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Abstract

We present a general and unified framework for the design of nonlinear digital controllers using
the emulation method for nonlinear systems with disturbances. It is shown that if a (dynamic)
continuous-time controller, which is designed so that the continuous-time closed-loop system sat-
isfies a certain dissipation inequality, is appropriately discretized and implemented using sample
and zero-order-hold, then the discrete-time model of the closed-loop sampled-data system satisfies
a similar dissipation inequality in a semiglobal practical sense (sampling period is the parameter
that we can adjust). We consider two different forms of dissipation inequalities for the discrete-time
model: the “weak” form and the “strong” form. The results are also applicable for open-loop systems.
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1 Introduction

Emulation is a well-established method to design digital controllers for continuous-time plants (see, for
instance [2, 6, 9]). The first step in the emulation method is to design a continuous-time controller for
a continuous-time plant using a certain known continuous-time design method; sampling is completely
ignored at this stage. Then, in the second step, the continuous-time controller is discretized and imple-
mented using sample and hold devices. Digital controllers designed using emulation have been proved to
perform well for a number of control problems under sufficiently fast sampling. The following problems
have been addressed in the literature: stability for linear [5] and nonlinear [3, 15, 24, 26, 33| plants, £,
stability of linear systems [5], input-to-state stability (ISS) of nonlinear systems [27, 31] and adaptive
stabilization of nonlinear systems [10]. Also, ideas similar to emulation were exploited in [25], where the
dissipativity property of continuous-time nonlinear systems is investigated using discrete observation of
its storage function. For more details on dissipation inequalities see [11, 14, 17, 21, 22, 27, 31, 32] and
references therein.

In this paper we generalize and unify the known results on emulation design in the literature, by
considering preservation of general dissipation inequalities under sampling in the context of emulation
design of dynamic state feedback controllers (preliminary results of this paper can be found in the
conference papers [13, 19]). The nonlinear plants and dynamic state feedback controllers that we consider
only need to satisfy a local Lipschitz condition. Static state feedback and open-loop results follow as
corollaries from the dynamic state feedback case. Moreover, the dissipation property we consider is
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rather general and its special cases are dissipation inequalities used to investigate stability, L, stability,
passivity, input-to-state stability, integral input-to-state stability, forward completeness, detectability,
etc. (see for instance [11, 28, 32]). Applications of our results to investigation of input-to-state stability
and passivity properties are presented in this paper to illustrate the generality of our approach.

Since, in general, the exact discretization of a dynamic controller can not be computed exactly, we
use an approximate discrete-time model of the controller. In order to obtain a valid approximate model,
the discretization of the dynamic controller should be carried out carefully. We introduce properties
that the discretized controller should satisfy in order to have preservation of the dissipation inequality
under sampling. These properties, which are called one-step strong and weak consistency, are specified
in Definitions 2.4 and 2.5 and sufficient conditions for these properties to hold are given in Lemmas 2.1
and 2.2 respectively, and are proved in the Appendix.

In our main results we explore two types of dissipation inequalities for the discrete-time model
of the closed-loop sampled-data system: the weak and strong form. In Definition 2.6 and 2.7, we
introduce properties associated to the weak and strong dissipation inequalities. A relationship among
the properties is given in Theorem 2.1. For the weak dissipation result to hold, the discretized controller
needs to satisfy the one-step weak consistency condition (Definition 2.4) and the disturbances need to be
uniformly Lipschitz (Theorem 3.1). It is shown in Proposition 3.2 that uniformly Lipschitz disturbances
can be obtained by filtering bounded measurable disturbances through a strictly proper input-to-state
stable (ISS) filter. The strong dissipation inequality holds if the discretized controller satisfies the one-
step strong consistency condition (Definition 2.5) and in this case disturbances are allowed to be only
measurable (see Theorem 3.3). In general, strong and weak dissipation inequalities do not imply each
other and this is illustrated by Example 3.1. Similar results then follow for the static feedback and
open loop cases. The generality of our approach is illustrated by two applications of our results to
investigation of input-to-state stability of sampled-data systems with emulated controllers and results
on preservation of passivity under sampling. A special case of the input-to-state stability results is a
result on preservation of stability under sampling, which is proved for a much general situation than any
of the results in the literature that we are aware of (see [3, 5, 24, 33]).

Our main results are semiglobal and practical in nature and their important feature is that the
required sampling period can be computed using our method, although it may be conservative (smaller
than necessary) which is a consequence of the conservative Lipschitz bounds that we are using in the
proofs. This is a common problem in numerical analysis literature [30] and the emulation design in
sampled-data systems [10, 33].

The paper is organized as follows. In Section 2 we present preliminaries. Main results are stated and
discussed in Section 3. Proofs of the main results and their applications are presented in Section 4 and
Section 5 respectively. Finally, the conclusions are given in the last section. Sufficient conditions for
one-step weak and strong consistency properties are proved in the Appendix.

2 Preliminaries

A function v : R>g — R>¢ is of class-K if it is continuous, zero at zero and strictly increasing; it is of
class-K if it is of class-K and is unbounded. A continuous function 3 : R>¢ x R>¢ — R> is of class-KL
if 8(-,7) is of class-K for each 7 > 0 and (s, -) is decreasing to zero for each s > 0. For a given function
d(), we use the following notation d[t,ts] := {d(t) : t € [t1,t2]}. If t1 = kT, t2 = (k + 1)T, we use the
shorter notation d[k], and take the norm of d[k] to be the supremum of d(-) over [kT, (k + 1)T'], that is
|d[k]||oc = ess SUPre[kT,(k+1)T] |d(T)].

Consider the continuous-time nonlinear plant model:

i = f(z,u,d,,dg) (1)
y= h(xau:dc:ds) ; (2)



with the dynamic state feedback controller:

z = g(xazadc:ds) (3)

u = U(ﬂf,Z,dC,ds) 3
where x € R™, z € R", u € R™ and y € RP are respectively the state of the plant, state of the
controller, control input and output of the plant. d. € R" and ds € R" are respectively “continuous”
and “sampled” disturbance inputs to the system. The reason for distinguishing between d. and dj is that
their role is different in obtaining the discretization of the controller. d. is assumed to be a Lebesgue
measurable function, while ds is assumed to be constant during sampling intervals, when computing
the discrete-time model of the controller. For instance, d. can be a measurement noise modeled as a
Lebesgue measurable function, while d; may model the computation errors due to finite word length
effects in the digital controller. Moreover, separate investigation of d. and d; yields different conditions,
which explain when it is justified to assume (when discretizing the controller) that all disturbances are
constant during sampling intervals.

It is assumed that f, g, h and u are locally Lipschitz. We also assume that f(0,0,0,0) = 0,
9(0,0,0,0) = 0, h(0,0,0,0) = 0 and u(0,0,0,0) = 0. The controller (3) covers the case of dynamic
output feedback:

2 = g(yizidc7ds) = g('fL‘, 27 dcids)
(yazadcads) = 'U/(.'L',Z,dc,ds) 3 (4)

I3

u =
where we assume that the feedback system (1), (2), (3) is Lipschitz well posed, that is the equations:

y = h(w,u(y,z,dc,ds),dc,ds)
u=a(h(z,u,d.,dys), z,d.,ds)

have unique solutions y € RP, u € R™ so that (1), (2) and (4) can be written in the form n = F(n, d., ds),
Y = H(n,de,ds) where 5 := (27 2T)T 4 := (y7 uT)T and F and H are locally Lipschitz.

The following definitions are used in the sequel.

Definition 2.1 The system (1), (2), (3) is said to be (V,w)-dissipative if there exist a continuously
differentiable function V : R" x R": — R, called the storage function, and a continuous function
w: R x R" x R% x R" — R, called the dissipation rate, such that for all x € R",z € R"=,d. €
R, ds € R" the following holds:

O Jwuta, 2, de.da). derds) + O g, 7, deyd) < wla, 2, devdy) )

Remark 2.1 Dissipation inequality is sometimes expressed in terms of an integral, the result of inte-
grating (5) along the solutions (see, for instance [32]), which takes the following form:

Vi(x(t), 2(t) = V(z(to), 2(to)) < /t w(z(7), 2(7), de (1), ds (7))dT . (6)

In this form, no differentiability assumptions are imposed on'V (see, for instance, [82]). We will concen-
trate mainly on the differential form of dissipation inequalities in this paper, but the same proof technique
can be used to prove our main results using the integral form (6). We also note that it is usually assumed
in the literature that V is positive semidefinite or positive definite. We do not use these conditions on
V' in Definition 2.1 since they are not needed for the proofs. |

Definition 2.2 The system & = f(z) is globally asymptotically stable (GAS) if there exists 3 € KL such
that the solutions of the system satisfy |z(t)| < B(|zs|,t), V., € R*,Vt >0 . [ |



Definition 2.3 The system & = f(x,d) is input-to-state stable (ISS) if there exist 3 € KL and v € K
such that for all z, € R"™ and all d € L, the solutions of the system satisfy:

[z(®)] < B(ze] 1) +(lldll), VE=0. (7)
|

Emulation procedure: Suppose that, as a first step in the emulation design, we designed a controller
(3) for the plant (1), (2) in the continuous-time domain, so that the closed-loop continuous-time system
is (V,w)-dissipative.

As a second step, we discretize the controller and implement it using sample and zero order hold
devices. The discretization of the controller is carried out as follows. First, we consider an auxiliary
system where the state measurements are assumed to be constant during sampling intervals z(t) =
xz(kT) =: z(k) and ds(t) = ds(kT) =: ds(k) for all ¢ € [kT, (k + 1)T) in the differential equation (3),
where T' > 0 is the sampling period. Consider the following initial value problem:

() = g(a(k), (1), dc(1), ds (F)) 2o = z(k) (8)

where z(k), z(k), d.[k], ds(k) are given. Denote the solution of the initial value problem (8) as z(¢), and
then we obtain the exact discretization of the controller (3) (see also [5]):

(k+1)T

z(k+1) = z(k) + /kT 9(x(k), 2(7), de(7), ds (k))dT =: G (2(k), 2(k), d.[K], ds(F)) (9)

u(k) = u(z(k), 2(k), dc(k), ds(k)) -

Note that in general the discretization (9) can not be implemented directly since G5 in (9) is usually im-
possible to compute exactly (since we need to solve the nonlinear initial value problem (8) explicitly over
one sampling interval), so we need to use instead an approximate discrete-time model of the controller:

z(k +1) = Gr(x(k), 2(k), de(k), ds(F)) (10)

);
u(k) = u(z(k), 2(k), de (), ds(F))

which is obtained from (8) using one of the numerical integration methods (e.g. Runge-Kutta). For
instance, if we use the forward Euler method, we obtain G%(z,z2,d.,ds) = = + Tg(z,2,d.,ds). It is
obvious that in general we will have to use a sufficiently small sampling period T, since the approximate
discrete-time model (10) is usually a good approximation of the exact discrete-time model (9) typically
only for small T

The sampled-data closed-loop system consists of the continuous-time plant (1), (2) and the controller
(10), which is between a sample and zero order hold device. In the sequel, we use the discrete-time
model of this sampled-data system, which consists of (10) and the exact discrete-time model of the
plant, which is obtained as follows. We assume that u(t) = w(kT) =: u(k), ds(t) = ds(kT) =: ds(k) for
all t € [kT, (k+ 1)T] and consider the initial value problem

&(t) = f(x(t), u(k), de(t), ds(k)) , zo = (k) (11)

where z(k), u(k), d.[k] and ds(k) are given. The output y is measured only at sampling instants kT,

k > 0. Denote the solution of the initial value problem (11) as z(t). Then the exact discrete-time model
of the plant can be written as:

(k+1)T

z(k+1) = z(k) + /kT f(@(7), u(k), de(7), ds(k))dr =: Fr(z(k), u(k), dc[k], ds (k) (12)

y(k) = h(z(k), u(k), de(k), ds(F)) -

The discrete-time model of the sampled-data closed-loop system consists of (10) and (12).

The sampling period T is assumed to be a design parameter which can be arbitrarily assigned. In
practice, the sampling period T is fixed and our results could be used to determine if it is suitably small.



We emphasize that Fr in (12) is not known in most cases, and G5 in (9) can not be computed exactly,
so we need to use G% in (10) instead. Similarly to [22] we will think of Frr, G5 and G% as being defined
globally for all small T', even though the initial value problem (11) and (8) may exhibit finite escape
times. We do this by defining Fr and G5 arbitrarily for (x(k), z(k), d.[k],ds(k)) corresponding to the
finite escapes and noting that such points correspond only to states and inputs of arbitrarily large norm
as T — 0, since f and g are assumed locally Lipschitz (and hence locally bounded). So, the behavior
of Fr and G% will reflect the behavior of (11) and (8) respectively, as long as (z(k), z(k), d.[k], ds(k))
remain bounded with a bound that is allowed to grow as 7' — 0. This is consistent with our main
results that guarantee semiglobal dissipativity properties in the sampling period, that is as ' — 0 the
set of states and inputs for which a dissipation inequality for the discrete-time model (10), (12) holds is
guaranteed to contain an arbitrary large neighborhood of the origin.

In order to prove our main results, we need to guarantee that the mismatch between the exact
discrete-time model of the controller (9) and its approximation (10) is small in some sense. We define
two consistency properties that are used to limit the mismatch. Different forms of the consistency
property are used in numerical analysis literature (see Definition 2 [20], Definition 1 [22] and Definition
3.4.2 [30]).

Definition 2.4 (One-step weak consistency) The family G% is said to be one-step weakly consistent
with G% if given any quintuple of strictly positive real numbers (AZ,AZ,AdC,Ad-C,Ads), there exist a
function p € Koo and T* > 0 such that, for all T € (0,T*), |z| < Ay, |2] < A,, |ds] < Aq, and functions

dc(-) that are uniformly Lipschitz and satisfy ||d.[0]]|, < Aq4. and ‘ C[O]H <A, , we have

G —G7| <Tp(T) . (13)
|
A sufficient condition for one-step weak consistency is the following (the proof is given in the Appendix):

Lemma 2.1 Consider G5 and G& of the controller (3). If G% is one-step weakly consistent with GEvler
where G%“le’" =z+Tyg(x,2,de,ds), then G% is one-step weakly consistent with G&. ]

In the following, we consider a more specific class of controllers that have the following form:

z = g(w,z,ds)

= wu(x,z,ds) . (14)

We assume that g and u are locally Lipschitz, ¢(0,0,0) = 0 and u(0,0,0) = 0. In a similar manner as
for controller (3), we define the exact discrete-time model of the controller (14) as:

(k+1)T

z(k+1) = 2(k) + /kT 9(x(k), 2(1), ds (k) dr =: G (2(k), 2(k), ds () (15)

u(k) = u(z(k), z(k),ds(k)) ,
and its approximate discrete-time model:

z(k+1) = Gp(a(k), 2(k), ds(k))
(

u(k) = u(x(k), z(k), ds(k)) . (16)

Definition 2.5 (One-step strong consistency) The family G is said to be one-step strongly con-
sistent with G5 if given any quadruple of strictly positive real numbers (Ay, A, Aq,, Aqa,), there exists
a function p € Ko and T* > 0 such that, for all T € (0,T%), |z| < A,, 2] < AL, ||dc[0]]|, < Aq.,
|ds| < Aq,, we have

Gy — Gyl < To(T) . (17)
|



A sufficient condition for one-step strong consistency is the following (the proof is given in the Appendix):

Lemma 2.2 Consider G5 and G% of the controller (14). If G% is one-step strongly consistent with
G%“le’", where G%“le’" i=z+Tyg(z,z2,ds), then G% is one-step strongly consistent with G5. ]

Remark 2.2 Consistency properties specify how the controller should be discretized for the emulation
procedure to yield desired results. Lemmas 2.1 and 2.2 present general checkable conditions under which
one-step weak and strong consistency properties hold. It is important to emphasize that if the exact
discrete-time model of the controller can be obtained, then we do not have to use an approximate discrete-
time model of the controller and consistency definitions become superfluous, i.e., they hold automatically.
Two important such cases were considered in the literature: emulation for linear systems was considered
in [5] and emulation for static state feedback controllers was considered in [19]. However in linear system
case, although the exact discrete-time model is computable, one may still implement its approzimation.
Finally, note that the weak and strong consistency definitions become equivalent when G5 and G are
independent of d.. |

Remark 2.3 Note that the Euler approximation is one-step (weakly or strongly) consistent whenever
the second condition in Lemma 2.1 or 2.2 is satisfied, since the first condition automatically holds. Also,
if we want to implement the Euler approximate model of the controller, that is G5 = z + Tg(z, 2z,ds),
then we can regard the closed-loop system (1), (2) and (3) as an augmented plant of the form

:1.: = f(a:7u)dc)ds)

= w
controlled by the static state feedback controller of the form:

u = u(z, z,ds)
= g(xazads)

which is implemented between the sample and zero order hold device(s). Note that, this form is valid
only when g is independent of d.. In this case, one can use results in [19] on emulation for static state
feedback controllers. However, if we want to use an approximate discretization G other than Euler, this
method is not applicable and we need to use results proved in this paper that use the notion of consistency
for general discretizations. |

Remark 2.4 There is a strong motivation to consider controller discretizations other than FEuler, al-
though even the simple Euler discretization may sometimes yield satisfactory performance (see for in-
stance [8, 22]). Indeed, a number of studies have shown that the Euler approzimation of the controller
dynamics is not always appropriate to use. For instance, the FEuler approximation is, in general, not
recommended to use for singularly perturbed systems that exhibit two-time scale behavior (see [18] and
[4]). Using a comparative study in [7], the authors showed that the Tustin (bilinear) approzimation is
superior to Euler for the particular application. Moreover, even for linear systems, some examples in
[1, 12] indicate that if the sampling period is given and fized, then most of the classical discretization
methods (such as Euler) might fail to yield acceptable performance or even stability. For linear systems,
this has led to more advanced techniques for controller discretization that obtain the approximate model
as a solution of an optimization problem (see [1] for more details). Similar results for nonlinear systems
are yet to be proved.

The consistency properties that we use provide a general and unified framework for investigation of
a range of different controller discretizations. Moreover, they generalize in a natural way the consis-
tency definitions commonly found in the numerical analysis literature that apply to ordinary differential
equations without inputs (see for instance Definition 3.4.2 in [30]). A range of different consistent dis-
cretization can be defined using the results in [16]. Indeed, if the controller dynamics do not depend on
d. then the results in [16] can be used to write the solution of the initial value problem (8) as a series
expansion in the sampling period T. Finite truncations of these expansions give a range of approximate
discretization of the controller that are one step consistent. Moreover, classical Runge-Kutta integration
schemes can also be used to obtain one step consistent approzimations (see for instance [30]). u



We also introduce the following properties (Properties P1, P2 and P3), in order to precisely state
the main results.

Definition 2.6 Let V' be continuously differentiable and w be continuous. The system (10), (12) is said
to have Property P1 (respectively, have Property P2) if given any 6-tuple of strictly positive real numbers
(Az, A, Ag, Ay, Ag,,v), there exists T* > 0 such that for all T € (0,T*) and all |z] < A,, [2] <A,
|ds| < Aq, and for all disturbances d.(-) that satisfy ||d.[0]]| . < Ag., dc[O]H < A the following
holds: -

F cy Ws )y Ue s Ws /s 7 3 <5 e, Ug - ) 1 T
V(Fr(z,u(z,z,dc,ds),d[0],ds), G (2, z,dc, ds)) — V(z, 2) < _/ w(z, 2, do(F), d)dr +v . (18)
T T J,
(respectively the following holds for the system (10), (12):
V(Fr(z,u(z,z,dc,ds), dc[0],ds), G (2, 2,dc, ds)) — V(z, 2)
T

oo

<w(a,zded)+v).  (19)
|

Definition 2.7 Let V' be continuously differentiable and w be continuous. The system (10), (12) is said
to have Property P38 if given any quintuple of strictly positive real numbers (A, A,, Ay, Ag,,v), there
exists T* > 0 such that for all T € (0,7%) and all |z| < Ay, 2| < A, ||dc[0]]| < Aq., |ds] < Ag, the
inequality (18) holds. [ ]

Remark 2.5 We defined several different properties (Properties P1, P2 and P3) since each of them
may be useful in a particular situation. For instance, Properties P1 or P2 are useful when the input
d. is filtered through an input-to-state stable filter (see Proposition 3.2) or when all inputs are constant
during the sampling intervals (see application of our results to preservation of passivity under sampling
in Section 5). On the other hand, Property P38 is useful when the disturbance d. is only assumed to be a
measurable function of time, which is important, for instance, in investigation of input-to-state stability
(see Section 5). [ ]

The following preliminary result that is proved in Section 4 shows that Properties P1 and P2 in
Definition 2.6 are equivalent.

Theorem 2.1 The system (10), (12) has Property P1 if and only if it has Property P2. |

The main difference between the Properties P1 and P3 (or P2 and P3, since Properties P1 and P2
are equivalent) is that Property P1 requires the disturbances d. to be Lipschitz, uniformly in T, for
the inequality (18) to hold, whereas the inequality (18) in Property P3 must hold for non-uniformly
Lipschitz disturbances as well. The dissipation inequalities in Properties P1 and P2 (since they are
equivalent) are said to have the “weak” form (since they hold for a smaller class of disturbances) and
the dissipation inequality in Property P3 is said to have the “strong” form (since it holds for a larger
class of disturbances).

3 Main results

In this section we state the main results (Theorem 3.1 and 3.3) which assume that the continuous-time
system is (V, w)-dissipative. Theorem 3.1 states that if one-step weak consistency holds and disturbances
d.(-) are uniformly Lipschitz, then the (equivalent) Properties P1 and P2 hold for discrete-time model of
the sampled-data system. Since in most cases we do not know whether the disturbances are uniformly
Lipschitz or not, in Proposition 3.2 we prove that if we filter a bounded measurable signal using a strictly
proper input-to-state stable filter, we obtain a filtered signal which is bounded and uniformly Lipschitz.
If disturbances are only measurable (but not uniformly Lipschitz) then the inequality (19) may not hold
in a semiglobal practical sense while the inequality (18) still holds (see Example 3.1). In Theorem 3.3
we show that for a smaller class of controllers, if d.(-) are measurable (but not uniformly Lipschitz) and
one-step strong consistency holds then the discrete-time model has Property P3.



Theorem 3.1 (Weak form of dissipativity) Let G% (10) be any approzimate discrete-time model of the
controller (3), which is one-step weakly consistent with the exact discrete-time model of the controller
G5 (9). If the system (1), (2), (3) is (V,w)-dissipative, then the system (10), (12) has Property P1
(equivalently, Property P2). |

Note that Properties P1 and P2 require d.(-) to be uniformly Lipschitz. The following example shows
that indeed the uniformly Lipschitz condition on d.(-) is necessary, since the inequality (19) may not
hold if d.(-) is not uniformly Lipschitz.

Example 3.1 [19] Consider the continuous-time system @ = u(z) + d. = —x + d., where z,d. € R,
Using the storage function V = 1%, the derivative of V is V = —2® +zd. < —32*+ 1d2, and the system

3%
is ISS. It was shown in [19] that if a family of bounded disturbances d.(t) = cos (%) is considered,
then the inequality ATV < —%9172 + %dz + v does not hold in a semiglobal practical sense, which implies
that Property P2 does not hold! This is due to the fact that the family of disturbances is not Lipschitz,

uniformly in T, since Hdc‘ = 1/T. This illustrates that, in general, the Lipschitz condition, uniform

o0
inT, on d.(-) in Theorem 3.1 is necessary for the result to hold. A

The following result shows that if we can filter any bounded measurable disturbances using a strictly
proper input-to-state stable filter, then the filtered disturbances are bounded and uniformly Lipschitz.
This further motivates Theorems 2.1 and 3.1 that require disturbances to be uniformly Lipschitz.

Proposition 3.2 Consider any nonlinear filter:

é = f(f, dc) (20)
v="h() . (21)

which is input-to-state stable with respect to input d. and where f and h are locally Lipschitz. Then,
given any d.(-) € Lo and any & € R™ we have that the output v(:) is bounded, that is v(:) € L.
Moreover, 0() € Lo, which implies that there exists L > 0 such that |v(t1) — v(t2)| < L|t1 — 2|, Vty1, ta.

|

The use of filters in sampled-data systems is standard (see for instance [5]). In particular, filters that
are strictly proper, stable, linear and time invariant:

€ = A¢ + Bd, (22)
v=0C¢, (23)

were considered in [5] in the context of £, stability of linear sampled-data systems. In this case, we
have that the filter satisfies all conditions of Proposition 3.2 and consequently for any &, and d. € L
we have that v, v € L.

Example 3.1 showed that if disturbances d.(-) are not uniformly Lipschitz, then Properties P2 may
not hold. It is of interest to investigate conditions, under which Property P3 still holds, for the case
when d.(-) are not uniformly Lipschitz. To prove a general result for this case it is necessary to restrict
our attention to the controllers of the form (14) (see Example 3.2 below). Note that the controller (14)
does not have d.(-) as its input and the following example shows that this is necessary in general if we
want to prove that the discrete-time model of the sampled-data system has Property P3.

Example 3.2 [19] Consider the system & = u, where u = —d,, where d.(0) =0 and d.(t) =1, V¢t > 0.
The storage function that we consider is V(x) = x, so that the derivative: %—‘;(—dc) = —d,, and hence the
dissipation rate is w(z,d.,ds) = —d.. Since u is sampled and d.(0) = 0, we have that z(t) = 0,Vt € [0, T
and so AV/T = 0. On the other hand fOT’w(dc(T))dT = —T. Hence, if Property P38 was hold, then we

would obtain 0 < —1 4+ v, which is not true for small v. A



Compared to Theorem 3.1, the following result on strong form of dissipativity considers a larger class
of measurable disturbances d..

Theorem 3.3 (Strong form of dissipativity) Let G5 (16) be any approzimate discrete-time model of the
controller (14), which is one-step strongly consistent with the exact discrete-time model of the controller
G5 (15). If the system (1), (2), (14) is (V,w)-dissipative, then the system (12), (16) has Property P3.
|

Two important special cases of our main results are the static state feedback and open-loop system.
All of the results given below follow directly from the more general case of dynamic state feedback and
we describe below the connections.

3.1 Static state feedback results
The static state feedback:
u=u(z,d.,ds) (24)
is a special case of (3), where n, = 0. Similarly, the controller:
u=u(x,ds) (25)

is a special case of the controller (14). Obvious changes are introduced in definitions of Properties P1,
P2 and P3 to cover the static state feedback case and we list them below for ease of reference. The
inequality (5) in the (V, w)-dissipativity property is replaced by

ov
Ox
The discretized controllers of (24) and (25) take respectively the following forms:

f(wau(wadmds)adc’ds) < w(waduds) . (26)

u(k) = u(z(k),dc(k),ds(k), k>0, (27)
uk) = u(z(k),ds(k)), k>0, (28)

and they are implemented using a sample and zero order hold. As already indicated in Remark 2.2, the
consistency properties are always satisfied since the controller has no dynamics. Since n, = 0, we omit
all conditions on z variable in Properties P1, P2 and P3. Consequently, the inequalities (18) and (19)
are respectively replaced by the following inequalities:

V(FT(xau(xadcadsfl)jadc[o]ads)) V( ) < %/0 U)(:I?,dc(T),ds)dT + v, (29)

and

V(Fr(z,u(z,d.,ds),d.[0],ds)) — V()
T

<w(z,de,ds) +v . (30)

Direct consequences of Theorems 3.1 and 3.3 are the following corollaries.

Corollary 3.1 If the system (1), (2), (24) is (V,w)-dissipative, then the exact discrete-time model (12),
(27) of the system has Property P1 (equivalently, Property P2). [ ]

Corollary 3.2 If the system (1), (2), (25) is (V,w)-dissipative, then the exact discrete-time model (12),
(28) of the system has Property P3. [ |

Example 3.1 (cont’d) Note that since the state feedback of the system in Example 3.1 is static and it
does not depend on d., all conditions of Corollary 3.2 are satisfied and the exact discrete-time model has
Property P3. A



3.2 Open-loop configuration results

Besides the static feedback results, the results on preservation of dissipation inequalities under sampling
for open-loop systems are also a direct consequence of our main results on dynamics state feedback
controllers. Indeed, the open-loop systems can be viewed as a special case of “closed-loop” systems,
with m = 0 and n, = 0. The continuous-time system (1), (2) can be rewritten as

Y

(:E,dc,ds) = f(a:,u,dc,ds) (31)
dy) := h(z,u,d,.,d,) , (32)

and the control u can be treated in the same way as the disturbance d;.

T

Il
=

Y z,d,,

where d, := (u” dI)T
For ease of reference we list the changes needed in Properties P1, P2 and P3 to cover the open-loop

case. We replace (5) of the (V,w)-dissipativity property with

av

%f(xauzdc:ds) Sw(xauzdc:ds) ' (33)
Since there is no controller in this case, the consistency properties are superfluous. The exact discrete-
time model of the open-loop system is given by (12). The statements of Properties P1, P2 and P3 are
changed in the following way: “... given any quintuple of strictly positive numbers (A,, Ay, Ag., Ay, ,v)
there exists T* > 0 such that ...”. The inequalities (18) and (19) are respectively replaced by the
following inequalities:

V(Fr(z,u,d.[0],ds
T

) —Viz) < %/0 w(z,u,de(7),ds)dr + v, (34)

and

V(FT(QT,’LL, dc[o], ds)) — V(QT)
T

<w(z,u,de,ds) +v . (35)
The following results are direct consequences of our main results.

Corollary 3.3 If the system (31), (32) is (V,w)-dissipative, then the exact discrete-time model (12) of
the system has Property P1 (equivalently, Property P2). |

Under slightly stronger conditions we can prove a stronger result that is useful in some situations:

Proposition 3.4 If the system (31), (32) is (V,w)-dissipative, with % being locally Lipschitz and
%(0) = 0, then given any quintuple of strictly positive real numbers (A,, Ay, A4, A, Ay, ), there
exist T* > 0 and positive constants K1, Ko, K3, K4, K5 such that for all T € (0,T*) and all |z| < A,,

lu] < Ay, |ds| < A4, and functions d.(-) that are uniformly Lipschitz and satisfy ||d:[0]]| ., < Aa.,
HdC[O]H < A, , we have for the exact discrete-time model (12) of the system:

[

V(FT(QT,’LL, dc[o], ds)) — V(QT)
T

<w(z,u,de,ds) + T (Klng + KQ\u|2 + K3\ds‘2 + Ky ||dc[0]||iO + K5 ‘

. 2
i) - o)
o0
[ |
Analogous to Theorem 3.1, we need the uniformly Lipschitz condition on d.(-) for Corollary 3.3 and
Proposition 3.4 to hold. For the case when d.(+) is not uniformly Lipschitz, results similar to Theorem 3.3

are stated in the following. Note that in this open-loop case, for either the weak or strong dissipativity
result, there is no dependency of control on d,., since the control is an external input.

10



Corollary 3.4 If the system (31), (32) is (V,w)-dissipative, whereas d.(-) is measurable but not nec-
essarily uniformly Lipschitz, then the exact discrete-time model (12) of the system has Property P3.
|

Proposition 3.5 If the system (31), (32) is (V,w)-dissipative, with % being locally Lipschitz and
%(0) = 0, then given any quadruple of strictly positive real numbers (A, Ay, Aq.,Ag,) there exist
T* > 0 and positive constants K1, Ko, K3, K4 such that for oll T € (0,T*) e Jul <A,

ldc[0]]| . < Ag., and |ds| < Aq, we have for the exact discrete-time model (12) of the s_ystem:

V(FT(:E’U) dC[O]a ds)) - V(.’E)
T

T
<7 [ (). dode+ 7 (Kilol? + KalulP + Ka |02, + Kado ).
0

4 Proofs of main results

Proof of Theorem 2.1:
(P1) = (P2) Suppose that Property P1 holds. Let (A, A, Aq,, A, Ag,, v) be given and let Ty > 0

(from Property P1) be such that for all [z| < A,, |2| < A, ||d:[0]]| < Ad., ||d O]H <A lds] < Ag,
and all T' € (0,7T7) the following holds:

AV 1 T Va
- < v
7 < T/o w(z, z,d.(1),ds)dT + 5

(37)
< w(z,z,d.,ds) -|——+ / w(z, z,d.(7),ds) — w(z, 2,d.,ds)| d7

where the second inequality was obtained by adding and subtracting w(z, z,d.,ds). Since d.(-) is uni-
formly Lipschitz with Lipschitz constant A; , we can write |d.(7) —d.| < A; 7. Moreover, since w is
continuous, it is uniformly continuous on compact sets, and given any € > 0 there exists Ts > 0 such
that for any T € [0, T4, 2] < Ag, [2] < As, [[def0]]|o. < A, ‘ 'C[O]H < Aj, |dy| < Ay, we have that

w(z,z,d.(1),ds) —w(z,2,dc,ds)| < e. Let e = % and let this fix T,. Let T = mln{Ts,T }. Then

using (37) we have that for all T € (0,T5), |z| < A,, |2 < A., |de[0]ll. < Ag., H <A,
‘ds‘ SAds:
A w w
Tvgw(a:,z,dc,d +—+ / o dr = w(z, 2, d., d)+%+%, (38)

which shows that Property P2 holds.

(P2) = (P1) follows a similar way as the proof for (P1) = (P2), to show that if Property P2 holds,
then Property P1 holds. u
Proof of Theorem 3.1: To shorten the notation we define u := u(x,2,d.,ds), f = f(z,u,d.,ds),
g:=g(z,2,d.,ds), Fr := Fr(z,u,d:[0],ds), G5 := G%(x, 2,d.[0],ds) and G% := G%(z,z,d., ds).

Definition of T*: Suppose that the continuous-time system (1), (2), (3) is (V, w)-dissipative, that is for
allz € R", z € R**, d. € R", d; € R™, the inequality (5) holds. Let G% be one-step weakly consistent
with G%, and let a 6-tuple of strictly positive real numbers (A,, A, Ag., A, Ag,, v) be given. Let
these data generate p € Ko, from the definition of one-step weak consistency. Define R, := A, + 1 and
R, := A, + 1. Let L > 0 be the Lipschitz constant of f and g on the sets where |z| < R,, |z| < R;,

11



|d.| < Ag,, |ds] < Ag,, and let b > 0 be a number that satisfies max{ % ,
|z] < Ry, 2| < Rs, |de| < Aq., |ds| < Ag,. Define A:= A, + A, + Ay, + Ag,.

We assume without loss of generality that v < 1 and b > 1 and define

Ty = min{%,p_l (%)} . (39)

< 1. Let T > 0 be such that the following holds:

oV
Oz

| f151gl} < b for all

* 1 1
Note that T} < 57 < 5

exp(LT)-1-LT 1 v .
ZA - < Z .
T + 2AdcT <30 VT € (0,Ty) (40)

bL {(A +1)

It is easy to see that such a T always exists. Let x; := z+6,T f and z; := 2+6-Tg where 61,0, € (0,1).
Let T3 > 0 be such that:

b v _ov <Z (41)
Oz (z1,24+Tg) Oz (z,2) 8
for all T € (0,T3), |z| < Ry, |2| < R-, |ds| < Aq,, and d, () such that ||d,[0]||,, < Ag,, and ‘ dC[O]H <

A .- The required T3 always exists, which can be proved as follows. From the continuity of %,

which implies that 2% is uniformly continuous on the compact sets, and since |z; —z| < T'|f| < Tb
and |(z+Tg) —z| = Tlg|] < Tb , it follows that given any e¢ > 0 there exists T. > 0 such that

‘g—g ormite) — B W)‘ < e, VT € (0,T.), || < Ry, |2| < Re, |de| < Ay, and |ds| < Ag,. Hence, we

can choose €* := v/(8b) and let this fix the desired Ty := T+ for which (41) holds.

In exactly the same way we choose T > 0 such that

ov ov v
JAS N e )
0z (#,21) 0z (2,2) 8
for all T € (0,T}), |z| < Ry, 2| < R-, |ds| < Aq,, and d, () such that ||d.[0]||., < Ag,, and ‘ dC[O]H <
A . Finally, we define =
T* = min{T}, T, T35, T} } . (43)

Proof that Property P1 (P2) holds: We will show first, that Property P2 holds. Consider arbitrary
T e (0,T%), |z| < Au, |2| < As, |ds| < Ag,, and d,(-) such that ||d.[0]]| . < A, and ‘ dC[O]H <A

lloo

Since T < T* < o, the solutions z(t) and z(t) of the initial value problems (11) and (8) exist and
z(t)] < Ay + 3, [2(t)| <A, + 1, Vt € [0, T], which implies

1
|FT‘SAm+§ < Rza

Z (44)
|G’3“SAz+§ < R, .
From the second inequality in (44), one-step weak consistency and the choice of T}* we have:
G7| < |G7]+[GF - GT

1

< A+ 5 + p(T7)
1 1

< AL+ -+

< : T+ 5 + 5

= R.. (45)
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From the local Lipschitz properties of f and g and the fact that they are zero at zero, we can write

#(r)—a| < (A+Dfexp(Lr) ~ 1], ¥r € [0,T] (46)
[2(1) —z| < (A+1)[exp(Lt)—-1], VT €[0,T] (47)

and since d.(+) is uniformly Lipschitz, with Lipschitz constant A , we can write that for all 7

|de(7) — d.| = |do(7) — d.(0)] < Ad'cT . (48)
We consider
A_V _ V(FTaG%‘) B V(:L‘,Z)
T T
ov ov 1
= = -— — Fr.G%) — Tf, T
5 (w)f+ P (z,z>g+T{V( 7,GY) = V(@ +Tf,z+ g)}
N ~ _ 5
1 oV oV
+ R V(@+Tf,2+Tg)—V(z,z) — — Tf— — Tgs , (49)
T 833 (x7z) 82’ (Ct72)

~ v

3
where the second equality holds since we just added and subtracted %V(m +Tf,2+Tyg), %—‘; (2,2) f and
av
EERICR

Term 1: It follows from (V, w)-dissipativity of the continuous-time system (1), (2), (3) that:

)9 Now we bound each term in (49).

ov
Oz

o
0z

f+
(2:2)

g <w(z,z,de,dy) . (50)
(2,2)

Term 2: Applying the Mean Value Theorem to the Term 2, we have by adding and subtracting
AV (z+Tf.G):

1
T{V(FT,G%)—V(JZ—FTf,z—}—Tg)}
1] ov 1]ov (51)
<= |5 Fr—(x+Tf)+ = |5 GT — (2 +Tyg)|,
T 9 |5, a2 T 02 | (411 2) )
2a ;g

where 2o = 03Fr + (1 —03)(x + Tf) and 25 = 04G5 + (1 — 64)(2 + Tg) and 65,04 € (0,1).
Since max{|Fr|,|z+Tf|} < Ry (see (44)), then |z2| < R,. Moreover, since max{|G%|,|z+Tg|} < R,

(see (44) and (45)), this implies |z2| < R.. Hence, we have that ‘ ov ( < band ‘ v (et T o) | S b.

2,G%)

13



. Qj oV
Term 2a: Since ‘ 7z I(

z2,G7)
10V
=il |Fr — (x+Tf)] <
T | Oz (22,62,
<
<
<

where we first added and subtracted & fOT f

< b and f is locally Lipschitz, we can write

2 |Fr—(a+ 1)

T T
/ flx(r),u,d.(7),ds)dr —/ flz,u,de,ds)dr
0 0

b

T
T T

%{L/0 2 (r) —z\dT+L/O \do(7) —dch}

T T
bTL {(A + 1)/0 [exp(L7) — 1]dr + Ad”/o TdT}

exp(LT)-1-LT 1
T + 2AdcT

bL {(A +1)

(z,u,d.(7),ds)dr, then used the local Lipschitz property of

f, then used bounds (46) and (48) and finally exploited the definition of 7.

Term 2b: We use the fact that ‘ % (

< b, then add and subtract G5 to the last factor of

24T f,22)
Term 2b to obtain:
1|0V b
=l R |G — (2 +Tg)] < HI|Gr—z-Tg|
T | 0z (24T F,22) T
< £|G“ - e|+£|Ge —z—Tyg|
s plbr T+ 7 1br
b | T
< w0+ | [ glez(0).dur),d)dr - Tyl d,d)
0
b (T b (T
< bp(T)+—/ L\z(r)—z|d¢+—/ Ll|d.(r) —d.|dr
T Jo T Jo
exp(LT) —1— LT 1
< A
< bp(T)+bL[(A+1) — +54,T
< 2472 (53)
= 2 8 )

where we first used one-step weak consistency and definition of 7}, then the local Lipschitz property of
g, then inequalities (47) and (48) and finally the definition of T3
Term 3: From the differentiability of V', we apply the Mean Value Theorem to Term 3 (where z; and

14



z1 are defined just before (41)) to obtain:

1
—V(x+Tf,z4+Tg)-V(x,z) - ov v Ty
Jwl v v v
T Oz (z1,24Tg) 0z (z,21) ox (z,2) 0z (z,z)
ov ov ov ov
<5y ~ +lal 55 - 5 (54)
x (z1,24Tg) (z,2) Z (z,21) Z (z,z)
Jovi o _av | v v
N Ox (z1,24Tg) ox (z,z) 0z (z,21) 0z (z,z)
L
-8 8

In deriving (54) we first used the definition of b and then definitions of T35 and T,;. Combining (49),
(50), (52), (53) and (54) complete the proof that Property P2 holds. The proof for Property P1 to hold
follows directly from Theorem 2.1. |

Proof of Proposition 3.2: It is trivial; since d. € Lo and (20) is ISS, then £ € L. Since f and h
are continuous, then £ € L, and v € L,. Finally, since h is locally Lipschitz, then

o HECE+8)) — h(E(®)

|U| §—0 1)
< Ly | €00 —E0)
6—0 1)
< Ll
which implies © € L. |

Proof of Proposition 3.4:

The proof of the proposition follows the same steps as the proof of Theorem 3.1. Using the idea from the
theorem, we first take any number v > 0, and do the computation of 7* in the same way as we have done
in the proof of Theorem 3.1. Then, we show how we can further reduce T* to obtain K, K, K3, K4, K5
so that the desired bound holds.

We arrive at the following, which comes from (49) after some changes to match the open-loop case:

AV _ V(Fr) - V(=)

T T
= g—‘;zf+%{V(FT)—V(m+Tf)}l+%{V(m+Tf)—V(g;)_Taa_Z zf} . (55)
1 ? b T‘;

where the second equality holds since we just added and subtracted V(z+ T f)/T and % ‘x fto AV/T.

The following changes are then used in the proof. Since %—‘; is locally Lipschitz and %—‘;(O) =0, we can

write for all |z| < Ay + 1, Ju| < Ay, |de] < Ayg,, |ds| < Aq, that ‘%—‘;‘ < L|z|. Also, since f is locally
Lipschitz and f(0,0,0,0) = 0, we can write for all |z] < A, + 1, Ju| < Ay, |de| < Aqg,, |ds] < Ag,:
(2, u,de, ds)| < L(Jz| + [u] + |de| + |ds]) - (56)

: v
Since ‘ o

< L|z3|, where 2o = 03Fr + (1 — 03)(z + T'f), 65 € (0,1), then we have that Term 2 in

x2

15



(55) can be bounded as:

AV (Fr) -V @+ THY < 7 g—‘; P =@+ Tl
— gLl | " a(r), (). ) / i
< %le\ {L/OTx(T) —a:|dT+L/OTdc(T) —dcldT} (57)
< L[| {Do /OT[exp(Lr) —1dr + |[delo]|_ /OT TdT}
:L2x2{D0exp(LT)L;1—LT +%‘dc[o]HmT}

1
<TL || {D0K+ 5‘

il |

for some K > ‘WP(LP%%T, VT € (0,T*), where D, := |z| + |u| + ||d.[0]|| ., + |ds|. We can write

T T
22| < 2| + L (/ |z(7) —ﬂfldT+/ |de(T) _dc|dT> +T[f(z,u,dc,ds)| . (58)
0 0
Using calculations similar to (46) and (48), we obtain:
T T T .
/ jo(r) — o] dr +/ |do(7) = d.| dr < / (Dofexp(Lr) = 1) + |d.[0]| 7)dr
0 0 0 [
LT)-1-LT T?,
< Doexp( ) + = dc[O]H (59)
L 2 o
I
<T? [DOK+ = ‘ dc[o]H } ,
2 %
and substitute (56) and (59) into (58) to obtain
17 .
5| < || + LT? [DOK + 2 ‘ dC[O]H }
2 o0
1 (60)
<la| + LTD,(TK + 1) + 5 LT? ‘ dC[O]H

Hence, there exists K > 0 such that for all sufficiently small 7' we can write:

2] < (14 K) fo] + K (Jul + 1d:[0]] + |

dc[O]HOO+ \ds\) .

Since z; = x + 61T f, where 6; € (0,1), then |z; —z| < T|f(z,u,d.,ds)|. By referring to (54), Term 3
in (55) can be bounded by:

Lz —a| |f(z,u,de,d)| < TL? (|2] + [u] + [|d[0]]| + ds])* -

Direct but lengthy calculations show the existence of K1, Ko, K3, K4, K5. ]

The proof of Theorem 3.3 is omitted, since it follows the same steps as that of Theorem 3.1. The
only difference is that instead of using one-step weak consistency, we use one-step strong consistency.
Corollaries 3.1 and 3.3 follow directly from Theorem 3.1 and Remark 2.2. The proofs for Corollaries
3.2 and 3.4 and Proposition 3.5 are carried out similarly as the proofs of Corollaries 3.1 and 3.3 and
Proposition 3.4 respectively, by using Theorem 3.3.
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5 Applications

We present now two applications of our results. First, we consider ISS with respect to non-sampled
inputs. It is interesting to see that we have to use strong dissipation inequalities in this case, since the
use of weak dissipation inequalities would yield a weaker conclusion. Second, we consider preservation
of passivity under sampling where the inputs are assumed to be controls that are constant during the
sampling intervals. In the first and second applications we apply our results on, respectively, the dynamic
feedback case and open-loop case. An asymptotic stability result is stated as a special case of the ISS
result (see [19]). Further applications of our results to L, stability, integral ISS, etc. are possible and
are left for later exposition.

5.1 Input-to-state stability

It was shown in [31] that if an ISS controller is emulated then the ISS property is preserved in a semiglobal
practical sense for the sampled-data system. Detailed proofs were given in [31] only for the case when
Euler method was used to find the approximate discrete-time model of the controller (see Remark 2.3),
while the case of higher order approximation was only commented on. Below we use the main results of
this paper to provide a sketch of proof for the case of emulation of dynamic ISS controllers, when any
one-step strongly consistent approximation is used. Suppose that the nonlinear plant

= f(z,u,d.) (61)
can be rendered ISS using the dynamic feedback controller
z=g(x,z
9(z,2) (62)
u=u(zz),

where f, g, and u are locally Lipschitz. Suppose that the dynamic feedback controller is emulated and
then implemented digitally using a sample and zero order hold, where we use an approximation of the
dynamic controller, so that:

z(k +1) = Gp(2(k), 2(k))

u(k) = u(z(k), 2(k)) (63)

Assume that the approximate discrete-time model of the dynamic controller G$ is one-step strongly
consistent with the exact discrete-time model G% (see Definition 2.5 and Lemma 2.2). Motivated by
discussions in [5, 23] we introduce the state of the sampled-data system x(t) := (27 (¢t) =T (k) 2T (k))T
for t € [kT, (k + 1)T). We write (z,2) to denote the vector (z1 27)T. We also assume that:

Assumption 5.1 There ezists 7, € Koo such that given any A > 0 there exists T* > 0 such that for
all |(z,2)] <A and T € (0,T*) we have:

GF(, 2)] < ((2,2)]) - (64)
[ |
Remark 5.1 Note that since f and g are assumed to be locally Lipschitz and zero at zero, if we let

L > 0 be the Lipschitz constant on the set |(z,z)| < 2A, then we can write that for all |(z,2)] < A and
all T € (0,2 that

Y

G (2, 2)] < 2|(x,2)] .

If, in addition, a slightly stronger consistency holds in the following sense: given any A > 0 there exist
T* >0 and v, € Koo such that for all |(z,2)| < A and T € (0,T*) we have:

‘G%(.’E,Z) - G%(CE,Z)‘ < 71(‘(37)'2)‘) )

then Assumption 5.1 holds (just apply the triangular inequality). This stronger form of consistency is
known to hold for a large class of Runge-Kutta methods (see for instance Theorem 4.6.7 in [30]). |
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Remark 5.2 Since f and u are locally Lipschitz and zero at zero, and Assumption 5.1 holds, the fol-
lowing is true: there exist v1,72 € Koo such that given any strictly positive numbers Ay, Ao, there exists
T* > 0 such that for all T € (0,T*) and t, > 0 the solutions of the sampled-data system (61), (63)
satisfy:

X < n(Ix(to)]) +12(lldelle), VE € [to,to +T7,

whenever |x(t.)| < Ay and ||d.||, < As. This conditions is referred to as uniform boundedness over T
(UBT) in [23]. n

We can state and prove the following result using Theorem 3.3:

Corollary 5.1 If the continuous time system (61), (62) with f, g and u locally Lipschitz is ISS, then
given any approzimate discrete-time model G} of the dynamic controller which satisfies Assumption 5.1
and is one-step strongly consistent with the exact discrete-time model of the dynamic controller G5, there
exist B € KL,y € K such that given any triple of strictly positive real numbers (A, Aq.,v), there exists
T* > 0 such that VT € (0,77), |x(to)| < Ay, ||dello < Aa., the solutions of the sampled-data system
(61), (63) satisfy:

IX(®)] < B(Ix(to)],t = to) +v(lldell0) + v, V>t > 0. (65)
u

Sketch of proof of Corollary 5.1: Since the continuous time system (61), (62) is ISS, it implies (see
Theorem 1 in [29]) that the system (61), (62) is (V,w)-dissipative, where V is smooth and there exist
a1, s, as, a4 € Ko,y1 € K such that

ar(|(z,2)]) < V(z,2) < as(|(=, 2)])

(e 22 de) = —oa(1(2,2)) + 21 (1) (66)
(55 )| < anti@an.

Then it follows from Theorem 3.3, that given any G% which is one-step strongly consistent with G,
and given any (A, As, Az, ) there exists T3 > 0 such that for all T € (0,77) and |z| < Ay, |z| <

Ay, ||dc[0]]| ., < Ag, the discrete-time model of (61), (63) satisfies:
AV 1 [T
T < 1 asl@a) +nldeldr +
T T J,

IA

—az(|(z, 2)]) + n([de[0]]| ) + w1 - (67)

This implies (see Lemma 4 of [21]) that there exists 82 € KL, v2 € K such that if all the assumptions on
G% hold and given any (A4, As, Ag, v2) there exists Ty > 0 such that for all T' € (0, T%) and |2(0)| < Ay,
12(0)] < As, [|de||o < Ag, the discrete-time model of (61), (63) satisfies:

[(2(k), 2(k))| < B2(I((0), 2(0))], KT) + v2(lldell o) + 12, VE 20 (68)

From Lemma 2 in [23] it follows that there exist 3 € KL and 73 € K such that given any strictly
positive (A7, Ag,v3) there exists T3 > 0 such that for all T € (0,73) and |x(0)| < Az, [|dc]| < As, the
solutions of the sampled-data system satisfy:

IX(B)| < Bs(Ix(0)], kT) + y3(lldell ) + 3, VE=0. (69)

Finally, from Assumption 5.1 it follows that solutions of the sampled-data system are UBT (see Remark
5.2 and Definition 2 in [23]) and then using results in Section 3 in [23], there exists § € KL,v € K
such that given any G which is one-step strongly consistent with G and any (A, Ag,,v) there exists
T* > 0 such that for all T' € (0,7) and |x(t.)| < Ay, ||dc]|, < Ag,, the solutions of (61), (63) satisfy:

Y

IX(®)] < Blx(to)lst = to) +y(lldell o) + v, VE>10 >0, (70)
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which completes the proof. [ |

It is important to note that we can not use Theorem 3.1 instead of Theorem 3.3 to prove semiglobal
practical ISS of the sampled-data system in Corollary 5.1. Indeed, Theorem 3.1 requires us to impose an
additional condition on disturbances to be uniformly Lipschitz and hence the bound (70) would hold for
a smaller set of disturbances (bounded and uniformly Lipschitz) than measurable bounded disturbances
for which the ISS property is defined.

A direct consequence of the ISS result is a result on semiglobal practical asymptotic stability, which
is stated in the following corollary. Note that since we will consider the systems which has no external
input or disturbances, by Remark 2.2, one step weak and strong consistency are the same.

Corollary 5.2 If the origin of the continuous time system

z = flz,u(z,z))
: = g(z,2) (71)

is GAS, then given any approzimate discrete-time model G5 of the dynamic controller which satisfies
Assumption 5.1 and is one-step weakly/strongly consistent with the exact discrete-time model of the
dynamic controller G5, there exists 3 € KL such that given any pair of strictly positive numbers (A, v),
there exists T* > 0 such that VT € (0,T*), |x(to)| < Ay, the solutions of the sampled-data system satisfy:

X1 < BUx(to)],t — to) + 1, ) (72)
|

5.2 Passivity

Consider the continuous time system with outputs
z = f(x,u), y=h(z,u), (73)

where x € R?,y,u € R™ and assume that the system is passive, that is (V,w)-dissipative, where
V:iR" = Ry and w = yTu. We can apply either results of Theorem 3.1 or 3.3 since u is a piecewise
constant input, to obtain that the discrete-time model satisfies: for any (A, A,,v) there exists T* > 0
such that VT € (0,7%), |z| < Ay, |u| < A, we have:

ATV <yTu+w. (74)

In ISS applications, adding v in the dissipation inequality deteriorated the property, but the deterioration
was gradual. However, in (74) v acts as an infinite energy storage (finite power source) and hence it
contradicts the definition of a passive system as one that can not generate power internally. As a result,
conditions which guarantee that v in (74) can be set to zero are very important. These conditions are
spelled out in the next corollary:

Corollary 5.3 Suppose that the system (73) is strictly input and state passive in the following sense:
the dissipation rate can be taken as w(z,y,u) = yTu — 1 (x) — ¥a(u), where 1 and 1y are positive
definite functions that are locally quadratic. Then given any pair of strictly positive numbers (A,, A,)
there exists T* > 0 such that for all T € (0,T*), |z| < A,, |u| < A, we have:

AV

S <yl S (@) - 3w (75)

|
Sketch of proof of Corollary 5.3: Using Proposition 3.4, we see that given any (A, A,) there exists
T} > 0 such that VT € (0,T), |z| < Ay, |u| < A, we have:

AV
T < Z/TU — 1 (x) — ha(u) + TK1|33|2 + TK2|U‘2 )
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and from properties of ¢y and 19, it follows that there exists T* < Ty such that VT € (0,7%), |z| < A,,
lu| < A, we have that (75) holds. |

We emphasize that the above approach can be used for more general properties than passivity to
cancel v in the dissipation inequality for the discrete-time system:.

6 Conclusions

We have presented general results on preservation of general dissipation inequalities under sampling in
the emulation controller design. We have covered the closed-loop and open-loop cases. These results
generalize all available results on emulation design in the sampled-data literature that we are aware of
(see [5, 19, 24, 26, 27, 31, 33]) and provide a unified framework for digital controller design using the
emulation method for general nonlinear systems.
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A Appendix

Proof of Lemma 2.1: Let strictly positive real numbers (A;, A., Aq, A; ,Ag,) be given. Let R, =
A, +1, and let (A, R., Ag,, A A,,) generate T* > 0 from the weak consistency of G% and GLuer,
Let L > 0 be the Lipschitz constant of g on the set where |z| < A, |2| < R, |d:| < Aq., |ds| < Aqg,.
Since ¢ is locally Lipschitz and ¢(0,0,0,0) = 0, there exists M > 0, such that for all |z| < A,, |z| < R,
|d.| < Ag,, |ds| < Ag,, the following holds:

l9(z,2,de,ds)] < M . (76)

Let T} := min{T*,1/M}. It follows from (76) that, for each |z| < A,, [z| < A, ||d.[0]]|, < Aq.,
|ds| < Aq, and all ¢t € [0,T], where T € (0, T5), the solution z(t) of

2(t) = g(x, 2(t), de(t), ds) 2(0) ==z (77)

satisfies |2(t)] < R, and |z(t) — z| < Mt. It also follows from the Lipschitz property of g that for all
2 < Ry Ja] < Ay, 14e[0)le € Aa, [[de10)]| < A, 1] < Aq, and all T € (0,5), we have
(e}

T T
/ [9(z,2(7), dc(7), ds) — g(2, 2, de, ds)|dT S/ L([2(1) = 2| + |dc(7) = de|)dr
0 0

(78)

IN

Y

1 i
gT°L(M +4,) =T°L

where L := L1L(M + A ). Since

T
Gr(z,2,d.[0],ds) = z + Tg(z, z,d., dy) +/0 [9(x, 2(T),d.(T),ds) — g, 2,d., ds)]dT , (79)

the result follows from (78) and the fact that G% is one step weakly consistent with GE®"  which implies
the existence of p; € Ko, such that

|GF — GF"| < Tpu(T) .

Finally, by letting p(s) = Ls + j1(s) we prove that G is one-step weakly consistent with G%. |

Proof of Lemma 2.2: Let strictly positive real numbers (A, A., Ay, ) be given. Let R, = A, 4+ 1,
and let (A,, R.,A,,) generate T* > 0 from the strong consistency of G& and GEZ¥e". Let L > 0 be the
Lipschitz constant of g on the set where || < A,, |z| < R, |ds] < Ay,. Since g is locally Lipschitz and
9(0,0,0) = 0, there exists M > 0, such that for all |z| < A,, |z| < R, |ds| < Ay4,, the following holds:

9(z,2,ds)| < M . (80)

Let T} := min{T*,1/M}. It follows from (80) that, for each |z| < A, |z] < A, |ds] < Aq, and all
t € [0,T], where T € (0,TY), the solution z(t) of

i) = g(x, (1), ds) , 2(0) ==z (81)

satisfies |z(t)] < R, and |z(t) — z| < Mt. It also follows from the Lipschitz property of g that for all
|z| < R,, |z] < Ay, |ds| < Aq, and all T € (0,TY), we have

T T
| ot x(0).40) = g,z dodr| < [ Llla(r) = 2ar < ST LM =T (82
0 0
where L := %LM. Since
T
Gop(a,2,dy) = 2 + Ty, ,ds) + / 9, 2(r). d) — g, 7, do))dr | (83)
0
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the result follows from (82) and the fact that G% is one step strongly consistent with GZ¥°" which
implies the existence of p; € K, such that

|G — GEMer| < Tjy(T) .

Finally, by letting p(s) = Ls + j1(s) we prove that G is one-step strongly consistent with G'%. |
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