL and 
3 2 K such that given any strictlypositive (�7;�8; �3) there exists T �3 > 0 such that for all T 2 (0; T �3 ) and j�(0)j � �7, kdck1 � �8, thesolutions of the sampled-data system satisfy:j�(k)j � �3(j�(0)j; kT ) + 
3(kdck1) + �3; 8k � 0 : (69)Finally, from Assumption 5.1 it follows that solutions of the sampled-data system are UBT (see Remark5.2 and De�nition 2 in [23]) and then using results in Section 3 in [23], there exists � 2 KL; 
 2 Ksuch that given any GaT which is one-step strongly consistent with GaT and any (��;�dc ; �) there existsT � > 0 such that for all T 2 (0; T �) and j�(t�)j � ��, kdck1 � �dc , the solutions of (61), (63) satisfy:j�(t)j � �(j�(t�)j; t� t�) + 
(kdck1) + �; 8t � t� � 0 ; (70)18



which completes the proof. �It is important to note that we can not use Theorem 3.1 instead of Theorem 3.3 to prove semiglobalpractical ISS of the sampled-data system in Corollary 5.1. Indeed, Theorem 3.1 requires us to impose anadditional condition on disturbances to be uniformly Lipschitz and hence the bound (70) would hold fora smaller set of disturbances (bounded and uniformly Lipschitz) than measurable bounded disturbancesfor which the ISS property is de�ned.A direct consequence of the ISS result is a result on semiglobal practical asymptotic stability, whichis stated in the following corollary. Note that since we will consider the systems which has no externalinput or disturbances, by Remark 2.2, one step weak and strong consistency are the same.Corollary 5.2 If the origin of the continuous time system_x = f(x; u(x; z))_z = g(x; z) (71)is GAS, then given any approximate discrete-time model GaT of the dynamic controller which satis�esAssumption 5.1 and is one-step weakly/strongly consistent with the exact discrete-time model of thedynamic controller GeT , there exists � 2 KL such that given any pair of strictly positive numbers (��; �),there exists T � > 0 such that 8T 2 (0; T �), j�(t�)j � ��, the solutions of the sampled-data system satisfy:j�(t)j � �(j�(t�)j; t� t�) + �; 8t � t� � 0: (72)�5.2 PassivityConsider the continuous time system with outputs_x = f(x; u); y = h(x; u); (73)where x 2 Rn ; y; u 2 Rm and assume that the system is passive, that is (V;w)-dissipative, whereV : Rn ! R�0 and w = yTu. We can apply either results of Theorem 3.1 or 3.3 since u is a piecewiseconstant input, to obtain that the discrete-time model satis�es: for any (�x;�u; �) there exists T � > 0such that 8T 2 (0; T �), jxj � �x, juj � �u we have:�VT � yTu+ �: (74)In ISS applications, adding � in the dissipation inequality deteriorated the property, but the deteriorationwas gradual. However, in (74) � acts as an in�nite energy storage (�nite power source) and hence itcontradicts the de�nition of a passive system as one that can not generate power internally. As a result,conditions which guarantee that � in (74) can be set to zero are very important. These conditions arespelled out in the next corollary:Corollary 5.3 Suppose that the system (73) is strictly input and state passive in the following sense:the dissipation rate can be taken as w(x; y; u) = yTu �  1(x) �  2(u), where  1 and  2 are positivede�nite functions that are locally quadratic. Then given any pair of strictly positive numbers (�x;�u)there exists T � > 0 such that for all T 2 (0; T �), jxj � �x, juj � �u we have:�VT � yTu� 12 1(x) � 12 2(u) (75)�Sketch of proof of Corollary 5.3: Using Proposition 3.4, we see that given any (�x;�u) there existsT �1 > 0 such that 8T 2 (0; T �1 ), jxj � �x, juj � �u we have:�VT � yTu�  1(x)�  2(u) + TK1jxj2 + TK2juj2 ;19
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A AppendixProof of Lemma 2.1: Let strictly positive real numbers (�x;�z ;�dc ;� _dc ;�ds) be given. Let Rz =�z + 1, and let (�x; Rz;�dc ;� _dc ;�ds) generate T � > 0 from the weak consistency of GaT and GEulerT .Let L > 0 be the Lipschitz constant of g on the set where jxj � �x, jzj � Rz, jdcj � �dc , jdsj � �ds .Since g is locally Lipschitz and g(0; 0; 0; 0) = 0, there exists M > 0, such that for all jxj � �x, jzj � Rz,jdcj � �dc , jdsj � �ds , the following holds:jg(x; z; dc; ds)j �M : (76)Let T �1 := minfT �; 1=Mg. It follows from (76) that, for each jxj � �x, jzj � �z, kdc[0]k1 � �dc ,jdsj � �ds and all t 2 [0; T ], where T 2 (0; T �1 ), the solution z(t) of_z(t) = g(x; z(t); dc(t); ds) ; z(0) = z (77)satis�es jz(t)j � Rz and jz(t)� zj � Mt. It also follows from the Lipschitz property of g that for alljzj � Rz, jxj � �x, kdc[0]k1 � �dc , 


 _dc[0]


1 � � _dc , jdsj � �ds and all T 2 (0; T �1 ), we have�����Z T0 [g(x; z(�); dc(�); ds)� g(x; z; dc; ds)]d� ����� � Z T0 L(jz(�)� zj+ jdc(�) � dcj)d�� 12T 2L(M +� _dc) = T 2 ~L ; (78)where ~L := 12L(M +� _dc). SinceGeT (x; z; dc[0]; ds) = z + Tg(x; z; dc; ds) + Z T0 [g(x; z(�); dc(�); ds)� g(x; z; dc; ds)]d� ; (79)the result follows from (78) and the fact that GaT is one step weakly consistent with GEulerT , which impliesthe existence of ~�1 2 K1, such that ��GaT �GEulerT �� � T ~�1(T ) :Finally, by letting �(s) = ~Ls+ ~�1(s) we prove that GaT is one-step weakly consistent with GeT . �Proof of Lemma 2.2: Let strictly positive real numbers (�x;�z;�ds) be given. Let Rz = �z +1,and let (�x; Rz;�ds) generate T � > 0 from the strong consistency of GaT and GEulerT . Let L > 0 be theLipschitz constant of g on the set where jxj � �x, jzj � Rz, jdsj � �ds . Since g is locally Lipschitz andg(0; 0; 0) = 0, there exists M > 0, such that for all jxj � �x, jzj � Rz, jdsj � �ds , the following holds:jg(x; z; ds)j �M : (80)Let T �1 := minfT �; 1=Mg. It follows from (80) that, for each jxj � �x, jzj � �z, jdsj � �ds and allt 2 [0; T ], where T 2 (0; T �1 ), the solution z(t) of_z(t) = g(x; z(t); ds) ; z(0) = z (81)satis�es jz(t)j � Rz and jz(t)� zj � Mt. It also follows from the Lipschitz property of g that for alljzj � Rz, jxj � �x, jdsj � �ds and all T 2 (0; T �1 ), we have�����Z T0 [g(x; z(�); ds)� g(x; z; ds)]d� ����� � Z T0 L(jz(�)� zj)d� � 12T 2LM = T 2 ~L ; (82)where ~L := 12LM . SinceGeT (x; z; ds) = z + Tg(x; z; ds) + Z T0 [g(x; z(�); ds)� g(x; z; ds)]d� ; (83)22



the result follows from (82) and the fact that GaT is one step strongly consistent with GEulerT , whichimplies the existence of ~�1 2 K1, such that��GaT �GEulerT �� � T ~�1(T ) :Finally, by letting �(s) = ~Ls+ ~�1(s) we prove that GaT is one-step strongly consistent with GeT . �
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