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Abstract

Closed loop output error identification algorithms [7, 9]and recently
developed algorithms for direct closed loop estimation of reduced order
controllers [8] despite their diversity have in fact a unifying basic ground
which will be enhanced.

In this paper it is shown that the plant model identification in closed
loop using closed loop output error identification algorithms and the direct
estimation in closed loop of a reduced order controller feature a duality
character. Basic schemes, algorithms and properties of the algorithms can
be directly obtained by interchanging the plant model and the controller.
Additional schemes and algorithms allowing a full coverage of the various
possible identification and reduction criteria are given.

The paper also will explore the coherence aspects in using closed loop
plant model identification and direct estimation in closed loop of reduced
order controllers. The following problem will be addressed: what closed
loop plant model identification should be used when a criterion for con-
troller reduction is given?

Keywords: System identification, closed loop identification, controller
reduction.
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1 Introduction

Closed loop output error (CLOE) identification algorithms [7, 9] allow an ap-
proximate design model to be identified which features a high accuracy in the
critical regions for control design. Effectively the frequency distribution of the
asymptotic error (bias) between the estimated and the true model is heavily
weighted by the magnitude of the sensitivity function of the true system which
explains why this desired property is obtained.

In fact the algorithms search for a plant model which minimizes a 2-norm
error between the true closed loop transfer function and the simulated closed
loop transfer function containing the final estimated model.

Asymptotic frequency bias error distribution can be obtained indicating
clearly that the bias is small where some sensitivity functions are high and
in addition this bias error is not asymptotically affected by the measurement
noise [5, 3].

Several configurations for the closed loop output error identification can be
established. While the parameter adaptation algorithm (PAA) is basically the
same, the identification criterion and the asymptotic properties of the estimated
model will be different.

It is well known that controller order reduction should aim to preserve the
required closed loop properties as far as possible [1]. It has been shown in the
paper [8] that this can be performed by estimation in closed loop of reduced
order controllers either using simulated data or real data (which is a unique
feature of this approach with respect to other approaches to direct controller
reduction). To proceed one needs to know the nominal controller and to have
an estimated plant model (either the model used for design or a model identified
on site in open or closed loop). The algorithms developed for the estimation of
reduced order controllers minimize a 2-norm of the difference between the nom-
inal sensitivity function and the one obtained with the reduced order controller
(i.e. they try to preserve the nominal closed loop properties). The algorithms
have the property that the error between the reduced order controller and the
nominal controller is small at the frequencies where some sensitivity functions
are high.

Several configurations can be considered each corresponding to specific con-
troller reduction criterion. However the PAA is in fact basically the same.

The first objective of the paper is to give a unified ground for the various
schemes proposed for closed loop output error identification and direct closed
loop estimation of reduced order controllers by observing that in each scheme
the algorithm searches for the approximation of a specific closed loop sensitiv-
ity function. This investigation led to the observation that there were missed
schemes and algorithms which are presented here for the first time.

The second objective of the paper is to show that these two problems (model
estimation and controller reduction) are dual and that the effective algorithms,
the stability analysis and the asymptotic properties can be obtained by a direct
substitution i.e.:
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Figure 1: The closed-loop system

estimated plant model −→ estimated controller;

nominal controller −→ plant model.

The only differences will occur at the effective implementation of the algorithms
since the controller has a direct transfer term while the plant model has at least
one step delay.

The third objective of the paper is to explore the coherent use of closed loop
plant model identification in direct controller order reduction. The following
problem will be addressed: what closed loop plant model identification should
be used when a criterion for direct controller reduction is given?

The paper is organized as follows. Section 2 will specify the notations. Sec-
tion 3 will survey the various configurations for closed loop plant model identi-
fication and their properties. Section 4 will explore the various configurations
for direct estimation in closed loop of reduced order controllers and their prop-
erties. Section 5 will give the basic algorithms for closed loop identification and
their frequency bias distributions. The algorithms for controller order reduction
will be derived from the closed loop identification algorithms via duality in Sec-
tion 6. Section 7 will discuss the coherency between closed loop identification
and direct controller reduction. A simulation example in Section 8 illustrates
the discussed properties of the algorithms. Finally some concluding remarks
will be given.

2 Notations

Consider the system shown in Fig. 1, where the plant model is given by:

G(z−1) =
z−dB(z−1)
A(z−1)

(1)

and

A(z−1) = 1 + a1z
−1 + · · ·+ anAz

−nA

= 1 + z−1A∗(z−1) (2)
B(z−1) = b1z

−1 + · · ·+ bnBz
−nB

= z−1B∗(z−1) (3)
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In Fig. 1, r(t) is generically the external excitation (which can be applied also
at other points). v(t) and p(t) correspond respectively to input and output
disturances. It is supposed that the plant model is an exact representation of
the true system. The plant model is also characterized by a parameter vector:

θ∗T = [a1 · · · anA , b1 · · · bnB ] (4)

The nominal controller is given by:

K(z−1) =
R(z−1)
S(z−1)

(5)

where

R(z−1) = r0 + r1z
−1 + · · ·+ rnRz

−nR (6)
S(z−1) = 1 + s1z

−1 + · · ·+ snSz
−nS

= 1 + z−1S∗(z−1) (7)

The nominal controller is a high-order controller computed on the basis of an
available nominal plant model (and not in the basis of the true plant model (1))
that meets the control specifications for the nominal closed-loop system. The
controller is also characterized by a parameter vector:

θ∗c
T = [r0, r1 · · · rnR , s1 · · · snS ] (8)

The following sensitivity functions are defined:

• Syp(z−1) =
1

1 + KG
=

A(z−1)S(z−1)
P (z−1)

;

• Sup(z−1) =
−K

1 + KG
=
−A(z−1)R(z−1)

P (z−1)
;

• Syv(z−1) =
G

1 + KG
=

z−dB(z−1)S(z−1)
P (z−1)

;

• Syr(z−1) =
KG

1 + KG
=

z−dB(z−1)R(z−1)
P (z−1)

.

where
P (z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1) (9)

is the closed loop characteristic polynomial. Note that the first subscript letter
defines the output point and the second letter the input point for the evaluation
of the sensitivity functions.

The system of Fig.1 will be denoted the “true closed loop system”. Through-
out the paper we will consider feedback systems which will use either an esti-
mation of G (denoted Ĝ) or a reduced order estimation of K (denoted K̂). The
corresponding sensitivity functions will be denoted as follows:
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• Sxy - Sensitivity function of the true closed loop system (K, G).

• Ŝxy - Sensitivity function of the nominal simulated closed loop system
(nominal controller K + estimated plant model Ĝ).

• ˆ̂
Sxy - Sensitivity function of the simulated closed loop system using a
reduced order controller (reduced controller K̂ + estimated plant model
Ĝ).

Similar notations are used for P (z−1): P̂ (z−1) when using K and Ĝ, ˆ̂
P (z−1)

when using K̂ and Ĝ.

3 Closed loop identification schemes

Figures 2a, 2b and 2c summarize the various configurations belonging to the
closed loop identification algorithms.

We will indicate next the identification criterion corresponding to each con-
figuration.
a) Closed loop output error with external excitation added to the controller input
(Fig. 2a): The identification criterion in this case is:

θ̂∗ = arg min
θ

∥∥∥Syr − Ŝyr

∥∥∥
2

= arg min
θ

∥∥∥Syp − Ŝyp

∥∥∥
2

(10)

= arg min
θ

∥∥∥Syp(G− Ĝ)Ŝup
∥∥∥

2
(11)

b) Closed loop output error with external excitation added to the plant input
(Fig. 2b): The identification criterion in this case is:

θ̂∗ = arg min
θ

∥∥∥Syv − Ŝyv

∥∥∥
2

= arg min
θ

∥∥∥Syp(G− Ĝ)Ŝyp
∥∥∥

2
(12)

c) Closed loop input error with external excitation added to the controller input
(Fig. 2c): The identification criterion in this case is:

θ̂∗ = arg min
θ

∥∥∥Sup − Ŝup

∥∥∥
2

= arg min
θ

∥∥∥Sup(G− Ĝ)Ŝup
∥∥∥

2
(13)

As one can see these three configurations cover all the possible closed loop
identification criteria (one can match all the four sensitivity functions). Note
that one can consider a fourth configuration corresponding to a closed loop
input error with external excitation added to the plant input. However this
configuration corresponds to the one of Fig. 2a where in the upper part (the
true system) the place of K and G is interchanged. This, however, will not
change the identification criterion for SISO systems.

In short for the configuration of Fig. 2a, 2b and 2c, if r(t) is a discrete
time white noise (for example a PRBS which is a good approximation) the
algorithm will search for the best Ĝ which will minimize the 2-norm between
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Figure 2a: Closed loop output error (CLOE) (external excitation added to the
controller input)
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Figure 2b: Closed loop output error (CLOE) (external excitation added to the
plant input)
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Figure 2c: Closed loop input error (CLIE) (external excitation added to the
controller input)
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the various sensitivity functions. In addition the differences between Ĝ and G
will be minimized in the frequency regions where the sensitivity functions have
large values.

The first practical consequence is that the choice of one scheme or another
is related to the main performance objective of the controller design (since the
model identified in closed loop in the context of this paper will be used for con-
troller reduction of a nominal controller designed to match a desired sensitivity
function). For tracking and output disturbance rejection it is preferable to use
the scheme of Fig. 2a. For output rejection of a disturbance entered at the input
of the plant it is preferred to use the scheme of Fig. 2b. For minimization of the
effect of the output disturbance on the controller input it is more appropriate
to use the scheme of Fig. 2c.

The second practical consequence of these properties is that the choice of one
or other configuration should be done in relation with the type of uncertainty
which is logical to be considered for controller design in a specific application.
The reason is that the robust stability conditions are expressed in terms of
specific sensitivity function for a given type of uncertainties and one would like
to best approximate this sensitivity function.

4 Direct estimation of reduced order controllers

We will consider that a model of the plant is available (denoted by Ĝ). This
model can be the plant model used for controller design or an identified model
(in open loop or in closed loop) which passed the validation tests. We will
assume of course that the nominal controller of orders nR and nS is known
(denoted by K).

Figures 3a, 3b and 3c summarize the various configuration for direct esti-
mation in closed loop of reduced order controllers. We will indicate next the
controller reduction criterion for each configuration.
a) Closed loop input matching with external excitation added to the plant input:
The controller reduction criterion in this case is:

θ̂∗c = arg min
θc

∥∥∥Ŝyr − ˆ̂
Syr

∥∥∥
2

= arg min
θc

∥∥∥Ŝyp − ˆ̂
Syp

∥∥∥
2

(14)

b) Closed loop output matching with external excitation added to the plant input:
The controller reduction criterion in this case is:

θ̂∗c = arg min
θc

∥∥∥Ŝyv − ˆ̂
Syv

∥∥∥
2

(15)

c) Closed loop input matching with external excitation added to the controller
input: The controller reduction criterion in this case is:

θ̂∗c = arg min
θc

∥∥∥Ŝup − ˆ̂
Sup

∥∥∥
2

(16)

These three configurations cover all possible controller reduction criteria
based on preservation of the closed loop properties. Note that one can consider
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Figure 3b: Closed loop output matching (CLOM) (external excitation added
to the plant input)
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Figure 3c: Closed loop input matching (CLIM) (external excitation added to
the controller input)

8



x y

nominal simulated closed - loop

reduced order
controller

ĜK
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Figure 4: Closed loop output matching with external excitation added to the
controller input

a fourth configuration corresponding to a closed loop output matching scheme
with external excitation added to the controller input [6] (see Fig. 4). However
this configuration corresponds to the one of Fig 3a where in the upper part (the
nominal simulated system) the place of K and Ĝ is reverted.

When r(t) is a discrete white noise (for example a PBRS) the algorithms will
search for the best controller K̂ which will minimize the 2-norm of the controller
reduction criterion. Like in closed loop identification the differences between K
and K̂ will be small at the frequencies where the sensitivity functions have large
values.

The above schemes can be used also with real data [8]. In this case it can
be shown that the noise will not affect the minimization procedure.

5 Closed loop identification algorithms

The output of the plant is given by:

y(t + 1) = −A∗y(t) + B∗u(t− d) + Ap(t + 1) = θTψ(t) + Ap(t + 1) (17)

where

ψT (t) = [−y(t) . . .− y(t− nA + 1), u(t− d) . . . u(t− d− nB + 1)] (18)
θT = [a1, . . . , anA , b1, . . . , bnB ] (19)

u(t) = − R

S
y(t) + ru(t) (20)

and ru(t) = r(t) in the scheme of Fig. 2b and ru(t) =
R

S
r(t) in the scheme of

Fig. 2a and 2c.
The output of the closed loop adjustable predictor is given by:
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a priori:

ŷ◦(t + 1) = −Â∗(t, q−1)ŷ(t) + B̂∗(t, q−1)û(t− d) = θ̂T (t)φ(t) (21)

û(t) = −R(q−1)
S(q−1)

ŷ(t) + ru(t) (22)

a posteriori:
ŷ(t + 1) = θ̂T (t + 1)φ(t) (23)

where

θ̂T (t) = [â1, . . . , ânÂ , b̂1, . . . , b̂nB̂ ] (24)

φT (t) = [−ŷ(t) . . .− ŷ(t− nÂ + 1), û(t− d) . . . û(t− d− nB̂ + 1)] (25)

5.1 Closed loop output error algorithms (CLOE)

The closed loop output error is defined as:
a priori:

ε◦CL(t + 1) = y(t + 1)− ŷ◦(t + 1)

a posteriori:
εCL(t + 1) = y(t + 1)− ŷ(t + 1)

and the parameter adaptation algorithm (PAA) is given by:

θ̂(t + 1) = θ̂(t) + F (t)Φ(t)εCL(t + 1) (26)
F−1(t + 1) = λ1(t)F−1(t) + λ2(t)Φ(t)ΦT (t) (27)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2; F (0) > 0

εCL(t + 1) =
ε◦CL(t + 1)

1 + ΦT (t)F (t)Φ(t)
(28)

Specific algorithms are obtained by an appropriate choice of the observation
vector Φ(t) as follows:

CLOE Φ(t) = φ(t)

F-CLOE (Filtered CLOE) Φ(t) =
S(q−1)
P̂ (q−1)

φ(t)

AF-CLOE (Adaptive Filtered CLOE) Φ(t) =
S(q−1)
P̂ (t, q−1)

φ(t)

where:

P̂ (q−1) = Â(q−1)S(q−1) + q−dB̂(q−1)R(q−1)
P̂ (t, q−1) = Â(t, q−1)S(q−1) + q−dB̂(t, q−1)R(q−1)

Â(q−1) and B̂(q−1) correspond to an a priori estimation of Ĝ, while Â(t, q−1)
and B̂(t, q−1) correspond to the current estimates of Ĝ.
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When nÂ = nA, nB̂ = nB , then the closed loop output error goes to zero
(in a deterministic environment: p(t) ≡ 0) and unbiased estimates are obtained
in a stochastic environment (when p(t) is independent with respect to ru(t) and
of finite power) if:

H ′(z−1) = H(z−1)− λ

2
; max

t
λ2(t) ≤ λ < 2 (29)

is a strictly positive real transfer function, where:

H(z−1) =




S/P for CLOE
P̂ /P for F-CLOE
1 for AF-CLOE

(30)

(in the last case this is a local result) [7, 9].
When nÂ < nA, nB̂ < nB , it can be shown that all the signals are bounded

provided that [7]:

– ru(t) is norm bounded;

– It exists a reduced order model such that:

y(t + 1)= −Â∗(q−1) y(t) + B̂(q−1)u(t− d) + η(t + 1) (31)

where η(t + 1) is norm bounded for a norm bounded r(t);

– The passivity condition (29) is satisfied.

5.2 Closed loop input error algorithms (CLIE)

As it has already mentioned the closed loop input error scheme when the excita-
tion signal is added to the plant input is equivalent to the CLOE algorithm with
external excitation added to the controller input (they have the same identifi-
cation criterion). Therefore we consider only the CLIE algorithm with external
excitation added to the controller input.

The closed loop input error is in fact the closed loop output error filtered by
the controller transfer function (see Eqs. 20 and 22). Thus the same algorithms
can be used with the difference that the prediction error εCL is replaced with a
posteriori adaptation error defined as follows:

ν(t + 1) = u(t + 1)− û(t + 1) = −R(q−1)
S(q−1)

(y(t + 1)− ŷ(t + 1))

= −R(q−1)
S(q−1)

εCL(t + 1) (32)

or

ν(t + 1) = −S∗(q−1)ν(t)−R(q−1)εCL(t + 1)

= −S∗(q−1)ν(t)− r0εCL(t + 1)−
nR∑
i=1

riεCL(t− i + 1) (33)
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Then the parameter adaptation algorithm will be given by:

θ̂(t + 1) = θ̂(t) + F (t)Φ(t)ν(t + 1) (34)
F−1(t + 1) = λ1(t)F−1(t) + λ2(t)Φ(t)Φ(t)T (35)
0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2

Since ν(t+ 1) is not available before computing θ̂(t+ 1), it should be computed
using the a priori adaptation error defined by:

ν◦(t + 1) = −S∗(q−1)ν(t)− r0ε
◦
CL(t + 1)−

nR∑
i=1

riεCL(t− i + 1) (36)

Subtracting Eq. 36 from Eq. 33, one obtains:

ν(t + 1)− ν◦(t + 1) = r0εCL(t + 1)− r0ε
◦
CL(t + 1)

= −r0[ŷ◦(t + 1)− ŷ(t + 1)]

= −r0[θ̂(t + 1)− θ̂(t)]TΦ(t)
= −r0ΦT (t)F (t)Φ(t)ν(t + 1) (37)

Then the relation between the a posteriori and the a priori adaptation error is
given by:

ν(t + 1) =
ν◦(t + 1)

1 + r0ΦT (t)F (t)Φ(t)
(38)

From this equation, one observes that the a posteriori adaptation error ν(t+ 1)
may be unbounded for the negative value of r0 when the denominator approaches
to zero. In order to fix this problem the a posteriori adaptation error can be
modified as follows:

ν(t + 1) = sign(r0)[u(t + 1)− û(t + 1)] = sign(r0)
R(q−1

S(q−1)
εCL(t + 1) (39)

where

sign(r0) =
{

1 if r0 ≥ 0
−1 otherwise

The new definition leads to the following relation between the a posteriori and
the a priori adaptation error:

ν(t + 1) =
ν◦(t + 1)

1 + |r0|ΦT (t)F (t)Φ(t)
(40)

Like the CLOE algorithms, specific algorithms can be obtained by an ap-
propriate choice of the observation vector Φ(t) as follows:

CLIE Φ(t) = φ(t)

F-CLIE (Filtered CLIE) Φ(t) =
R(q−1)
P̂ (q−1)

φ(t)

AF-CLIE (Adaptive Filtered CLIE) Φ(t) =
R(q−1)
P̂ (t, q−1)

φ(t)
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When nÂ = nA, nB̂ = nB , then the closed loop input error goes to zero (in a
deterministic environment: p(t) ≡ 0) and unbiased estimates are obtained in a
stochastic environment (when p(t) is independent with respect to ru(t) and of
finite power) if H ′(z−1) is a strictly positive real transfer function, where:

H(z−1) =




R/P for CLIE
P̂ /P for F-CLIE
1 for AF-CLIE

(41)

Remark: The closed loop input error can also be indirectly minimized by the
CLOE algorithms using the excitation signal filtered by the controller transfer
function. In this case the stability and convergence condition for the algorithm
is the same as the CLOE algorithms. The problems may occur when S(q−1) is
unstable: On one hand the positive real condition on S/P is no longer satisfied
(this problem can be solved using F-CLOE or AF-CLOE) and on the other
hand, the reference signal filtered by R/S becomes unbounded and cannot be
applied to the real system.

5.3 Asymptotic frequency bias distribution

The asymptotic frequency distribution of the bias when the estimated plant
model does not belong to the model set for various configurations is given by
[7, 5]:
a) Closed loop output error with external excitation added to the controller input

θ̂∗ = arg min
θ

∫ π

−π
|Syp|2

[
|G− Ĝ|2|Ŝup|2φr(ω) + φp(ω)

]
dω

= arg min
θ

∫ π

−π

[
|Syr − Ŝyr|2φr(ω) + |Syp|2φp(ω)

]
dω (42)

b) Closed loop output error with external excitation added to the plant input

θ̂∗ = arg min
θ

∫ π

−π
|Syp|2

[
|G− Ĝ|2|Ŝyp|2φr(ω) + φp(ω)

]
dω

= arg min
θ

∫ π

−π

[
|Syv − Ŝyv|2φr(ω) + |Syp|2φp(ω)

]
dω (43)

c) Closed loop input error with external excitation added to the controller input1

θ̂∗ = arg min
θ

∫ π

−π
|Sup|2

[
|G− Ĝ|2|Ŝup|2φr(ω) + φp(ω)

]
dω

= arg min
θ

∫ π

−π

[
|Sup − Ŝup|2φr(ω) + |Sup|2φp(ω)

]
dω (44)

1These expressions are strictly valid when using AF-CLOE (case a and b) and AF-CLIE
(case c). However CLOE and F-CLOE can be viewed as approximations of AF-CLOE and
CLIE and F-CLIE can be viewed as approximations of AF-CLIE
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These expressions show that if the external excitation r(t) is a white noise (or for
example a PRBS), the algorithms will search for the best Ĝ which will minimize
the 2-norm of error between the sensitivity functions of true closed loop system
and of the estimated closed loop system. Furthermore the noise will not affect
the asymptotic parameter estimation because output error criteria are used here.

6 Algorithms for estimation of reduced order
controllers

The algorithms for controller reduction are obtained from the closed loop identi-
fication algorithms by making dual type modifications in the scheme of Figures
2a, 2b and 2c summarized in Table 1. The resulting schemes are shown in Fig.
3a, 3b and 3c (Fig. 2a → Fig. 3a ; Fig. 2b → Fig. 3c and Fig. 2c → Fig. 3b).

Table 1: Duality between plant model identification in closed loop and direct
estimation of reduced order controller in closed loop

Plant model Identification of
identification reduced order controller
in closed loop in closed loop
Fig.2a,2b,2c Fig.3a,3c,3b
controller available plant

(K) −→ model (Ĝ)
true plant nominal
model (G) −→ controller (K)
estimated estimated (reduced

plant model −→ order) controller
(Ĝ) (K̂)
y, ŷ −→ u, û
u, û −→ x, x̂

6.1 Closed loop input matching algorithms (CLIM)

The signal x(t) is defined as: x(t) = r(t)−y(t) in Fig.3c and x(t) = Ĝ[r(t)−u(t)]
in Fig.3a. using these definitions one has:
a priori:

û◦(t + 1) = −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)x̂(t) = θ̂Tc (t)φc(t) (45)

a posteriori:
û(t + 1) = θ̂Tc (t + 1)φc(t) (46)

where
x̂(t + 1) = −Â∗(q−1)x̂(t)− B̂∗(q−1)û(t− d) + A(q−1)r(t) (47)
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for the scheme of Fig. 3c, and

x̂(t + 1) = −Â∗(q−1)x̂(t)− B̂∗(q−1)û(t− d) + B̂∗r(t− d) (48)

for the scheme of Fig. 3a, and

θ̂Tc (t) = [ŝ1(t), . . . , ŝnŜ (t), r̂0(t), . . . , r̂nR̂(t)] (49)

φTc (t) = [−û(t), . . . ,−û(t− nŜ + 1), x̂(t + 1), . . . , x̂(t− nR̂ + 1)] (50)

The closed loop input error will be given by:
a priori:

ε◦CL(t + 1) = u(t + 1)− û◦(t + 1)

a posteriori:
εCL(t + 1) = u(t + 1)− û(t + 1)

and the same PAA algorithm described in the Eqs. (26) through (28) can be
used and the corresponding specific algorithms will be:

CLIM Φ(t) = φc(t)

F-CLIM Φ(t) =
Â(q−1)
P̂ (q−1)

φc(t)

where:
P̂ (q−1) = Â(q−1)S(q−1) + q−d−1B̂(q−1)R(q−1)

is a known quantity and therefore there is no need to estimate this polynomial in
line. The corresponding transfer functions involved in the passivity conditions
for stability become:

H(z−1) =




Â(q−1)
P̂ (q−1)

for CLIM

1 for F-CLIM

(since the exact polynomial of the nominal simulated closed loop is known).

6.2 Closed loop output matching algorithms (CLOM)

As it has already been noted the closed loop output matching algorithm when
the excitation signal is added to the controller input (See Fig. 4) is equivalent
to the CLIM with external excitation added to the plant input (see Fig. 3a).
Therefore the same algorithm can be used for both cases which have the same
criterion.

For the CLOM algorithm when the excitation signal is added to the plant
input, two choices may be considered: The first one is to filter the excitation
signal through Ĝ and use the CLIM algorithm corresponding to the scheme in
Fig 3a. In this case, evidently, the stability and convergence condition of the
algorithm is the same as CLIM algorithm. The second choice is to derive directly
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an algorithm for minimizing the closed loop output error. But this algorithm
encounters a technical problem so that the convergence condition becomes B̂/P̂
which is never a positive real transfer function (because of at least one step
time delay in B̂). Although this problem can be fixed using a d + 1 step ahead
prediction error, the first choice still seems to be more appropriate because in
many practical systems Â is stable and the necessary condition for the positive
realness of Â/P̂ is satisfied.

6.3 Asymptotic frequency bias distribution

The crucial step is to examine the properties of the estimated reduced order
controller. To do this we will directly use the expressions (42) and (44) in which
we will take φp(ω) = 0 (no noise) and we will make the substitution indicated
in Table 1. One gets for the asymptotic frequency distribution of the bias the
following expressions:
a) Closed loop input matching with external excitation added to the plant input

θ̂∗c = arg min
θc

∫ π

−π
|Ŝyp|2|K − K̂|| ˆ̂Syv|φr(ω)dω

= arg min
θc

∫ π

−π
|Ŝyr − ˆ̂

Syr|2φr(ω)dω (51)

b) Closed loop output matching with external excitation added to the plant input

θ̂∗c = arg min
θc

∫ π

−π
|Ŝyp|2|K − K̂|| ˆ̂Syv|φr(ω)dω

= arg min
θc

∫ π

−π
|Ŝyv − ˆ̂

Syv|2φr(ω)dω (52)

c) Closed loop input matching with external excitation added to the controller
input

θ̂∗c = arg min
θc

∫ π

−π
|Ŝyp|2|K − K̂|| ˆ̂Syp|φr(ω)dω

= arg min
θc

∫ π

−π
|Ŝup − ˆ̂

Sup|2φr(ω)dω (53)

When r(t) is a discrete time white noise these expressions correspond exactly
to the 2-norm expression which we would like to minimize in each case. It should
be noted that the resulting controller is the best reduced order controller with
respect to the nominal plant model Ĝ not to the true plant model G. However,
it is the case for all of the controller reduction methods. A detailed analysis
when one uses real data can be found in [8]. In this case it was shown that the
noise term does not affect the minimization procedure.
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7 Coherency between model identification and
controller reduction in closed loop

The interesting problem to address is: What closed loop plant model identifi-
cation should be used when a criterion for direct controller reduction is given?
To answer this question we will make reference to the iterative identification in
closed loop and controller re-design methodology [4, 10, 2]. The basic rule for
improving performance is to use the same criterion for identification in closed
loop and controller re-design. In our case controller re-design corresponds to
the reduction of the nominal controller. Therefore examining the identification
criterion for the various closed loop identification schemes and the controller
reduction objectives, a coherency is observed between them as indicated in Ta-
ble 2.

Table 2: Coherent controller reduction and identification in closed loop

Controller
reduction criterion

Controller reduction
scheme

Closed loop
identification scheme

min ‖Ŝyp − ˆ̂
Syp‖

CLOM with external
excitation added to
the controller input

CLOE with external
excitation added to
the controller input

or or or

min ‖Ŝyr − ˆ̂
Syr‖

CLIM with external
excitation added to
the plant input

CLIE with external
excitation added to
the plant input

min ‖Ŝyv − ˆ̂
Syv‖

CLOM with external
excitation added to
the plant input

CLOE with external
excitation added to
the plant input

min ‖Ŝup − ˆ̂
Sup‖

CLIM with external
excitation added to
the controller input

CLIE with external
excitation added to
the controller input

8 Simulation Example

The objective is to show the improvement of performance in controller reduc-
tion when a coherent choice of closed loop identification scheme is chosen. A
fifth-order discrete-time system (corresponding to the model of a flexible trans-
mission) is considered as the true model of the plant:

G(z−1) =
0.3087z−3 + 0.3930z−4

1− 1.6028z−1 + 1.8884z−2 − 1.6673z−3 + 1.2314z−4 − 0.2279z−5
(54)

17



and a sixth-order discrete-time system as the nominal high order controller:

K(z−1) =
0.658− 0.82z−1 − 0.606z−2 + 1.093z−3 + 0.15z−4 − 0.168z−5 + 0.019z−6

1 + 0.509z−1 − 0.75z−2 − 0.699z−3 − 0.092z−4 + 0.032z−5

(55)

The controller is obtained by pole placement method and contains an integra-
tor. The objective is to find the best reduced order model and reduced order
controller (both of fourth order) for different controller reduction criteria. Two
criteria are considered: the first one is to preserve the performance of the nomi-
nal controller in tracking and output disturbance rejection (the first row of Table
2) and the second one is to preserve the performance of the nominal controller
in rejection of output disturbance at the plant input (the last row of Table 2).

8.1 Closed loop identification

The closed loop system formed by the true plant model and the nominal con-
troller is excited with a PRBS of 1024 length added to the controller input.
This is in fact the simulation of a noise-free real data acquisition. Two reduced
order models (nA = 4, nB = 2 and d = 2) of the plant are identified using the
CLOE and CLIE algorithms. In order to have the same convergence proper-
ties for two algorithms, the closed loop input error is also minimized using the
CLOE algorithm but the excitation signal is filtered by the nominal controller.
The CLOE model is adequate for the first objective (tracking and output dis-
turbance rejection) whereas the CLIE model is more appropriate for the second
control objective. The parameters of two identified model are as follows:

Ĝcloe(z−1) =
0.2671z−3 + 0.4498z−4

1− 1.4291z−1 + 1.5464z−2 − 1.1972z−3 + 0.8413z−4
(56)

Ĝclie(z−1) =
0.2744z−3 + 0.4164z−4

1− 1.515z−1 + 1.6779z−2 − 1.3594z−3 + 0.9423z−4
(57)

The results of identification in terms of the 2-norm error between different
sensitivity functions are presented in Table 3. It can clearly be observed that the
2-norm error between the output sensitivity functions for the CLOE algorithm
is less than that of the CLIE algorithm, but the 2-norm error between the input
sensitivity functions is smaller for the CLIE algorithm.

Table 3: The results of closed loop identification of reduced order models
Algorithm ‖Syp − Ŝyp‖2 ‖Sup − Ŝup‖2

CLOE 0.1327 0.2016
CLIE 0.2079 0.1314

8.2 Controller order reduction

Now, the algorithms for estimation of a reduced order controller are compared
via simulation. First we consider tracking and output disturbance rejection as
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control objective for which the error between output sensitivity functions should
be minimized. The CLOM controller reduction algorithm which is conformed
with the control objective is chosen with the two different closed-loop identified
models (Ĝcloe and Ĝclie). The simulation results in Table 4 (column 2, simulated
data) for two identified models (Ĝcloe and Ĝclie) show that for the coherent
algorithms (CLOM and CLOE), the two norm of error between the output
sensitivity function is smaller than that of non-coherent algorithms (CLOM
and CLIE). It can be observed that when the real data are used for controller
reduction (obtained using the true plant model, column 3) the results are further
improved. It should be noted that the true plant model is used only for data
generation and it is not used in the closed loop predictor. The similar results
are obtained when input disturbance rejection is considered as control objective.
Table 5 shows that the two norm of error between the input sensitivity function
is smaller for the coherent algorithms (CLIM and CLIE). Again, the use of real
data can improve the results. It is worthy to mention that the use of real data
for controller reduction is a unique feature of the proposed approach.

Table 4: The results of controller reduction by output matching method
‖Syp − ˆ̂

Syp‖2
Simulated data real data

CLOM(Ĝcloe) 0.1324 0.1102
CLOM(Ĝclie) 0.2078 0.2555

Table 5: The results of controller reduction by input matching method
‖Sup − ˆ̂

Sup‖2
Simulated data real data

CLIM(Ĝcloe) 0.2062 0.1750
CLIM(Ĝclie) 0.1326 0.1201

9 Conclusions

A unified approach to closed-loop plant identification and direct controller re-
duction by closed-loop identification has been proposed. The main idea is to
consider the control objective in all of the model based control design steps (i.e.
in model identification step, in high order controller design and in the controller
reduction step). The control criterion can be matched with the identification
criterion by plant model identification in closed-loop with the appropriate choice
of the criterion (output error or input error) as well as the place where the ex-
citation signal is added (to the plant input or to the controller input). The
control objective can also be considered in the controller reduction step by di-
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rect identification of a reduced order controller in closed-loop. In this step the
choice of the criterion and the excitation point play again an important role.

The paper has emphasized the duality character of the algorithms, allowing
basically with only one algorithm to cover several closed loop plant model iden-
tification and controller reduction. It also enhanced the importance of the use
of appropriate closed loop identification schemes for obtaining the plant model
to be used for controller reduction

Experimental results reported in [8] have clearly shown the potential of the
algorithms to solve practical closed loop identification and controller reduction
problems.
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[5] A. Karimi and I. D. Landau. Comparison of the closed loop identification
methods in terms of the bias distribution. Systems and Control Letters,
(34):159–167, 1998.

[6] A. Karimi and I. D. Landau. Controller order reduction by direct closed
loop identification (output matching). In 3rd Rocond IFAC, Prague, June
2000.

[7] I. D. Landau and A. Karimi. Recursive algorithms for identification in
closed loop - a unified approach and evaluation. Automatica, 33(8):1499–
1523, August 1997.

[8] I. D. Landau, A. Karimi, and A. Constantinescu. Direct controller order
reduction by identification in closed-loop. Automatica, 37(11):1689–1702,
2001.

[9] I. D. Landau, R. Lozano, and M. M’Saad. Adaptive Control. Springer-
Verlag, London, 1997.

[10] P. M. J. Van den Hof and R. R. Schrama. Identification and control -
Closed-loop issues. Automatica, 31(12):1751–1770, December 1995.

20


